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Abstract

In this paper, we praopose a dictionary machine em-
ulation using a novel VLSI tree structure that operates
on the dictionary using a blocking technique. We show
that dictionary machine operations can be performed
through the implementation of a number of process-
ing and communication tasks overlapped on a simple
structure. By manipulating the key-records bit serially,
and storing them in an external memory rather than
within the layers of the structure, we show that the
size of the dictionary is limited only by the capacity of
the external memory. This structure, which consists
of multiple units, can be implemented in VLSI onto
a single-chip. The key advantage of our structure is
that it provides a means of implementing a high speed
and low cost dictionary machine with virtually unlim-
ited capacity; thus, eliminating the need for multiple
chips should the dictionary expand. We have that an
ezhaustive search on a 2048 key-record dictionary can
be performed in 29.78 us.

1 Introduction

The dictionary is an important data structure used
in applications such as sorting, searching, symbol-
table and index-table implementations. It can be seen
as a special purpose system capable of storing records
and performing update and retrieval operations on
these records. Usually, the records are stored in in-
creasing order to effectively facilitate the operations.
Any applications requiring data acquisition can take
advantage of such a dictionary machine with an effi-
cient input/output. This means that the machine has
to be very simple, scalable, and adaptable to be im-
plemented in such systems used in robotics or image
recognition [1].

One of the main issues in previous research on dic-
tionary machines has been the selection of an appro-
priate host topology. The host topology determines
how the operations are processed and also affects the
hardware and time complexity of each computational

0-8186-8409-7/98 $10.00 © 1998 IEEE

134

element required to ensure correct operation. Several
parallel architectures have been proposed for the im-
plementation of dictionary machines in VLSI. Some
report on novel interconnection networks, while others
use well studied topologies, like hypercubes. On the
other hand, some dictionary machines have been im-
plemented on existing parallel architectures [1]. One
such architecture is the binary tree. Tree architec-
tures have been extensively studied as a host topol-
ogy of dictionary machines [2]. An approach realiz-
ing a dictionary machine on a VLSI chip with mesh
structure has also been proposed [3]. There, the im-
portance and necessity of two different networks for
update and query operations were identified, and an
abstract design method on various kinds of meshes
and hypercubes were presented. However, embedding
two different networks on one host topology caused
resource contention and interference among different
operations. These problems were resolved at the price
of considerable hardware and time overhead in each
node.

In this paper, we present a design for implementing
a dictionary machine on a VLSI system architecture
of a tree-based pipelined computing structure. This
paper is organized as follows: In Section 2, we present
the definition of a dictionary machine and some im-
portant design issues. The system architecture is pre-
sented in Section 3 along with the unit descriptions.
In Section 4, we describe the implementation of opera-
tions onto the system architecture, that are required to
perform the dictionary algorithms. Finally, we present
our experimental results, and draw conclusions in Sec-
tions 5 and 6, respectively.

2 Background

A formal definition of a system specifies its behav-
ior without the implementation details. When imple-
menting the dictionary machine, the following defini-
tions are considered.



2.1 Definition of a Dictionary Machine

The dictionary task can loosely be defined as the
problem of maintaining a set of data elements each of
which is composed of a key-record pair (k,r), where
k is the search key and r the associated record or
pointer to a record. For simplicity, the record whose
associated key is k will be denoted as record k. The
dictionary supports a set of commands on its entries
[4], such as:

SEARCH(k): Finds and retrieves record k if cur-
rently stored;

INSERT (k,r): Inserts record k into the dictionary;
DELETE(k): Deletes record k from the dictionary;

The performance of dictionary machines can be mea-
sured in terms of the following parameters [4]:
Capacity: The maximum number of records that may
be stored in a dictionary machine.
Response time: The elapsed time between initiation
and completion of an operation.
Initiation interval: The number of time units that
must be put between the initiations of any two subse-
quent operations.
2.2 Existing VLSI Solutions

As reported in the introduction, many papers deal
with the implementation of a dictionary machine on
special purpose architectures. Dictionary machines
based on tree architectures have a limitation in the
VLSI layout irrespective of its planarity. Even though
an optimal layout for tree architectures in terms of
area efficiency has already been developed [5], it still
allows a nominal maximum edge length. For dictio-
nary machines in which the processing elements (PEs)
store the records, the size of the tree is expected to be
very larger. More importantly, the degree of a binary
tree architecture is only three. This degree, which is
smaller than that of hexagonal arrays, consequently
results in a lower performance. Therefore, using a bi-
nary tree architecture as the host topology can be very
costly if not implemented properly. Also, the positions
of the input and output nodes of a dictionary machine
are very important for correct and fast operations, be-
cause it affects the instructions initiation interval.

3 Dictionary Machine Architecture
The proposed architecture is called the Comput-
ing Tree System (CTS) [7]. The CTS consists of six
main units: System-Controller Unit(SCU), Leaf in-
put/output Buffer Unit (LBU), Root input/output
Buffer Unit (RBU), Counter Unit (CU), Register Unit
(RU), and a Processing Tree Unit (PTU) consisting of
N elementary processors. A block diagram of the CTS

135

is shown in Figure 1 and each unit is briefly described
below.
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Figure 1: Computing Tree System (CTS)

System-Controller Unit. The SCU has the task of
controlling all other units, as well as providing com-
munication to and from an external host. The SCU’s
design follows that of a pipelined processor. Its in-
ternal structure is comprised of five pipelined stages
operating in a lockstep fashion. These five stages are:
Instruction Fetch (IF), Instruction Decode (ID), Eze-
cute (EX), Memory Access (MEM), and Write Back
(WB). Internally there is an arithmetic and logic unit
(ALU), a program counter, and several data registers,
adders, and staged latches. The SCU provides hand-
shaking with the external host and allows all CTS
units to remain synchronous.

Counter and Register Units. The Counter Unit
and Register Unit are small in comparison with the
others, but quite necessary in maintaining the correct
system control flow. The CU is used to count the
number of clock cycles a task uses during execution.
Data values are provided by the SCU, and are used as
initial count values. The counter decrements its count
at a rate of once for every. The CU has one output
signal that is monitored by the SCU to see if a zero
count has been reached. The RU is used to monitor
various data values throughout the CTS system. The
RU contains a set of shift registers and a data latch
that temporarily hold a system state value and a ‘com-
pare value’, respectively. The RU receives its compare
value from the SCU, while the system state value is
shifted in from a pre-selected source within the CTS.
This source can either be the LBU unit or the PTU
unit. A comparison is performed and the result sent
back to the SCU.




Leaf Buffer Unit. The LBU acts as a temporary
storage unit for input and output data that is pro-
cessed by the léaf nodes of the PTU unit. It consists
of a decoder latch, two buffers, several selection multi-
plexers, and a bit shifter. Due to an inherently high la-
tency associated with off-chip data transfers, the LBU
is specifically designed to minimize this latency by al-
lowing the capability of storing multiple bytes of pre-
fetched data in the two buffers: buffer0 and bufferl.
Each buffer is comprised of multiple latches that are
staged one below another. These buffers act indepen-
dently from one another and can simultaneously per-
form different data transfers. These buffers allow the
processors of the PT U to operate at maximum speed.
Data is read from the top of the buffers, and when
written to, loaded into the first available slot from the
top down. After data is read from the top position,
all remaining buffer locations shift their data up one
location. The LBU is capable of concurrently han-
dling both: double-word bidirectional data transfers
to and from the external memory sources, and single-
word bi-directional data traffic to and from the PTU.
The shifter is used to copy data from one buffer to
the other, while intermixing data from another source
(PTU unit). The shifter has three modes of opera-
tion: shift-up, shift-down, and normal. In determin-
ing which shifter locations actually perform a shift,
each location initially receives a pre-determined value
that is passed in and locked into to its internal control
bit. This internal control bit remains locked until the
shifter is reset.

Root Buffer Unit. The RBU is quite similar to the
LBU with the exception of some additional hardware.
Since the RBU is required only to handle single-bit bi-
directional data traffic to and from the PTU, smaller
bit-sized buffers (buffer0 and buffer) are used. This
smaller buffer design is a result of the PTU’s root
node outputting single bit data streams. To minimize
the number of external data transfers, the RBU uti-
lizes two internal cache memories: cachel and cachel.
Data within these internal caches can be accessed ei-
ther by row or column. When performing external
transfers, a cache’s data is accessed by row. When
transferring to or from a buffer, a cache’s data is ac-
cessed by column. These caches each handle word-
sized data and collectively, can allow double-word bi-
directional data transfers to and from the external
memory sources. These caches also allow the RBU
to maintain a uniform external data-path to external
memory as that of the LBU.

Processing Tree Unit. The PTU structure is pri-
marily comprised of simple processing elements (PEs)
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[6]. The communication links between the PEs con-
nect them in a fully bi-directional binary tree struc-
ture. This tree structure accommodates pipelined
computing using the tree’s levels as pipeline stages.
This structure has I/O channels only at the leaves
(Lo...Ln) and root (R) of the tree. Communication
within the inner stages of the tree is hidden from all
external units. The total leaf/root communication de-
lay is given by log, NV, where N is the number of leaves.
In a continuous computation, this delay is seen only
once. The PTU unit is illustrated in Figure 2. All
PEs are identical with the exception of those at the
Jeaf end of the tree. The leaf PEs have additional
hardware allowing special operations to be performed
without incurring the delay of the tree’s structure.
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Figure 2: Processing Tree Unit (PTU)

Prior to operation, each PTU stage must be indi-
vidually initialized. These extra setup steps are nec-
essary due to the PTU’s ability to allow each stage
to operate in a different mode [6). During PTU op-
eration, all stages perform their respective operations
simultaneously. Rather than storing data in local PE
memories, the data moves from stage to stage until all
operations are performed.

The PTU has two distinct modes of operation:
computation and communication. In computation
mode, the tree performs as a synchronous SIMD paral-
lel computer under the supervision of a single control
unit. When in communication mode, there are sev-
eral schemes in which a stage can perform. However,
only the broadcast and root-leaf schemes are required
in emulating the dictionary machine [5]. The neces-
sity for the alternative communication schemes is to
allow different communication possibilities among the
leaves and the root of the tree structure. When a stage
operates in the broadcast scheme, the PE’s root input
is simultaneously broadcasted to both of its leaf out-



puts. This provides an equal propagation delay from
the root to each leaf. This communication scheme can
be individually implemented at different stages to al-
low the desired communication pathway through the
tree structure. When the leaf-root scheme is used, the
leaf PEs perform a subtraction using their leaf inputs
and root input, and send their results back towards
the leaf outputs. Only the leaf PEs can perform in
this scheme. A 16-leaf binary tree structure has been
successfully built using MOSIS 2um CMOS technol-
ogy [6].
4 Dictionary Machine Emulation

In implementing the dictionary algorithm onto the
CTS system architecture, key-record pairs are stored
in a memory array connected to the CTS. This mem-
ory array of key-record pairs (KRs), known as the dic-
tionary, is stored from top to bottom in increasing or-
der. In mapping the dictionary algorithm, the concept
of a low-cost, high clock rate, and bit-serial implemen-
tation was the key criteria. With this in mind, it was
not cost effective to have the entire dictionary acces-
sible every clock cycle. Therefore the dictionary is
divided into groups of KR pairs. These groups, called
dictionary blocks, contain as many KR pairs as there
are PTU leaf inputs. The dictionary blocks are pre-
sented to the CTS through the LBU. When a record is
to be inserted or deleted from the dictionary, it enters
the CTS through the RBU. This record is known as
the Insert/Delete Record (IDR). When the dictionary
receives an IDR to be inserted, the IDR is inserted
at the proper place in the memory array, and all KRs
with a key value greater than that of the IDR are
shifted one position down. When a record is to be
deleted, the IDR must match one of the dictionary
KRs. Once the IDR is broadcasted through the PTU,
the appropriated KR is removed and all KRs with keys
greater than that of the IDR’s shift one position up.
These CTS sequences are described below,
4.1 Dictionary Operations

The basic operations that the CTS uses to perform
the dictionary machine algorithms are: block search,
record search, record insert, and record delete. These
operations are defined below in terms of the actions
taken be the machine.

Block Search(k): This operation is used to deter-
mine if the current dictionary block contains a specific
KR. Dictionary blocks are searched in sequential or-
der such that the first searched block where the IDR’s
key value is less than that of the last KR in the block
is determined to be the correct block. This is deter-
mined by subtracting the IDR’s key value from all

KR’s within the current block, and using the result of
the subtraction procedure to determine the outcome
of the block search operation. This outcome is deter-
mined by:

o If (kp, —kipr) < 0, where kp, represents the key
value of the last KR in the current block, and
krpr represents the IDR’s key value, then return
0; incorrect block

e If 0 < (kp, — kipr), then return 1; correct block

The hardware implementation of a Block Search(k)
operation on the CTS is as follows. The lowest avail-
able dictionary block is loaded into a buffer of the
LBU, while the IDR key value is loaded into a cache
of the RBU. The IDR key is transfered from the cache
into the adjoining buffer in the RBU. The PTU is
setup such that all stages, with the exception of the
leaf-stage, will operate in broadcast mode. The leaf
stage PEs, containing special hardware, are setup to
perform in ‘root-leaf’ mode. The LBU empties the
dictionary block from the buffer, through the shifter,
and into the leaf inputs of the PTU. The PTU per-
forms the subtraction operation and sends the results
back towards the LBU. This is shown in Figure 3a.
During this process, the dictionary block is not sent
to the PTU leaf inputs until the IDR’s key value has
had time to propagate from the PTU’s root input all
the way to the PTU’s leaf stage.

As the results of the ‘root-leaf’ mode pass back to
the LBU, they are not read into a buffer, but rather,
the MSB of each result is locked into the LBU’s shifter
at the respective shifter location. This sets up the
shifter for any subsequent insert or delete operations
to follow. The MSB of the bottom shifter location is
then sent to the RU for evaluation. This is shown in
Figure 3b.

(a) (b)
Figure 3: Block Search Operation

The RU matches this shifted-in value against a zero
(which has been pre-locked in during initialization)



and determines if a valid match was found. The SCU
monitors the RU’s output and pending the result,
takes the appropriate steps. If the this MSB is a
logic ‘zero’, then the LBU currently has the correct
dictionary block. Otherwise, the record does not
belong (or exist) in this particular dictionary block.

Record Search(k) - This operation is used to
determine if the current block contains the IDR
record. In performing this operation, the results of
the Block Search operation are used. If the IDR
does exist within the current block, one of the
results acquired during the block search’s subtraction
operation will contain zeros. This will indicate
that the IDR’s key value matched one of KR key
values in the current block. Following the same
implementation as that used in the Block Search
operation, the results are stored in an LBU buffer.
The LBU sends the results through the PTU, which
has been initialized to perform a ‘tree-min’ operation
[6] on the data entering its leaf inputs. As the
minimum result is outputted from the root stage
of the PTU, it is shifted into the RU and matched
against a zero (which has been pre-locked during
initialization). The RU outputs a one if a valid match
was found. The SCU then takes the appropriate steps.

Record Imsert(k,r) - This operation updates the
current dictionary block to include the IDR record.
To perform the Record Insert operation, the MSBs of
the results obtained during the Block Search operation
are used. If there exists a logic-one/logic-zero contrast
between two consecutive result MSBs, then the IDR
is inserted between the two associated KRs. This is
performed by re-broadcasting the IDR to the LBU’s
shifter and inserting it into the proper location as the
entire dictionary block is copied from ore leaf buffer
to the other. As the IDR key is presented to the KRs
of the current dictionary block, the dictionary block is
shifted as follows:

o If k; < k;pr, then do nothing

e If ki1 < kipr < ki, then Insert; shift
(kiv1,7iv1) ¢ (ki,ri), (ki,ri) « (kipR:TIDR)

e If kipr < k;, then shift (ki+177'i+1) — (ki,ri)
o If k:,; = krpr, then abort Insert operation

These shift operations are only performed on
certain KRs. The entire PTU is initialized to perform
the broadcast scheme, and the IDR is sent from the
RBU, through the PTU, and into the LBU shifter.
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The dictionary block (buffer) is sent to the shifter
at the same time the PTU’s leaf nodes output the
IDR to the shifter. The shifter is initialized to assess
its locked-bits and perform a shift-down function at
all locations where the lock value is equal to a logic
zero. The shift-down function is performed on all
data entering the shifter from the LBU buffer, and
the results are outputted into the remaining LBU
buffer. This output is the ‘newly’ shifted dictionary
block. Since all KRs will not shift, there will be
a location in the shifter where the MSBs of two
consecutive locations are not the same. This is where
the IDR is inserted. Only this shifter location will
read the input from the PTU rather than the LBU’s
buffer side. With respect to the input line in which
each KR pair was read into the shifter, that shifted
KR will appear on the next consecutive output
line. During this shift down operation, a KR will
effectively shift out of the bottom of the dictionary
block. The RBU is initialized to receive this KR and
temporarily stores it in an RBU buffer location. This
KR will be used for insertion into the top of the next
sequential dictionary block. Zeros are then locked
into the shifter control bits, indicating that the shifter
will perform simple data shifts on all subsequent
dictionary blocks following the dictionary block in
which the IDR was inserted.

Record Delete(k) - This operation updates the
current dictionary block by removing the KR that
matches the IDR record. The initialization process is
similar to that of the Record Insert operation, where
the MSBs of the results performed during a Block
Search operation are used to determine which shifter
location is to remove the record. The difference is dur-
ing operation. If there is a logic-one/logic-zero con-
trast between two consecutive results, then the KR
associated with the logic-zero is removed from the dic-
tionary. During this process, all KRs in the dictionary
with a key value greater than that of the IDR must
shift up one. All records with a key-record value less
than that of the IDR remain in their present location.

5 System Performance

In implementing the dictionary algorithms defined
in Section 2, the operations described in the above
section are used in a repetitive manner such that the
algorithm achieved. To demonstrate the full capabili-
ties and performance of the CTS performing the dic-
tionary machine algorithms, a full simulation of the
system was performed. In this simulation, a dictio-
nary consisting of 256 key-records was used. External
memory banks were used to store the entire dictionary



as well as the suggested IDRs. Although each dictio-
nary algorithm varied in length, the Delete(k) and In-
sert(k,r) algorithms required the instruction code of
the Search(k) algorithm to be included within their
code [7]. The 256 KR dictionary was separated into
16 blocks, where each block consisted of 16 key-record
pairs. A total of 8 key-records were inserted and
deleted. Each operation was evaluated and from our
simulation we have obtained the results shown in Ta-
ble 1. To achieve these results the key length and
record length were set to match the buffer size of 8.

Table 1: CTS’s Dictionary Operation Performance
Capacity limited by external memory
Pipeline Interval 8 clock cycles

Response time:

- TBiock Search 20 clock cycles
- TRecord Search 28 clock cycles
“TRecord Insert 35 clock cycles
- TRecord Delete 35 clock cycles

Using the above response times for the individual
operations, the maximum and minimum time required
to perform each of the three dictionary algorithms
could be calculated [7]. Applying calculations to dif-
ferent dictionary sizes yields varying results. These
results are shown in Table 2.

Table 2: CTS’s Dictionary Algorithm Performance in
ups (@ 100 MHz clock)

Algorithm Dictionary Size
256 | 512 | 1024 | 2048
Search(k) | min || 0.48 | 0.51 0.54 | 0.57
maz || 3.48 | 7.02 | 14.40 | 29.78
Delete(k) | min || 3.83 | 7.39 | 14.81 | 30.19
maz || 6.08 { 11.71 | 25.50 | 53.03
Insert(k,r) | min || 3.83 | 7.39 | 14.81 | 30.19
maz || 6.08 | 11.71 | 25.50 | 53.03

6 Concluding Remarks

In this paper we have presented a novel VLSI
pipelined tree system capable of performing several
dictionary machine algorithms. The Computing Tree
System is able to store the data structure and main-
tain it. The main features of the dictionary machine
implementation proposed in this paper are its adapt-
ability and performance capacity. We have shown that
the algorithms can be performed through the imple-
mentation of a number of processing and communica-
tion tasks overlapped on a simple structure. Using the
CTS structure to perform the dictionary algorithms
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provides several important advantages including high-
performance, a large dictionary size (limited only by
external memory), and low cost implementation. It
is shown that by manipulating the key-records bit se-
rially and storing them in an external memory, the
size of the dictionary is limited only by the capacity of
the external memory. Since key-records are not stored
within the stages of the tree as in other implementa-
tions, the PEs are kept quite simple; thus, providing
for a low-cost implementation. Using modern CMOS
technology, embedding the entire system onto a single
chip is quite possible.

Although the first prototype of this system has yet
to be built, the PTU component has been successfully
designed and fabricated in VLSI [6]. The intent is to
develop an entire CTS system prototype as a single-
chip system. This single-chip system, coupled with
high speed I/O devices can provide for real time in-
formation processing with a constant pipeline interval.
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