Residue to Binary Number Converters for (2"-1,2"2"+1)

Abstract

This paper proposes three new residue-to-binary
converters using 2n- bit or n-bit adders for the three
moduli  residue  number system of the form
(27 = 1,27,2" +1). The 2n- bit adder based converter is
Jaster and requires about half of the hardware required
by previous methods. For n-bit adder based
implementations, one new converter is twice as fast as
the previous method using similar amount of hardware;
while another new converter achieves improvement in
both speed and area.

Keywords residue number system, arithmetic,
circuit, algorithm, adders.

I Introduction

There has been interest in Residue Number Systems
arithmetic as a basis for computational hardware since the
1950°s [1] [2]. During the past decade, the residue number
system (RNS) has received a considerable attention in
arithmetic  computation and  signal processing
applications, such as fast Fourier transforms, digital
filtering and image processing {2}{3]. The main reasons
for the wide spread use are the inherent properties of RNS
such as parallelism, modularity, fault tolerance and carry
free operations [3]. The conversion from binary to residue
and vice versa is the crucial step for any successful RNS
application. In recent years, the conversion process has
been studied very intensively {5-12]. For general moduli
sets, the residue to binary conversions are mainly based on
the Chinese Remainder Theorem or Mixed-Radix
Conversion.

Due to relatively simple conversion, the residue
number system based on the set of moduli
(2" -1,2",2" +1) has gained popularity and is expected to
play an increasing role in RNS digital signal processing
[5]. Several conversion methods for (2" —-1,2",2" +1)
have been reported [6] [7] [8] [9] [10] [11]. The method
proposed in [6] 1s the first one to use n- bit CPAs, where

multiplication, division, and table look-up are also
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needed. The approaches in [7] [8] [9] using FAs and 2n-bit
CPAs. Among them, [7] has the best implementation
using 2n-bit adders.

In this paper, we present three different converters
using either 2n- bit or n- bit adders. The 2n-bit adder based
converter is faster and requires about half of the hardware
required by previous methods [7}[8][9]. For n-bit adder
based implementations, one new converter is twice as fast
as the previous method [6] using similar amount of
hardware; while another new converter achieves
improvement in both speed and area.

In the following, we first present the new conversion
formulas; then we show an example and propose three
different hardware implementations. Due to limited space,
formulas introduced are without proof. Detailed proofs
can be found in [13].

II Mathematical Background

For any two numbers X and P, x,=XmodP is
defined as X = x; + bP, for some integer b such that
0<x;<P. XmodP can be written as Xp. A residue
number system is defined in terms of a set of relatively
prime moduli set (P, P, ... F,), where GCD(R,P)=1
for i#j. A binary number X can be represented as

X=(x,%y,,%,), where x;=XmodP. The
representation is  unique for any Xe[O,M-1],
m=T]~.

i<k

If (B.PP)= (2"-1,2"2"+1), X can be
represented by a tuple (x,,x,.x;), where x=

L Xii-yXnXig AN X0 =050 X0 o)Xy Xy AT (WO
n-bit binary numbers; x;=x, xy 0 o x 0 iS an
n+/-bit binary number. The RNS to binary converter
computes the number X from the tuple (x,,x,,x,).

Theorem ([13] The number X can be computed
from (x,,x,,x,) by the formula:




X=x, +2"*[(x, - x;) + (x, = 2x, + x,)2"7'(2" + D]y,

which can be further processed as
X=x,+2"*Y 4]
Y={A+2"*Bl. = @

Az[(x, +H(x B xy)¥2)+ (2" = 1= x,)+ (27 —I)J 3

2

B=[(x;+(xm®xm)*2")+x3+2(2"—1-x2)J @
2

Example Consider the example shown in [6]. Let
2"-1,2"2"+1)=(7,8,9) and an octal number 627,
which can be represented as (1, 7, 2)=(001, 111, 0010).
Compared with the long calculation in page 56 in [6], the
following process is much simpler.

Zp =X, D xy, =1

(x4 (X0 @ xy ) *¥27)+ (27 ~l-x)+@2" -1

=1001+101+111=10101
Al Gt @)% 2) +(2" ~1-x)+ (2" —1)J= 1010

2

2
Y= {1010+8*101}22.l_[ =24+8%6
X=T7+8*Y=7+2%8+6*8*
IIT New Converters
In this section, we propose new converters using 2n-

bit or n-bit adders based on formulas (1), (2), (3) and (4).
(1) Basic Operations to Compute A and B

If x=2" then x, =1, x,,  =.=0x,= Xy =0;
(2" =1-x)+ Q" =1)=(2" - 2)

=Xy X5 0+ X5 X, 0.

If x;<2" ie, x,=0, then (2"-1-x)+(2"-1)=
Xymyee Xy Fag + 101

PR Es Jr(xlo6£9x30)=*2")+x3+2<2"~1—x2)J=mI

= X3y Xy 0+ X, X5, 04 (X, + 1)

The addition of (x,+z,*2")+(2" -1 ~-x)+
(2" -1) is shown in Figure I(a) and (b). Figure 1(b)
shows the block diagram of the unit. The circuit produces
two numbers S, S, S ,..5,S, and C,.C,,..C.C,0. We

n*~n-1

(x4 (0 @ x3)*2") + x, +2(2" ~l-x,)= denote A, =SS, S .S and 4, = C,..C,.,..CC,
1001+ 0010+ 0=1011 then A +A, =A.
7 — —
0 *30-1) *3n-2) X3 0 b o
X
X — X o X —_— 3n. M
(n-1) X3, (n-2) X3, 11 X3, Xl X3
,"10
FA FA — - FA FA nFAl
Al A
, S,.1 Sn_2 , S, , SO
Sh C.. Cn~2 C (b)
! (a) ] 0
Figure 1 Compute A Using n FAs
- Xoma  X2md)
. 2e1) X X
3n X3(n-1 3(n-2) 31
Xiin_ X X — %10 X
z 1(n-1) (n-2 ] X5 30
FA FA FA — —| FA HA nFA2
S B C
, So+n Spten ’ Sn-2+n 1+n l SO+n li BZ‘ i - n+n
Cn+n Cn-1+n Cn-2+n C1+ .
(a) (b)

Figure 2 Compute B Using n FAs
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(b) shows the block diagram of the unit
(x,+2,*¥2")+x; +2(2" -1-x,) using

produces numbers
c.cCc .. C

‘nen T a-tvn T n=2+n"

Figure 2
performing
FAs. The
SnmSn-i*nSn*l«n‘
Let. B +B,+C, , *2" =B,
B = 8,inSsctinSrinSien By =

Therefore we have the formula
Y={A+2"*B).  =((A4 +A4,)+2" (B +B,+C,, *2)..,
o) ¥ 27 (B + B}

e, Y={(A+A+C_ )+2"*(B +B8,)}
where A, A,, B, B, are all n- bit numbers; C,,,

bit number.
The addition in (5) can be done in many different
ways using 2n- bit or n- bit adders. These different

implementations will be shown below.

two
-GG

I+n " 0+n -~

we have
CI +n QHn "

circuit
2SS,

ten*=0+n

where
c_..C

n=l+n~n=24n"""

={(A +A,+C
(5

is a one

28y

(2) 2n-bit Adder Based Converter - Converter 1
Next we show the Converter I which implements
formula (5) using a 2»- bit adder.

Y={(A +A,+C, )+2"*(B + B}
={Cn +(A +27B)+ (A, +2"B))},..
=Cran + SenSytenSrrinS1enS,8, 8,505,
+CperCrzan+ CionCyinCri Gy GGy i,

where SenSntenSnzan S S, 1S, 508, and
Cn—l+nCn—2+n“'CHHC(H—nCn—lCn-Z"'Clq) are two 2n- bit

numbers, and C,,, is a 1-bit number.

In Figure 3 (a), the units nFA1 and nFA2, used to
produce A, A,, B, B,, are connected to a 2n-bit I's
complement adder. The 2n-bit adder produces the value Y,

which forms the 2n MSB’s of the number X, while x,

forms the n LSB's of X.

Figure 3(b) shows the components in the converter
proposed in [7]. It is easy to see that we save one 2n-bit
CSA with EAC. Detailed comparison of the related other
converters are summarized in the following Table 1, where
the data for references [8] [9] [11] are from Table I in [7].

In summary, Converter I is the best converter based
on 2n-bit adders. It saves almost half of the hardware
required by the previous best converter while increasing

the speed.
X X X
‘ * 3 ’<$X1+ > [ 2n-bit CSA with EAC
nFAl nrA2 | +

X,

[ Zn-bit 1's complement adde‘
(b) Converter in [7]

- Bl B2 [ 2n-bit CSA with EAC]
n+n

[ 2n-bit I's complement adder ]
¥

Y

{a) Converter |

Figure 3 2n -bit Adder Based Converters
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(3) n-bit Adder Based Converters - Converter [J
and IIT
The addition in formula (5) can also be done by n-bit

adders, which generates the value Y in the form
Y=Y +2"*Y, such that ¥, and Y, are both n- bit binary
numbers.

In Figure 4, we use two carry look ahead adders
(CLA) to perform the operation A, + A, and A, +4,+1
in parallel. The results are denoted as D,, and Dy, with
carry r, and r, respectively. If r, #r,, we have
Dy, =2"-1and D, =D, +1=2". Similarly two CLAs
are used to perform B + B, and B +B,+1 while the
results are denoted as D, and D,, with carry r,, and ry.
If r,#r, wehave D,y =2"~1and D,, = D, +1=2"

The selector module selects the correct carry and the
correct sum for the number ¥, and Y,. The function of the

selector is described below.
If r,, # 1, and ry #rn,, then r, =n

0

Elseif ry =r,, then n=r,: if =0, r,=r,
elser, = n,

Else if ry =r,, then r, =r;if =0, n=r
h=n;

Therefore the carry n, =1if (r, =5, =1) or
(ry=ry=0and r, =1)or(r,=n, =1
=Nl + Ry hy + . Similarly

1

and r, =1), i.e.,
R = ryIy + R Ln, + 5Ly, The selector implements

h

these two functions.

(BTN,
nFAl AFA2 Chin
AL T A A A ls\ B, B ] B
ANSRANEES I N1 r
“an g cra CLA?! | crasf J‘+CLA4] T 2
T
D, i’u 0, i L B ¥, On { o *HJ J:l
rl r._,
{' MUXs — MUXs selector
X Y, * v, r T,

Figure 4 Converter Il - Using 4 n-bit Adders

Considering the fact that D,, = D, +1 and
D,, = D, +1, we can replace the CLA2 and CLA4 in
Figure 4 by other combinational circuits that perform the
operation D, =D, +1 and D,, = D, +1. The following
Figure 5 shows Converter [II. The circuit plus/ performs
the function of adding I to an n-bit input numbers.
Consider D=d, d, ,..dd,. D+1=d _d _,. dd, +1
=e,e,,6,.,..€¢€,. We have the following equations:

n -




e, =dye, =d, @dd,

e=d@®d_ . .d
€ = dn—l ® dn-l "'d()
en = dn»!dn~2 "‘d(i *

which imply that the circuit plus] requires n-/ XOR
gates and n AND gates plus 1 inverter.

s 1

X3
l Crui‘

Figure 5 Converter Il - Using 2 n-bit Adders

The following Figure 6 shows the main components
for the converter proposed in [6]. No detailed
implementation was given for each module in [6]. We
evaluate the performance based on {(4]. Modules M1 and
M2 require 2 CLAs, 1 CSA, all are n- bit adders; 1 XOR
for generating C1, 2n  inverters for 2’s complement
Operation. M3 and M4 require two additional CPAs and
2n inverters for 2’s complement operation. Module M6
uses 9 AND gates, 1 OR gates, 8 inverters, and ] XOR
gate. MS uses 8*n bit memory to store the value. Delay
>, + 2eppin Fley) F Txor tliy * 1aap =31, g,

iny

+ ok Flawp +2tcpy.,,- The differences in hardware and

delay between Converter II (CII), Converter II1 (CHI) and
the converter in {6] are summarize in Table 2.

X2=(A1+A3)/2-A2 — M2
M| Cl=(a1+A3)mods | [XI=(A1-A3)2

lem(2k-1)/2-n(2k4~1)/2 (m,n)
M5 L2=m(2k-1)/2+n(2k+l)/2 evaluator [ M6

M3] D2=X2+12 Di=X1+L1 | M4

Figure 6 Converter proposed in [6]

Assume Lyox =2, g, =2, L = 1= tup,s Lot =
logn, !xor = 2, then the delay of Converter II is L, 1,
Flax +1g,,,= S+logn. The delay of Converter III is
T F ey 4 Lyon + Lo + Eypn +lea =8+logn. The
delay of the converter in [6] is 3r,, +1.  Hlyop +Lap
2o = 8+2logn. The delay of Converter II is
almost half of the delay of the converter in [6].
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Assume the straightforward implementation of the
CLA which consists of carry look-ahead unit and a
summation unit which in total require 2n+n(n+1)/2
AND gates, 2n XOR gates, and n OR gates. The hardware
requirement in [6] is even higher than the hardware required
in Converter III while its delay is longer.

V Conclusion

Three different residue-to-binary converters for the
special moduli (2" —1,2",2" +1) have been presented in
this paper. The converters can be implemented using 2n-
bit or n-bit adders. The 2n- bit adder based converter is
faster and requires about half of the hardware required by
the previous converter in [7]. For n-bit adder based
implementations, one new converter is twice as fast as the
previous method using similar amount of hardware; while
another new converter achieves improvement in both
speed and area.
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Table 1 Performance Comparison of 2n- bit Adder Based Converters

Converter FAs AND IXOR/ other Delay
/OR XNOR
[811] 6n+2 - n+l1 - 2l cpaim t 2 cpacany T 2txor
9] 6n+1 4n-2 2n - 3t epaam +xor 110820 [
[7]-CE 4n+1 2n-1 2n 2n+1 inverter 2tp b, F 2 paom
Converterl 2n+1 - 1 1HA, 2MUX tea t iy ¥ 28 cpp0m)
2n+] inverter

Table 2 Performance Comparison of n- bit Adder Based Converters

FA MUX XOR AND [INV HA Mem |CPA Delay
/OR
ICll 2n 2n+2 1 2 2n+5 1 4 Loy s T Lgux t tcram
CIIT | 2n 2n+2 2n-1 2+2n Rn+7 1 Loy Tl Y xor T Lawp T lyux +iciam
(6] n 0 2 10 dn+8 | O 8n 4 3t,, Ftea T lvor T v + 20cium
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