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Abstract

In this research, we devised a new simple
technique for statically holding analog weights, which
does not require periodic refreshing. It further
contains a mechanism to locally update the weights
Jrom the analog back-propagation signals for fast on-
chip learning. In this circuit, the weight is stored as a
5-bit digital number, which controls the gates of five
pass  transistors  allowing  five binary-weighted
(1,2,4,8,16) voltage references to integrate at a
voltage adder. The output of the voltage adder is the
analog weight. The 5-bit register is designed as an
up/down counter so that every pulse on the up/down
input will increase/decrease the weight by one level
out of 32 possible levels. The learning circuit takes the
analog graded error signal and generates two pulse
streams for up/down counting depending on the sign
of the error signal. The duration of the pulse stream is
proportional to the magnitude of the error signal. This
complete modular synaptic body (storage and learning
technique) is appropriate for large scaleable analog
VLSI neural networks because it handle recall and
learning operations at the same speed with Sull
parallelism.

Analog storage and refreshing

Synaptic weight storage has been the most
challenging design issue in analog neural network
paradigm especially if on-chip learning is required. In
this case, the analog weight value (stored on a
capacitor for example) must be made adjustable
through some switching techniques (transistors)
associated with the capacitor. This transistor
association breeds an unpleasant leakage, which
inevitably shortens the life of the weight storage, and
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wherefore, refreshing mechanisms have evolved. Of
course, the best storage to solve this problem is the
digital static RAM that does not require refreshing
hardware. However, if analog functicnal units are to
be used for their superiority in speed and size, then all
digital weights must be converted to analog. This
conversion, In turn, necessitates that each synapse
must be equipped with a DAC. Now, if learning is to
be implemented in full parallelism, then an ADC must
be provided for each weight to impose the analog
graded update signal. The DAC/ADC pair solution for
each synapse is rather expensive [4]. This trade off
between digital storage with DAC/ADC and analog
storage with refreshing brought up several schemes
and techniques for weight storage and update handling
[4].

The four basic schemes of hardware architectures
are shown in Figure 1. Scheme A is all-analog
including learning and refreshing mechanisms, An
example is the hybrid system of [1]. Scheme B is
analog except weight storage and update are digital,
example in [6]. Scheme C is analog except refreshing
which is done through RAM/ADC combination.
Examples are in [2] and [5]. Scheme D uses analog
operators and digital storage without refreshing nor
learning, example [7]. The scheme of this paper is
close to Scheme B except that the ADC and digital
adder in the leamning section are replaced by our
pulsing mechanism.

Static storage

The concept of non-refreshing storage is very
simple and emerges from the basic idea of analog to
digital conversion. The static digital storage in a form
of a binary counter is utilized to hold a binary number,
which is proportional to the actual value of the weight.




In this paper, we are using a 5-bit counter as shown in
Figure 2. Although the same architecture can be easily
implemented with more than 5 bits, simulations in
previous literature have shown that 5 bits with 32
possible sates provide sufficient accuracy [3].

The S5 bits which hold the normal binary
positional weights, 1, 2, 4, 8, and 16, are connected to
S pass transistors (T1, T2, T4, ..., T16) which are, in
tern, connected to 5 binary weighed voltage supplies
(V1, V2, V4, ..., V16) as shown in Figure 2. The
summing operationa! amplifier SUM adds the
different values of contributing power supplies and
generates an output which is proportional the binary
value (0, 1, 2, 3, ..., 31). This voltage output is the
actual analog weight. This methodology of static
storage of analog weights has been utilized in one way
or another in literature but none has been adapted for
fully parallel on-chip learning.

Learning technique

Learning on chip is the ability to dynamically
modify the stored synaptic weights in accordance to
the graded update errors, which are computed in the
back-propagation procedure. The difficulty in analog
paradigm is in imposing this analog error on the
weights if they are statically stored in a digital form. In
this research, however, we are storing the weight in a
digital counter which facilitates for dynamically
changing the weight value by simply pulsing the
counter. Two issues need to be addressed here, the
direction, up or down, and the magnitude, number of
pulses. The direction of pulsing, up or down, depends
on the sign of the graded update error signal, positive
or negative respectively. The magnitude of update
error signals is translated into multiple of pulses. To
make a proportional relation between the number of
pulses and the magnitude of the error signal, we used
an analog technique as shown in Figure 3.

The computed weight update signal, Aw, is passed
through 2 different circuitries to generate two pulses,
PP for positive error and PN for negative error. See
Figure 2 for schematics and Figure 3 for timing
diagram. When Aw carries a positive signal, P1 goes
high charging the associated RC circuit to a potential
level proportional to the strength of the Aw signal. The
PP inverted output is consequently an active-low pulse
whose duration is proportional to magnitude of Aw
signal. This PP pulse will then enable the NAND gate
enabling the output UP to pulse the counter at a fixed
fate, CLK signal, for a period of time proportional to
the magnitude of Aw signal. At the same time, the DN
Output remains inactive.
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In the other case, when Aw carries a negative
signal, P2 goes high due to the inverting voltage
follower, INVT. P2 then charges the associated RC
circuit to a potential level proportional to the strength
of the Aw signal The PN inverted output is
consequently an active low pulse whose duration is
again proportional to magnitude of Aw signal. This PN
pulse will then enable the lower NAND gate enabling
the output DN to pulse the counter down for a period
proportional to the magnitude of Aw signal. Here, the
UP output remains inactive,

With this technique, the Aw signal, based on its
sign, 1s translated into two exclusive trains of pulses,
UP and DN, which will respectively, either increase or
decrease the value of the weight stored in the counter.
In either case, the amount of change is proportional to
the length of the pulse train, which is proportional to
the magnitude of the original Aw signal.

Conclusion

In this paper, we devised a simple scheme of
static storage for analog weights with the ability to
modify their values in proportion to an analog feed
back error without the need for ADC. This simple
circuit can be easily replicated for each synapse body
to achieve maximum parallelism.
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Figure 1: The Four Basic Schemes of Storage and Leering Mechanisms.
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Figure 2: Block Diagram for the Storage and Learning Mechanism.
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Figure 3: Timing Diagram.
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