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Abstract

This paper describes the implementation of the
self timed asynchronous router in a parallel machine.
The heterogenous architecture of the machine is out-
lined, then the need for asynchronous operations is
ezplained, and the interest of an asynchronous net-
work control. The specification and VLSI design of the
router are ezhibited with its measured performances.

1 Introduction

Currently, the throughput of parallel machines
rarely exceeds 20 to 30 percents, far behind the one
of vector machines: usually 80 to 90 percents. Vec-
tor machine architectures did not evolve that much
the last few years, so current vector compilers are effi-
cient enough. On the contrary, the diversity of parallel
architectures makes parallel compilers harder to build
and stabilize. Anyway, such a compiler by itself would
never fill the gap between processors’ power and data
transfer rates along communication networks. Bet-
ter rely on specific hardware ressources, like in vector
machines where independant load and store units feed
vector registers for the processor to keep computing,
In achieving a data prefetch. The efficiency of the
technique grows with the network speed. Then, the
bandwidth between memory and processor has to be
maximized.

Let us define a network hierarchy regardless from
any technological level. In classical hierachies, the so
?alled processor hierarchies, upper layer units are still
Interconnected by the network, involving a strong bot-
tleneck. In a network hierarchy, bandwidth require-
ments are handled over the whole memory hierarchy.
This implies several independant communication lev-
els with respect to processors, in charge with data
transfering and reordering in the memory, while com-
puting. To check the concept we seek efficiency on
a wide class of algorithms, in both scientific calcula-
tion and image processing. So, an high granularity
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MIMD machine with a bulky global memory seems to
be a reasonnable choice provided high speed commu-
nication ressources allow for data parallelism. The
latter programming model fits low-level image pro-
cessing requirements - array data structures - whereas
control parallelism rather suits high-level operators -
intricated graphs for recognition. A bit of scalability
should ease and widen further aplications.

To sum up, our aims are to:

¢ build an high granularity MIMD machine with a

bulky memory
¢ use an on-the-shelf processor

¢ share memory
¢ take into account technological constraints since

the very design stage

Hence:

¢ optimize the throughput that could be bad if com-
puting ressources wait for informations

e improve the bandwidth, by reducing memory ac-
cess and network access latencies

Hence:

e separate computing functions from adressing
functions, i.e. data transfer and reordering

e use prefetch
o ensure the overlaying of calculation / adressing (

prefetch ) / communications

And that means:

¢ actually test a prototype of asynchronous ar-
chitecture

2 Phenix architecture

The Phenix heterogeneous architecture results
merely from putting together harmoniously classical
solutions to each subgoal listed above. Its nodes will
so include calculating ressources, a huge memory, a
cache, and routing ressources. Caching is necessary to
profit from data locality, routing ressources to free the
processor from communication and networking tasks.



A classical cache drops with vector calculation. Vec-
tors mostly spread over the whole local memory, with
poor locality, and non continuous assignments. Be-
sides, a huge static memory would imply voluminous
expensive power supply and cooling devices, would be
voluminous itself ( 4 to 6 transistors / cell) and expen-
sive. We thus prefer dynamic memories which have
none of these drawbacks. In order to mask their la-
tency, they are interleaved. The next problem is to
build a long bus, as long as the memory is large, and
a fast one, connecting memory banks to the cache. A
pipelined bus will do, separating sections by registers,
should furthermore improve the scalability for mem-
ory size expansion,

To improve the peak to raw power ratio, an adress-
ing controler prefetches and feeds the cache, dealing
with data coherency, in relation with several adressing
processors, one per memory node. Likewise, routing
ressources are added to relieve the main processor,
and distributed over the machine architecture to re-
duce the network access latency, as shown on figure 1.
Routing processors are called routers.

Adressing
pipelined Processors
bus

Adressing
Controler

Figure 1: A calculation node of the machine

This set made of one processor, cache, adressing
controler, a set of adressing processors, memory banks
and associated routers, makes a line of the machine,
equivalent to the pair processor plus router in a clas-
sical parallel architecture. Considered separately, this
complete computing unit offers strong facilities for
vector processing, especially because datas in cache
can be arranged in vector registers. The overall archi-
tecture is completed in interconnecting the memory
banks of these vector lines into a plane through a 2D-
torus ( a cyclic mesh ), then in stacking several such
planes, interconnected by an omega pyramid vertical
network, see figure 2 [15].

2.1 The network

A network is as more efficient as its node number,
N, is closer to the theorical Moore’s maximum, given
its diameter D, and degree A.
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Furthermore, D is kept small to minimize distances

traveled by messages, and A must be equally small, to

N(A, D) <
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Figure 2: Two planes, four lines each

maximize the bandwidth on each vertice of the graph,
since the number of connections on boards is limited,
The omega pyramid is designed as shown on figure 3
[4]. From one stage to the next, alternately rows, then
columns are interconnected as an omega network { the
horizontal torus not represented here ). The last stage
is connected to the first one.

This network shows several interesting properties.
It is universal, it can route any permutation in three
revolutions, so blocking doesn’t matter. Considering
2Log(n) planes of n? nodes, its diameter is less or
equal to 3Log(n), for a total of 2n? Log(n) nodes. In
a plane, the diameter is 2Log(n) for n? nodes. This
topology is scalable by symetry, with an invariant de-
gree of 8, then achieving good compromise according
to Moore. Only two layers can emulate the whole ma-
chine, thanks to isomorphism between pairs of layers.
Figure 4 shows that any node is the top of a pyra-
mid, the base of which is the complete plane includ-
ing this top node, after one turn. This omega pyra-
mid then contains pyramidal topologies and trees, and
bears embedding many classical data structures, with-
out any bottleneck at the top. Again, the program-



ming model of a plane is data parallel. The network
efficiency relates to the graph plunging compute effi-
ciency over the network graph. Data structure plung-
ing explains the succes of classical topologies such as
trees, meshes, pyramids, and hypercubes, and was a
kee concern in designing the omega pyramid.

The vertical network bears long distance commu-
nications such as permutations routing, associative
queries (maximum calculation,...}, broadcasting, gos-
siping or scans, with complex data movements, and
possibly heavy processing that triggers control paral-
lelism between stages. The horizontal network 2D-
torus carries simpler communications in a plane, sup-
porting data transfers between close neighbours in
the computing scheme. It is polymorphic, allowing
for more complex communication structures, so called
stencils {3].

2.2 The “line” computer

As already mentioned, a line (see figure 5 ), the ba-

sic unit of the machine, is equivalent to the calculation

node of a classic parallel machine, but in addition can
be seen as a vector machine.

Figure 5: The line vector

Obviously, we will gain from the pipelined bus by an
interleaved repartition of vector elements in the mem-
ory banks. A convenient stride should be the number
n of memory banks on line. n vector elements are
loaded in one read of the pipelined bus, accordingly
dividing the acces time to one element. Operating on
these vectors requires vector buffers nearby the main
Processor, both super-scalar and pipeline. Indeed, vec-
tor machines generally display several pipelined units,
working in parallel on the set of vector registers. Most
current RISC processors do that now. But a scalar
Processor handles vector datas by mean of logical loops
that slacken calculations, enough that the vector ma-
chines efficiency never be reached. In addition, algo-
_!'ithms with uneven stride reduce the data interleaving
Interest. Nevertheless, scalar computing must not be
neglected, for the scalar parts of vectorized algorithms,
and for actually unvectorizable ones [11].

Adressing processors load and store datas under the
control of the adressing controler at the head of the
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line. Simultaneous acces to data memories is by FIFOs
or dual-port devices.
2.3 The memory node

The structure of a memory node is given figure 6.
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Figure 6: A memory bank, on a Phenix line

The adressing processor receives instructions from
the pipelined bus. It loads and stores data, refreshes
memory, computes adresses for indexing strides. The
context encoder skips useless accesses and processing
of vaccuous vector elements. This processor also per-
forms read and write from and to the communica-
tion FIFQs. These FIFOs support computing, adress-
ing and communication overlays. They are doubled
to make horizontal routing independant from vertical
routing. The vertical routing is of the virtual cut-
through type, the best compromise between communi-
cation latency, flits number, and inter-blocking proba-
bility. The vertical router remains classical, processing
on aligned message flows from different sources.

Horizontal routers execute complex stencils, and
ensure polymorphy by switching messages. The plane
control is SPMD: every main processor executes the
same program, and gets to know the data repartition
all over the mesh; the adressing space is unique. The
main processors are all connected to a dedicated bus
that eventually permits synchronisation. The execu-
tion of stencils, a communication session, can be di-
vided in several phases, depending on the routing algo-
rithm. For pre-compiled stencils, associated switching
configurations are stored in the configuration memory
of each router. A session begins with sending a session
number from every adressing controler to each router
of its line. Then the routers emit, receive, or transmit
data, according to the configurations they read. Asyn-
chronous functioning is then essential because it avoids
a strong synchronization of all the routers in the plane
at the end of each communication phase. As soon as a
router ended a phase, it can begin the next one inde-
pendant from the state of its neighbours. Identically,
sessions can be chained by a router in an asynchronous
manner, if several are stored in its instructions FIFQ.



It is all the more usefull as the configurations, their
number, their chaining, are particular to each router,
depending on its location in the plane. The main pro-
cessor knows the ending of a session when it has recov-
ered every data it was waiting for. The synchroniza-
tion is then implicit, not global anymore. Horizontal
routing - circuit switching, wormhole - has to be fast,
it is mainly devoted to regular data transfers, stencils.
It supports logical computing graph plunging, which
the need for adapted plane communications control
stems from.

3 Asynchronous control

Several practical difficulties arise from actually
building the machine. In the plane, the correct trans-
fer of informations between routers has to be secured.
The machine i1s assembled on several printed circuit
boards, plugged into a rack, interconnected by several
back rack busses. A synchronous control would ask
for the distribution of a global clock all over the ma-
chine, to the boards supporting parts of a same plane,
along significant busses, through many connectors. A
fast clock would involve building of complex, thus ex-
pensive, distribution tree to minimize the clock-skew
effects [7]. Indeed, bus speeds are limited to about 60
Mhz, inside a single board, and for basic busses. The
difficulty and cost of such a control mode should grow
with the topology complexity, the size, and especialy
if some scalability is seeked for.

Asynchronous control then suits better because
there is no more need for a global clock. For instance,
the synchronized asynchronous control means a global
clock per component only ( see figure 7 ). On every
input, synchronizers {8], minimize the failure proba-
bility due to metastability [6]. The cost of this extra
hardware is an increase of the circuit surface, and a
loss in performances, extra time beeing necessary for
synchronizers to resolve [1].
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Figure 7: Synchronized

Self timed asynchronous control doesn’t need any
clock at all ( see figure 8 ). The activity of circuits
is driven by the incoming data itself. Significant gain
in power consumption because the circuits actually
do nothing when they have nothing to do. Clocking
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causes the clock lines to load and unload continuously,
consuming power. Furthermore, register commuta.
tions produce peaks of current that polute the power
supply lines. ”No clock” goes with lower supply volt.
age without hampering the circuit functionnality, byt
for its performances {12]. In the asynchronous contre}
case mean performances are obtained, not worst-case
performances as in the synchronous control case. Cop-
sider the chain of processes figure 9.
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Figure 9: Chain of processes

The clock period for a synchronous control should
be greater than the slowest response time of all the
processes. In such case, the performance over the
chain is always to the worst case. On the contrary,
under asynchronous control a process gives its result
as soon as it finished working. If T1 is slow but runs
more rarely than faster T2, the response of all the
chain is faster most part of time, similarly for T4 and
T5, then achieving mean performances. This example
suggests that, among other advantages, asynchronous
control offers some insensitivity to characteristics dis-
pertion. It makes sense to optimize only portions of
circuit that are widely used, or to have an heteroge-
neous technological evolution in the case of systems
[16].

Synchronized asynchronous machines are designed
like synchronous ones. On the other hand, specific
methods must be used for self timed design to be haz-
ard free [5]. Those methods depend on the model of
delays in the implementation: bounded delay, delay in-
sensitive ( i.e. unbounded in wires and logic operators
}, or speed independent, called quast delay insensitive
too, (i.e. delay insensitivity plus isochronic forks [9]
). We try and compare results of the first and the last
one in our design ( see section 4 ).

Asynchronous control involves extra control lines to




implement a communication protocol. This protocol
can be four, or two cycled [14]. The first solution
remains simpler hardwarewise.

We focuse on the optimisation of the controler cir-
cuit performances. Our design method is based on a
low level description, state graph, and signal transition
graph at the higher level [2, 10]. We defined several
properties to ensure the reliability like the integrity of
the state crossing and its best covering, and we set the
constraint of signal transition graph to take care of
out of the cycle signals [17]. Eventually, asynchronous
control is a natural support of asynchronous operat-
ing.

4 VLSI Implementation

The figure 8 shows that particular data paths are
added with self timed asynchronous control. Any data
path element must be able to begin upon request,
and to signal the completion of its work. Such ele-
ments can’t be found in standard libraries from ASICs
manufacturers, so they have to be built. The asyn-
chronous cells we need for our data path are stabil-
ity detector, asynchronous comparator, asynchronous
FIFO. The asynchronous FIFO uses specific Muller
cells, and switch invertors that we have designed too.

Muller cells are also found in the control parts of
our self timed circuit ( see figure 8 ) [13]. We need two
different types of Muller cells, the first is a regular one,
the second gets an inverted input and a supplemen-
tary inverted clear input. They are designed in static
logic, as the switch invertor cell. On the contrary,
the asynchronous comparator and stability detector
rely on differential dynamic logic, involving preload
Phases and the evaluation of both the function and its
complement. As examples, we give figure 10 and 11
the structures of a Muller cell and the asynchronous
Comparator.
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Figure 10: Muller cell

Stability detection runs whith standard data path
*lements whenever it is possible, for instance with a
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Figure 11: Asynchronous comparator

counter. These elements are made of standard cells
from the manufacturer’s library. In our circuit, stan-
dard cells also do for switching devices, multiplexors
and demultiplexors, and several security and configu-
ration modules. As a result, the major part of the de-
sign calls for standard cells, and the floorplan includes
large standard cells zones. If our customized cells were
outside such zones, multiple long wires would inter-
connect them, and it would results in a lesser speed.
To include our custom cells in standard cells zones, we
designed them following the guidelines of the standard
library in use. Moreover, our cells are recognized by
the automatic placing and routing CAD tools. F igure
12 shows the layout of a Muller cell and the asyn-
chronous comparator. The technology is 0.7 CMOS
from ES2 manufacturer, and COMPASS CAD tools.
We made retroannoted simulations of those cells
and obtained the results table 1, for a load of 0.05pF .
The horizontal network is four connected, with full
duplex links between neighbours. This mean two
ports, one input and one output per neighbour, hence
eight ports per router. A router is able to open several
communication channels concurrently: it can emit on
a port, receive on an other, and transmit between two
separated pairs. All these tasks are achieved by four
distinct asynchronous modules. A configuration mod-
ule to read the instructions ( session numbers ), to read
configuration memory, the configuration of switching
devices, and correct operations through phases and
sessions. Extra security hardware is necessary to avoid
electrical conflicts on busses in case of bad configura-
tion. The layout of the full circuit is given figure 13.
On this evaluation version, the number of ports is
halved. Two different versions of every asynchronous
module are included, with a special input added to
make choice. The first version is fully speed inde-
pendent, the second merely considers that some data
paths are delay bounded, allowing to evaluate the cost
of work completion devices. The total circuit area, in-



(a) advanced muller cell

{b) asynchronous comparator

Figure 12: Cells layout

Muller cell | Muller cell 2 | As. comparator | Stability det. | Switch inv.
tpLH 0.89ns 1ns 1.36ns 1.22ns 1.64ns
tpHL 1.12ns 1.2ns 2.55ns 1.42ns 0.99ns
trise 0.67ns 0.55ns 0.47ns 0.5ns 1.24ns
tfall 0.62ns 0.55ns 0.72ns 0.5ns 0.6ns

tprecharge 0.3ns 0.3ns
area 3072 p* 4669 u? 6758 u° 3317 u? 2334 u*

Table 1: Full custom cells characteristics

Figure 13: Circuit layout

cluding pad ring, is 24.11 mm? for about 4000 equiva-
lent gates. The circuit power consumption is 11.34pA
at rest, when no data incomes, and grows to 120uA
while running actually. The measured timings of the
circuit are displaid table 2.

lcom. and l.om o are the latency of the asynchronous
FIFOs for emission and reception. tirans., trec. and
teme. are the crossing times of a transmitter, a re-
cetver, and an emitter module. T}4,; and Firqn, are
the transmission period and frequency. These mea-
sures are about 10% better than the simulation re-
sults on the whole circuit. Simulation appears then
reliable to validate the correct operation of our cir-
cuits and to estimate their performances. Comparing
the transmission times, about 15ns, to the transmis-
sion periods, about 30ns, shows that half the time is
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wasted by the modules for reinitialisation of control
lines, due to the choice of a four cycled protocol. The
next version of these modules will use a two cycled pro-
tocol, and should give a transmission period near the
transmission crossing time, and then a transmission
frequency close to 60M H z, for the same technology.
The difference between the ”full speed-independent”
and the ”some bounded-delay” circuit performances
shows that the influence of work completion circuitry,
i.e. of the asynchronous data path elements, is not sig-
nificant; barely a 10% degradation in performances.

5 Conclusion

Once given the machine architecture and its pro-
gramming model, we show a need for asynchronous
operation in data transfer all over the network. Phys-
ical constraints in assembling the machine leads to
the implementation of an asynchronous control for
routers.  Asynchronous control naturally supports
asynchronous operation. Our concerns about optimi-
sation and the search for performance leads to the de-
sign of a self timed circuit, speed independent for more
reliability. This involves the design of specific cells for
both asynchronous data paths and control. These ceils
are drawn according to the standard cells guidelines,
to make easier their placing and routing on the floor-
plan, and to guarantee better performances. The cir-
cuit contains several asynchronous modules working
concurrently, and extra logic for configuration, secu-
rity, and switching. The measured performances are
close to simulation results, that proves simulation re-




Iconf. Icom, ttrans. trec. teme. lcom.? Ttra.na. Ftrana.
some bounded tplh - 46ns 17ns 22ns | 10ns 38ns 3ins 32MHZ
some bounded tphl - 40ns 14ns 20ns | 10ns 3lns 3ins 32MHZ

speed indep. tphl - 46ns | 19.5ns | 27ns | 15ns 38ns 35.7ns | 28MHZ
speed indep. tplh - 40ns | 16.2ns | 21Ins | 13ns 3ins 35.7ns | 28MHz

Table 2: First evaluation version measured performances

liability. They indicate that the choice of a two cycled
protocol would improve in a factor of about two the
transmission frequencies. This protocol is currently
implemented in the next version of the circuit. The
measurements also show that the cost of speed inde-
pendence for total reliability would not exceed 10% of
the global performances. '
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