‘Modeling and Analysis of The Difference-Bit Cache

Ashutosh Kulkarni, Navin Chander, Soumya Pillai and Lizy John

Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712
{akulkarn,chander,pillai,ljohn } @ece.utexas.edu

Abstract

Advances in VLSI technology and processor
architectures have resulted in a tremendous increase in
processor speeds and memory capacities. However
memory latencies have failed to improve as rapidly,
making memory systems the performance bottlenecks in
most high performance processor architectures.
Caching is a time-tested mechanism to solve this speed
disparity. Among the different cache mapping
strategies, direct mapping is the only configuration
where the critical path is merely the time required to
access a RAM. Although direct mapped caches are
preferable considering hit-access times, they have poor
hit ratios compared to associative caches. The
difference-bit cache proposed by Juan, Lang and
Navarro [1], is functionally equivalent to a two-way
set-associative cache but tries to achieve an access time
smaller than that of a conventional two-way set-
associative cache and close to that of a direct-mapped
cache. We modeled and analyzed the difference-bit
cache to prove the hypothesis of its small access time.
We have also tried to prove that the access time
advantage of the difference-bit cache improves over the
conventional two-way set-associative cache with an
increase in the cache size. Finally we have tried to
analyze the trade-off involved in applying these
techniques to a higher associativity cache.

Keywords: Cache memory, critical path, hit access
time, cache mapping strategies’

1 Introduction

A common feature of all modern microprocessor
architectures, be it superscalar processors, VLIW
processors or multiscalar processors [6], is the ability to
issue and execute multiple instructions per cycle. It is

" This work was supported in part by the National Science
Foundation under Grant CCR-9796098

0-8186-8409-7/98 $10.00 © 1998 IEEE

140

therefore of paramount importance that the memory
systems in these computers provide the bandwidth
required to support these architectural advances,
Multiple cache levels are usually used for this so that
small, high speed, static random access memory devices
can feed the high performance microprocessors to avoid
the high latencies of dynamic random access main
memories. Since the direct-mapped cache provides the
best access time, it is usually used as the first-leve]
cache with set-associative cache schemes used in the
second and sometimes the third levels of the cache
hierarchy. The direct-mapped cache however, has the
highest miss ratio for most programs [7][8]. Having a
cache with the functionality (and hence the miss ratio)
of a set-associative cache and the access time of a
direct-mapped cache at the first level would most likely
give the best overall performance.

Several schemes have been suggested [3][4]{5] where
the set-associative cache has been modified to achieve
an access time close to that of a direct-mapped cache.
Most of these use some sort of prediction scheme for
selecting the block from within a selected set. If this
prediction is correct the access time is just one
processor cycle (similar to that of a direct-mapped
cache), but if the prediction turns out to be incorrect, the
penalty incurred can be about two to four processor
cycles. As a result the average access time is still larger
than that of the direct-mapped cache. The difference-bit
cache proposed in [1] differs from these
implementations in that it uses no prediction scheme.
Hence there is only one type of hit that can have a
latency equal or close to that of a direct-mapped cache
depending on the implementation.

In this paper, we present an implementation and
analysis of the difference-bit cache. Juan, Lang and
Navarro [1] had made their hypothesis about the cache
latencies based on the cache access time model
presented in [2]. We were able to verify quantitatively,
the access time improvements of the difference-bit
cache over the conventional set-associative cache. We
were also able to prove that the latency improvement of

the difference-bit cache over the conventional cache
increases with an increase in the cache size.

1.1 Related Research

Several proposals have been made to achieve an
average access time close to that of a direct-mapped
cache from a two-way set-associative cache. A vast
majority of them predict the way and select the
corresponding word. Later, after the tags have been
compared, the cormrect way is determined and if the
prediction has failed, a new selection has to be
performed. This results in two types of hits

¢ Primary hit when the prediction is correct,

resulting in a one cycle access time and

® Secondary hit when the prediction fails, resulting

in a new selection and hence an access time of

two to four cycles.
The MRU cache [4] selects the most recently used
block, resulting in a secondary hit access time of two
cycles. Though this scheme can be used for all degrees
of associativity, the probability of a primary hit
decreases with increase in associativity. In the DASC
cache [5], prediction is done assuming a direct-mapped
cache. If the tag side detects a hit in the other position
of the set, the accessed block and the correct block are
swapped, resulting in a secondary hit access time of four
cycles. In case of a cache miss, the block is written in
accordance with the replacement algorithm and then
swapped with the block that is accessed in a direct-
mapped cache. This scheme too can be used for any
degree of associativity. The PAD cache [3] has a tag
side divided into two parts, the first of which holds the k
least-significant bits of the tags and the other, the
remaining bits. The way is predicted by comparing the
tags of the first part. In case of more than one hit in this
Part, any of the ways is accessed (depending on the
algorithm used, for example, the most recently used)
while the other part of the tags are' compared to
determine whether the correct way was predicted.

1.2 Contributions

Our work is an implementation and analysis of the
difference-bit cache [1] that tries to achieve access time
comparable to that of a direct-mapped cache in a two-
way set associative cache without using any form of
Prediction. For their analysis the authors of the original
Paper on the difference-bit cache had used a model for
Cache access times proposed by S. Wilton and N.
Jouppi [2]. This model was based on HSpice modeling
of various components of on-chip caches. However no
actual cache modeling was attempted in [1]. We have
Modeled the difference-bit cache and compared it
Quantitatively with direct-mapped and two-way set-

associative caches for access times. In Section 2, we
describe the difference-bit cache and highlight the
difference in its architecture as compared to the direct-
mapped and two-way set-associative cache. In section 3
we present a quantitative analysis of the access times of
all the three caches as well as an analysis of extending
the scheme for higher associativity and in section 4, we
conclude with a summary of our resuits.

2 The Difference-Bit Cache

The optimal (fastest) realization of the data part of the
cache memory consists of implementing it as several
subarrays, the number and size of which depends on the
cache size, technology characteristics and
implementation restrictions. For our modeling, the
index bits in the direct mapped case were partitioned
into two parts, one of which was used to access the
block from each subarray, the other being used to select
the desired subarray (figure 1).

The two-way set associative cache used the same
partitioning of the index bits, with the difference that the
signal used to enable the desired subarray (way) was
obtained from tag comparisons, instead of directly from
the index (in the memory address from the processor).
The access time of the two-way set associative cache is
larger than that of a direct-mapped cache because the
critical path is through the tag part and includes the
access of the tags and the comparisons (figure 2).

DATA © TO N-2 DATA 1 TO N-1

BET

JE]

v

DATA

Figure I: A two-subarray implementation of a direct-
mapped Cache

In the case of the direct-mapped cache, the delay of
the enable signal to the tri-state gates is smaller than the
access time of the data memory part. This causes the
time in which the resulting data word is obtained to be
equal to the sum. of the time in which the data is
available at the output of the subarray plus the delay of
the tri-state gate. Also, data acquisition and

determination of whether the access is a hit, can proceed
in parallel since the tag comparator is not in the critical
path. Information about whether the access is a hit or
not is needed only before the data is actually used (say
for storage in a register).

TAG INDEX

way O way 1

TAG ¢ TAG 1

DATA

HIT

Figure 2: Implementation of a Conventional Two-way
Set-associative Cache

To have a set-associative cache with the access time
of a direct-mapped cache, it is sufficient that the enable
signals of the tri-state gates are obtained with a delay
that is smaller than the access time of the data subarray.
The explanation given below uses this sufficient
condition analysis and illustrates how the difference-bit
cache achieves direct-mapped cache access time.

2.1 Architecture of the Difference-Bit Cache

A key observation in the two-way set-associative
cache is that the two tags that correspond to a set differ
in at least one bit. Two new parameters diff-index and
diff-value have been proposed to encode information
regarding these differing bits. The diff-index is the
position in the tag of the least-significant bit in which
the two tags differ and diff-value is the value of the bit
in the tag of way O of the set. These diff-index and diff-
value are used to determine the enable signal to the tri-
state gates (to determine which block to select in the
set). For this a new memory array called the diff-array
(figure 3) is introduced into the cache. The size of this
memory is NS x b where NS is the number of sets of the
two-way set-associative cache and b depends on the
code used to represent the diff-index. If normal binary
code is used for the representation, the value of bisa
minimum of {logyt + 1} where ¢ is the number of bits of
the tag.

The enable signals of the tri-state gates are obtained
as explained below:

1. The corresponding entry of the diff-Array is read

simultaneously with the data in the data part of

142

the cache and the tags in the tag part (although
the tag part is not in the critical path).

2. The diff-index obtained is used to point to the
corresponding bit of the tag portion in the
address.

3. The selected bit in the address and the diff-value
are compared; if they are equal, way zero of the
set is selected whereas if they are different, way
one is selected.

4. The way bits are used to drive the enable signal
of the tri-state gates that pass the corresponding
data block.

Figure 3: The Difference-Bit Cache

In case of a miss, it is necessary to determine the diff-
index and diff-value for the new data in the cache. This
involves a very simple array of XOR gates to compare
the bits of the tags and an encoder for the code used to
represent the diff-index. The replacement algorithm
used is the same as for the two-way set-associative
cache thus resulting in the same miss-ratio.

3 Modeling and Analysis

3.1 Analysis of Critical Path

In this section, we present a discussion on the critical
paths of the cache models to prove the feasibility of the
difference-bit cache. This analysis is primarily based on
the model analysis presented in [1].

The critical path as seen in figure 3, is given by

t. = max (t4zaa tenable) + tui
where g, is the time required to access the data
subarray of the cache, fenaie is the time for the enable
signal to select the way and ty; is the time required to
enable the tri-state gates of the data part of the cache.
Consequently, the access time corresponds to that of a
direct-mapped cache if
tenable of difference bit cache < 4o

Lenable = taier + Lsclect + tWny
trr is the diff memory access time.

where
and

The values of tyig ang Leeiecy are related and depend on
the coding scheme used to represent the diff-index. If
the code has more bits, ty ;, larger since the memory is
wider, but tselect is smaller since the decoding is
simpler. Now, the diff-array is significantly smaller than
one subarray of data. This is because the data memory
has a width of one line of data (say L bits) whereas the
diff-array has a width of b where b « L.

The important assumption for this analysis to hold is
that the access time of a memory subarray is directly
dependent on the complexity of its decoder, which in
turn is directly proportional to the memory size. The
diff-array which has a minimum width of {logyt + 1)
where ¢ is the number of bits of the tag (when binary
coding is used for diff-index), is much smaller than a
data subarray of a direct-mapped cache. Hence the
difference-bit cache should have an access time close to
or equal to that of a direct-mapped cache.

3.2 Critical Path results from modeling

We implemented direct-mapped, two-way set-
associative and difference-bit cache models using
VHDL and Synopsys’ Design Analyzer as a synthesis
tool. The functional accuracy of our models was
verified using the Synopsys VHDL simulator. The
description methodology was adopted to enable
specification in an efficient manner, giving us greater
latitude of freedom while specifying constraints.
Schematic build-up and representation was done using
Synopsys’ Design Analyzer and Design Compiler. Once
the schematic was obtained, it was then optimized for
timing, and analysis was done for calculating the critical
path delays in the cache models. Synopsys is very much
the de-facto tool used for logic synthesis and
optimization both on the gate level as well as at a higher
level of abstraction. The design optimization and
analysis features allow for point to point timing delay
calculations. Custom libraries built into the tool allow
for timing and area analysis on different VLSI
technologies.

For our implementation we used the following cache
configuration:

Cache size: 64 bytes

Block size: 1 byte
and assumed a main memory of size 1 KB. The results
that we obtained are tabulated in table 1.

As indicated in table 1, the time delay of the enable
logic of the difference-bit cache is smaller than the
access time of a data subarray in the direct-mapped
cache. This proves the hypothesis that the difference-bit
cache would be able to achieve access times close to
that of the direct-mapped cache. In the case of the two-
Way set-associative cache, we see a larger enable logic
delay than the direct-mapped cache.

143

Direct- Set-Associative | Difference-Bit
Mapped Cache Cache

Cache (Enable Signal | Enable Signal

(Data Delay) Delay
Subarray

Delay)

14.35 ns 16.71 ns 12.45 ns

Table 1. Results for cache size of 64 bytes, block

size of 1 byte and 1 KB main memory

Direct- Set-Associative | Difference-Bit
Mapped Cache Cache
Cache (Enable Signal | Enable Signal
(Data Delay) Delay
Subarray
Delay)
22.42 ns 31.15 ns 20.73 ns

Table 2. Results for cache size of 256 bytes, block
size of |1 byte and 16 KB main memory

However it can also be seen that there is not much
difference between the three timing delay values
obtained. This is due to the small size of the cache that
we simulated. Simulation of our models using larger
cache sizes (as seen in table 2) proved our belief that as
the size of the cache increases, the improvement in
performance of the difference-bit cache over the
conventional set-associative cache increases
proportionally. This is obvious, because as the cache
size increases, the width of the tag array grows at a
larger rate than that of the diff array which is log, times
the size of the tag width.

For the second simulation, we tried to synthesize a
slightly larger cache with the following parameters:

Cache size: 256 bytes,

Block size: 1 byte
and we assumed a main memory of size 16 KB. The
results of this synthesis are tabulated in table 2.

In our implementation we have considered a block
size of one and a basic word size of only eight bits. But
it can be easily seen that the size of the basic block
would not alter the results we have obtained as this
parameter would only increase the width of the tag array
further resulting in the difference-bit cache faring even
better against the conventional two-way set-associative
cache. The basic word width does not affect the result
either. An increase in this parameter would result in an
increase in the time to access the selected word.
However this increase would be seen to an equal extent
in all the three cache models we are considering here.

Having access to only a slimmed down academic
version of the Synopsys suite of tools, the overall access
times that we obtained were higher than realistic values
expected with state-of-the-art VLSI fabrication
technologies. The use of better libraries in Synopsys,
with lower component delays corresponding to state-of-
the-art memory system VLSI technologies, would result
in more realistic timing values. However our analysis is
valid for comparison of the different cache schemes, as
using better libraries would result in a somewhat equal
downward scaling of the access times for all the three
cache configurations.

3.3 Increase in area

The introduction of the diff-memory and associated
circuitry increases the area requirements of the
difference-bit cache when compared to the conventional
set-associative cache. The main contribution to this area
is the diff memory of size NS x b bits, whereas the data
cache has 2NS x L bits (L is the line size in bits) and the
tag memory has an area NS x 2t so that the fraction of
increase is

b2(L+1)

Although we have not calculated the area
contributions of all these sub-components of the cache
in our Synopsys models, analysis has been presented [1]
that puts the figure of fractional area increase at about
0.01 10 0.06 for a typical processor family like the
Alpha.

3.4 Effect of Increased Associativity

The evaluation of the difference-bit cache presented
so far has been restricted to an associativity of degree
two. We have attempted to evaluate the effect of
extending the implementation of this cache to attain a
higher functional associativity. In the case of a four-way
set-associative cache, each tag will have defined for it
two diff-index positions (diff-index-0 and diff-index-1)
which will be the bit positions in which that tag will
vary from all the other three tags. The diff-values
corresponding to these diff-indices will be also stored
for each tag. Thus the width of an entry in the diff-array
will be the sum of the width of eight diff-indices and the
width of eight diff-values. This means a diff-array width
of {8log,t + 8} where t is the size of the tag bits. This
width will still be smaller than the width of the tag array
(4t) aslongast 2 9.

The enable logic will be a considerable variation from
the two-way difference-bit case. When an address is
forwarded by the processor, the select logic will check
in the diff-index positions of tag 1 and compare the
values in these positions with the values of the diff-
values for tag 1. If there is a match, the address is

144

present in the data block corresponding to tag 1. The
select logic will perform this operation for each of the
other tags (tag 2, tag 3 and tag 4) in parallel (as these
operations are independent of each other). Although
these comparisons can proceed in parallel, and even if
the size of the diff-array is indeed considerably smaller
than the tag-array, the complexity of the enable logic
will result in a very small performance improvement, if
any, over the conventional four-way set-associative
cache.

The increase in memory area for achieving higher
associativity will be at least about 0.05 to 0.20 in case
of a typical processor like the Alpha [1]. The enable
logic, although similar in nature to the degree two case,
will now have to pass through a more complex decoder
owing to the larger size of the diff-array. This will
increase the access time of the cache by a factor of as
much as 48 % (based on analysis of the cache access-
time model by S. Wilton and N. Jouppi {2]). Also now,
the logic required to compute this information in case of
a cache miss will increase greatly. Considering the
small improvement in miss ratio of a four-way set-
associative cache over a two-way set-associative cache,
increasing the associativity of the difference-bit cache
beyond two, does not seem a very viable solution. A
much better overall performance can be achieved by
using a degree two difference-bit cache in the first level
with a fully associative victim cache[10] or annex
cache[11] as a cache assist.

4 Conclusions

In this paper we have modeled and analyzed a recent
novel cache proposal called the difference-bit cache [1]
and shown that it can achieve access times equal or
close to those of a direct-mapped cache with the
functionality of a two-way set-associative cache. This
faster access time is obtained by separating the selection
of the proper way from the detection of a hit and by
selecting the way using the least-significant bit in which
the two tags of a set differ. The performance of the
difference-bit cache is better than the direct-mapped
cache, the two-way set-associative cache and all other
previous schemes that attempt to achieve direct-mapped
access times in set-associative caches using prediction
techniques.

We have also evaluated the effect of extending the
difference-bit cache to higher degrees of associativity.
The small decrease in miss ratio of higher associativity
cache schemes over the two-way set-associative cache
and the significantly larger increase in logic complexity
and chip area for the associative difference-bit cache
does not make this a viable proposition.

The increase in area for a degree two difference-bit
cache is a very small fraction of the total chip area for
all typical processor families. All these factors make the

difference-bit cache, with its low access time and low
miss ratio, an ideal candidate for the first level cache in
today’s high performance processors.

Acknowledgments

We thank Dr. Tomas Lang for his help in clarifying
our understanding of the difference-bit cache and also
for giving us helpful insights into the modeling of cache
systems.

References

(1] Tonmi Juan, Tomas Lang and Juan J.Navarro, “The
Difference-bit Cache”, = International Symposium on
Computer Architecture, May 1996.

[2] Steven J.E.Wilton and Norman P.Jouppi, “An enhanced
access and cycle time model for on- chip caches”, Research
Report 93/5, Digital WRL, Jul 1994.

[3] Lishing Liu, “Partial address directory for cache access”,
IEEE Transactions on Very Large Scale Integration Systems,
Vol.2 (2): 226-239, Jun 1994.

[4] Kimming So and Rudolph N.Rechtschaffen, “Cache
operations by MRU change”, IEEE Transactions on
Computers, Vol.37 (6): 700-709, Jun 1988.

145

[5] Andre Seznec, “DASC Cache”, Proceedings. of the I”
Intl. Symp on High-Performance Computer Architectures, pg.
134-143, Jan 1995

[6] Gurinder S.Sohi, Scott E.Breach and T.N.Vijaykumar,
“Multiscalar Processors”, International Symposium on
Computer Architecture, 1995.

[7] Jeffrey D.Gee, Mark D.Hill, Dionisios N.Pneumatikatos
and Alan Jay Smith, “Cache Performance of the SPEC '92
benchmark suite”, IEEE Micro, Vol. 13(4):8-16, Aug 1993,

[8] Mark -D.Hill and Alan Jay Smith, “Evaluating
Associativity in CPU Caches”, IEEE Transactions on
Computers, Yol. 38(12): 1612-1630, Dec 1989.

[9] C.Eric Wu, Yarsun Hsu and Yew-Huey Liu, “A
quantitative evaluation of cache types for high-performance
computer systems”, IEEE Transactions on Computers, Vol.
42(10): 1154-1162, Oct 1993.

[10] Norman Jouppi, “Improving Direct-mapped cache
performance by the addition of a Small Fully Associative
Cache and Buffers”, Proceedings of the 17" Intl. Symposium
on Computer Architecture, pg. 364-373, 1990.

{111 L. John, A. Subramanian, “Design and Performance of a
Cache Assist to implement selective caching”, Proceedings of
ICCD, 1997.

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

