MPEG - 2 Video Decoder for DVD

Chen-Wei Shih
Electrical Engr. Dept.

Nien-Tsu Wang
Computer Engr. Dept.

Santa Clara University Santa Clara University
Santa Clara, CA 95053, Santa Clara, CA 95053,
US.A. USA.
nwang @ scudc.scu.edu cshih @ scudc.scu.edu

Abstract — A video decoder with an efficient controller
scheme and z sub-picture decoder for DVD application is
presented in this paper. Most of the reported architecture for
MPEG? video decoding uses 2 64 bit bus and a complex bus
arbitration scheme. Our design uses synchronous DRAMs
instead of standard EDO DRAMs and involves a novel
controller scheme that allocates bus space for DRAM access
efficiently. This efficient allocation allows us to reduce bus
width from 64 bits to 32 bits, without significantly increasing
embedded buffer sizes, and still meeting the requirements for
MPEG2 MP@ML decoding. The bus arbitration algorithm
Is also simple allowing for a less complex controller design.
Our main strategy is to impose a certain order in the DRAM
access by the various processes instead of allowing any
process to request for bus access arbitrarily. We also take
advantage of the restricted GOP(group of picture) sequence
in the DVD format to allow a longer decoding time for B
frames. The sub-picture pixel data are rundength
compressed bitmaps that are overlayed on top of the MPEG
reconstruction video. The architecture for sub-picture
decoding is simple and easy to implement.

1. Introduction

The improved storage capacity in DVD (Digital Versatile Disc)

wide applications in both the computer as well as the
consumer electronics industries. As DVD is mainly an
flpplication for the low cost consumer market it is important that
Its architecture be efficient and low cost. A limited version of
MPEG-2 Main Profile at Main Level (MP @ML) [1] is used in
the DVD format.

Our low cost MPEG2 decoding system includes a high
Performance single chip MPEG2 decoder and the associated
DRAM buffer. Most of the reported architectures [2], [5], [6] use
& 64 bit bus and a bus arbitration unit that uses priority
assignment and polling to resolve conflicts on the bus. We
Propose the use of synchronous DRAMs (SDRAMs) and a novel
controller scheme to reduce the /O bus width from 64 bits to 32
bits. This controller scheme allocates DRAM accesses of

ministic processes according to a schedule. The hardware
Cost is reduced while maintaining the flexibility needed for
8ccommodating the stochastic processes in the architecture. The
°‘°°1$ frequency is chosen to be 27 MHz, which is a simple
multiple of the video sampling rate.

2. Decoder Architecture

Figure 1 shows block diagram of our decoder architecture. A

0-8186-8409.7/98 $10.00 © 1998 IEEE

Duan Juat Wong-Ho Nam Ling
School of EEE Computer Engr. Dept.
Nanyang Tech. Univ. Santa Clara University
Singapore 639798 Santa Clara, CA 95053,
Singapore US.A.
ehdjwong @ ntu.edu.sg nling @ scuacc.scu.edu

controller directs the flow of operations among the decoder
functions as well as the flow of data to the DRAM. The decoder
consists of three main processing units, the VLD (variable length
decoder), the baseline unit, the Motion Compensator (MC), and
the associated buffers. The baseline umt comsists of two
functional units, the IQ/IZZ (Inverse Quantization and Inverse
Zigzag) and the IDCT (Inverse Discrete Cosine Transform). The
decreasing cost of synchronous DRAMSs coupled with their ease
of control makes them attractive for use in our architecture. In
previous work [3] [4], a bus arbitration scheme is used to allocate
DRAM accesses using scheduling schemes like First Come First
Served The bus is acquired whenever a buffer
overflows/underflows.

The sub-picture pixels data are run-length compressed bitmaps
that are overlayed on top of the MPEG reconstruction video. The
pixels are divided into four types: background, foreground,
emphasis-1, and emphasis-2. The sub-picture buffer size is
restricted to 62Kbytes. This means that a maximum of 62Kbytes
per GOP/cell and the maximal pixel data are 30Kbytes. The
decoding speed is not critical in a sub-picture decoder. Figure 3
shows our architecture for this run-length decoder. The
compressed sub-picture data has variable input rate, so a buffer is
needed to smooth the data. One most important process in
decoding is to detect the number of zeros. After we know the
number of zeros, we can identify the number of pixels followed
and extract and bypass pixel data to the Zero/One signal
Generator. The decoding process can then be completed. This
architecture is a serial decoder which decodes compressed pixel
data at a rate of 2-bit per cycle and the output rate is not constant.
This is a straightforward technique and is easy to implement.

3. Controlier Scheme

Macroblock decoding follows a specific sequence. Our
strategy is to take advantage of this sequence and impose a fixed
schedule in the bus transactions to minimize buffer requests and
waiting cycles. The processing sequence for a motion
compensated macroblock is illustrated in Figure 2. Concurrency
of operations is achieved with parallel processing and pipelining.
Tasks have to be performed in a specific sequence. Accordingly,
the required tasks in order are the Bitstream FIFO write, VLD
buffer read, VLD decode, inverse quantized and zigzag and
IDCT. If motion compensation is required, the MC task is also
scheduled after VLD decode. The Controller synchronizes the
MC and the IDCT unit on a block basis and also manages the
synchronization of the tasks between blocks. The number under
each process interval refers to the number of decoding cycle

157

required {2]. For example, the first block of the IDCT process
requires 120 cycles while the subsequent blocks require 64
cycles.

The bus schedule for memory transactions is shown in the last
row of Figure 2. The number under each bus access represents
the number of cycles required to transfer the designated data.
The number of cycles includes the latency for address decoding.
As the bus width is 32 bits, each transfer cycle represents 4 bytes
of data. The transfers between the different processing units are
scheduled as illustrated First, paths 1, 2 and 3, which are
stochastic in nature, are accessed. Then paths 4 and 5, which are
deterministic in nature, are scheduled in that order within the
processing of each of the six blocks. Buffer sizes are simulated
by software and appropriate sizes are chosen, such that
underflow or overflow is minimized If an overflow or
underflow occurs, the Controller arbitrates to either stop or feed
the process accordingly before continuing the decoding.

There are five buffers that access the data in the DRAM. These
are the Bitstream FIFO, the VLD buffer, the MC reference
buffer, the Write Back buffer and the Display buffer. The
Bitstream buffer is designed not to overflow even under the
worst case conditions for DVD. That is,

FIFO buffer size (byte) =

Mb
(The longest macroblock decoding cycles) o8 A
8 x 27 MHz

where 9.8 Mb/s is the input bitstream rate for DVD.

In our architecture only two of the five buffers, namely the
VLD buffer and the Display buffer, are actively monitored by the
Controller. The VLD buffer can underflow as the length of the
encoded data for a block is not known ahead. Although the
Display buffer is filled regularly every block it can still
underflow if the decoding rate is slower than the display rate over
some period of time. It will overflow if the converse occurs.

In our controller scheme, all processing units are synchronized
on a block basis. Therefore, the VLD buffer will be refilled after
finishing a block Display buffer request and before starting the
next block decoding. However, if the VLD buffer does not hold
the whole data of a block, that is the VLD unit does not
encounter an EOB (end of block) symbol, it will request the
Controller to refill the buffer. The Controller will do so after
finishing a block display buffer request and the VLD unit will
continue to decode until an EOB symbol is met. Only after this
will the Controller start decoding the next block. If there are
extra requests from the Display buffer, in the instance when the
buffer would be underflow, the Controller will insert them after
the normal DRAM accesses have been completed. Contrarily, if
the Display buffer is going to overflow, the Controller would
stop the whole decoding process to prevent this condition from
occurring. The request from the Display buffer is given priority
over the request from the VLD unit. The order of the processing
between processing units is thus maintained. This eliminates the
need for complex bus arbitration schemes.

4. Display Model

In the DVD format the most restrictive GOP sequence is an
IBBPBBPBBP.... sequence. There is at most two B frames

158

between either an I or P picture. Figure 4 illustrates the
relationship between the decoding and .display order. The first |
picture, I1, is decoded followed by P1, Bl then B2 pictures. The
display order is I1, Bl, B2, P1, .. etc. After decoding the [}
picture, the decoding for the P1 picture is immediately started,
After “a” interval of time the display for Il is started. The display
rate is a constant at 30 pictures per second so T = 33 mg
However, the decoding interval varies according to the picture
type and characteristics. The decoding interval for a B frame is
the longest followed by that for a P then an I frame. We exploit
the DVD format to synchronize the decoding and display order to
a set of three pictures. The real time decoding constraint is now
tpr +tg; + tgy < 3T instead of tp; < T, tgi< T and tg,< T where tpy,
ta; and tg; refers to the decoding time for the P1, Bl and B2
frame respectively. This means that a macroblock can
sometimes be processed in more than 667 cycles. This gives &
good safety margin for overheads like process requests for
DRAM access due to buffer underflow/overflow conditions, start
of a sequence Header processing, and for the variable nature of
stochastic processes.

5. Simulation Results

A software simulator to simulate and monitor the decoding
process in the architecture is developed. The controller function
is implemented according to the scheme described above. 83
MHz SDRAM is adopted in our simulation. VLD size is
specified by a parameter. The input bitstream is simulated at
9.8Mbits/s, the worst case condition. The Bitstream buffer is
fixed at 45 byte. This figure is based on the total decoding cycles
of 1000 needed for the first macroblock (including sequence
header, GOP header,.. , etc.) in the first frame. The MC and write
back buffers are fixed at 182 byte and 64 byte respectively. The
tested movie, Mobile video at MP@ML, has 150 frames and
each frame has 1320 macroblocks. The movie has 11 I frames,
40 P frames and 99 B frames. The performances are evaluated
with various sizes of VLD buffer. The Display buffer is fixed at 1
Kbyte. The results are shown in Table 1. From the results, we can
see that VLD buffer size of 8 byte and a Display buffer size of
1Kbyte is adequate for our Controller scheme. This compares
well with the result of [3] which suggests a VLD buffer of 16
byte and a Display buffer of 1Kbyte.

The bus utilization factor is defined as the number of active
bus cycles over the total number of decoding cycles. Table 1
shows the bus utilization factors compare well with the reported
in [3], which use a 64 bit bus architecture. The results also show
that the Bitstream buffer will not overflow at 45 byte. The results
satisfy real time MP@ ML decoding.

By using the display model we proposed, the macroblocks that
require more than 667 decoding cycles in B frame can be
absorbed by I or P frames and so will not cause display delay.
Furthermore, if we can send or receive 32 bit data on both
positive- and negative-going edges of the 27 MHz clock
internally, then the total number of macroblocks in B frames that
exceed 667 decoding cycles can be reduced to 0.04% while VLD
buffer size is 8 byte.

6. Conclusion

In this paper we have presented an efficient controller scheme
for video decoder in DVD application. We incorporate SDRAM
in our Controller scheme to enable a reduction of bus width from
64 bit to 32 bit. Memory access is scheduled according to the
processing sequence resulting in much fewer bus requests and
contentions. The Controller is simpler to implement and the bus
utilization is high, which means an efficient use of bus resource.
The DVD format is also exploited to allow a more relaxed
constraint for decoding interval which means a cheaper hardware
design.

7. References

[1] ISO/ICE 13818, “ Generic Coding of Moving Pictures and
Associated”, (MPEG2),

(21

B3]

4]

(51

(6]

Jui-Hua Li and Nam Ling, “ An Efficient Video Decoder
Design for MPEG-2 MP@ML ”, IEEE International
Conference on Application-Specific Systems, Architectures
and Processors, pp. 509 — 518, July 14-16, 1997.
Nam Ling and Jui-Hua L1, “ A Bus-Monitoring Model for
MPEG Video Decoder Design ”, IEEE Trans. on Consumer
Electronics, Vol. 43, No. 3, pp. 526 — 530, Aug. 1997.
C.H. Liu, CM. Chen & C.W._ Jen, “ Low Power Design for
MPEG-2 Video Decoder ”, IEEE Trans. on Consumer
Electronics, Vol. 42, No. 3, pp. 513 - 521, Aug. 1996.
T. Demura, et al., “ A Single-Chip MPEG2 Video Decoder
LSI”, IEEE ISSCC Digest of Tech. Papers, pp. 72 — 73,
Feb. 1994.
M. Toyokura et al., “ A Video DSP with a Macroblock-
Level_Pipeline and a SIMD Type Vector-Pipeline
Architecture for MPEG2 CODEC *, IEEE Journal of Solid-
State Circuits, Vol. 29, No. 12, pp.1474 — 1481, Dec. 1994.

Synchronous
DEAM

Forward &

\gdeo Backward
ate Ref:

Buffer eference

Current
Picture
Buffer

Buffers

Bitstream in Bitstream
» FIFO

mory
Controlier

— S —— v . —— — v— —— —— natnt. W . w——— w—— —— - mm—— —— ——— — i —

— e e e e e e — — o

Pixels out

Display
Interface

Display
Buffer

k 4

32 Bit Memory
Bus

Path S

!
|
—'»{ e—-»{ Buffer ‘-—u iocT l
System [, Buffer Decoder ! : Unit |
Controller [~ {1 - m e — — m m e e e e e 4 |
| |
’ » Writha Kk !
MC |] - e Bac
: »_Buffer g MC Unit [H :
fe e e e o e e e e e e o e e . ————— ——— — ——— —_— 4
Figure 1 Block Diagram of the Video Decoder
FIFo Bitstream Write
54'
ViD
: vLD VLD
Euﬂs‘ Bitstream Read Buffer Buffer
20 - -
VLD |Header | viDO |viD1 vLD2 vLD3 VLD4 VLD5
Decode [“7# 155> [z ‘7> 25" 2" N
Qnzz Q0 a1t Q2 Q3 Q4 Q5
inverse IDCTO IDCT1 IDCT2 IDCT3 IDCT4 IDCTS
< > e e [[
ber 120 64 64 64 64 64
Motion MCO MC1 MC2 MC3 MC4 MC5
- > le > e > e e
Compensator [+ 73 72 1 72 72
DRAM Access
RO Rt DO D1 |wo R2 Dz|Wwi1 R3 D3{w2 R4 D4|ws Rs D©D5|waDe D7 w5
[—> —p S e b e L >l > 4Pl > <—b-e » 4Pl 4> > >
14° 20 50 s0° 16 16 |17 S0* 16 |17 50" 416 |47 50* 16 |17 50° 16}17 16 16 17
0 98 218 301 384 467 550 593 616
* : Stochastic

Rn : Reference Block Read
Whn : Current Picture Write
Dn : Display Buffer Read

159

Figure 2 Processing sequence for decoding a
predictive coded macroblock -

Input Compressed Data Display Order 11,81,82,P1,83,84,P2....

Output Pixel Data
| SR RIEARRE
Input Buffer * 0 *
F’ Output Buffer] {‘m lsz !-m t aaTu P
r'y I_a; ._a_’ & 4
2 bits ! i J I '
o Demultiplexer Zero/One Signal « ‘L > - __
(serial-to-parallel) Generator Number of " I P1 B B2 b1l P2 B3 B4 [b2] P3 85
Enablc . Pixel per Line
Signal 1 l _ 2 bits
2-10 bits
‘ Decoding Order 11,P1,8182P28384 ...
Zeros Detector and L
™1 Bypass Circuit Pixel
EOL Signal o/ ecumulator Figure 4 Relationship between decoding and display order
2-8 bits
—
r 2-8 bits
8-bit Counter Comparstor
Figure 3 Sub-picture Decoder Architecture
Mobile m2v
I picture P picture B picture
Ave. Max. Ave. Max. Ave. Max.
Bits per one block 64 274 47 414 34 323
VLD : 20 bytes
decoding cydes 499 622 535 695 545 851
bus utilization 51.95% 72.62% 9522 %
Ave FIFO cycles : 11 Max. FIFO cydes : 15 (initial)
The number of the MB in | frame exceeding 667 decoding cydles is 0 (0.0%)
The number of the MB in P frame exceeding 667 decoding cycles is 25 (0.05%)
The number of the MB in B frame exceeding 667 decoding cycles is 4421 (3.38 %)
VLD : 16 bytes
decoding cydles 500 622 536 697 545 850
bus utilization 52.11% 72.68% 95.22%
Ave. FIFO cydes : 11 Max. FIFO cyeles : 15 (initial)
The number of the MB in | frame exceeding 667 decoding cydes is 0 (0.0%)
The nimmber of the MB in P frame exceeding 667 decoding cycles is 31 {0.06 %)
The number of the MB in B frame exceeding 667 decoding cycles is 4474 (3.42 %)
VLD : 8 bytes
decoding cydes 502 622 538 697 546 852
bus ytilizaton 52.64% 7271 % 95.20 %
Ave FIFO cydes : 11 Max. FIFO cycles : |5 (initial)
The number of the MB in | frame exceeding 667 decoding cydes is 0 (0.0%)
The number of the MB in P frame exceading 667 decoding cycles is 36 (0.07%)
The number of the MB in B frame exceeding 667 decoding cycles is 4571 (3.50 %)

Table 1 Decoding cycles per MB and bus utilization under different VLD buffer size

160

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

