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Abstract

Advanced microsystems that include, sensors,
interface-circuits, and pattern-recognition integrated
monolithically or in a hybrid module are needed for
civilian, military, and space applications.  These
include: automotive, medical applications, environ-
mental engineering, and manufacturing automation.
ASICS with Artificial Neural Networks (ANN) are
considered in this paper, with the objective of recog-
nizing air-borne volatile organic compounds, especially
alcohols, ethers, esters, halocarbons, NH3, NO2, and
other warfare agent simulants. The ASIC inputs are
connected to the outputs from array-distributed sen-
sors which measure three-features for identifying each
of four chemicals. A Specialized Reinforcement Neu-
ral Network (RNN) learning approach is chosen for the
chemicals classification problem. Hardware implemen-
tation of the RNN is presented for 2 um CMOS pro-
cess, MOSIS chip. Design implementation and evalu-
ation are also presented.!

1 Introduction

Artificial neural networks offer potential advantages
in non-parametric pattern recognition, classification,
and distinction among multicomponent chemical sen-
sor systems. A generic architecture of an electronic
nose is given in [1],[2], where input odors are sensed
as analog voltage, current, or resistor values. Sensor
output is then converted into digital format and then
processed through a sensor processor, an array pro-
cessor, and a knowledge based system with pattern
recognition engine. The pattern recognition engine is
trained by updating rules to corelate the output chem-
ical {odor) to a set of input features. The electronic
nose output response from an unknown chemical is
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based on comparison against stored knowledge base
data.

Neural network methods for pattern recognition
have recently been proposed for use with chemical
sensors. Most published research about NN usage
for chemical sensing is mainly verified by computers
in simulation of supervised back-propagation meth-
ods: Niebling in [3] used a multilayer perceptron neu-
ral network for problem classification. His simula-
tions showed that neural networks are appropriate for
nonlinear signal evaluations, where statistical pattern
recognition methods may not be, since neural net-
works determine their network connections (weights
and biases) through training phase.

Fryder et al [4] presented computer simulation re-
sults for an electronic nose performance in pattern
recognition by using a back-propagation artificial neu-
ral network, with a specific calibration gas. Schweizer-
Berberich [3] used feedforward back-propagation for
training with randomized input patterns. Hong in [6]
presented a number of basic component analysis of
a gas sensor array with twelve gas samples. The in-
formation might be used for gas identification using
neural networks. In [7] fuzzy arithmetic is used in a
back-propagation artificial neural network, this may
allow for both quantitative and qualitative chemical
sensing.

Increased interest in electronic/microelectronic in-
tegrated chemical substance detection and classifica-
tion is expected in automation process manufactur-
ing, e.g. in process control for VLSI semiconductor
wafer fabrication [8], [9], [10], [11]; Consumer and au-
tomotive industry recent requirements for active pro-
tection of passengers in automotive vehicles from in-
herent pollutants such as nitric oxides (NO), hydro-



carbons (HC), and carbon monoxide (CO) [13], [12];
Possible replication of human Olfactory System in an
Electronic Nose (1], [2]; Other medical applications,
e.g glucose sensors [14]; and environmental control.

The work in this paper presents an Artificial Neural
Network (ANN) electronic nose, intended particularly
for volatile organic compounds. The electronic nose
considers inputs from arrays of conducting polymer
(polyaniline and polypyrrole [15]) thin film sensors.
Measurements of sensors polymer resistance are used
as key features in determining chemical vapors.

2 ANN Approaches

Learning methods in ANNs can be classified as:
Supervised learning; Unsupervised learning; and Re-
inforcement Neural Networks (RNNs). For chemical
sensing problems detailed description (Models) of the
features is usually difficult or not available. Thus,
practical supervised learning is difficult. Chemical
sensing arrays can however provide some evaluative
knowledge about the features of the different chem-
icals. Thus, one expect to do better than with un-
supervised learning. Consideration of reinforcement
learning matches the electronic nose problem need.
RNN is most suitable in situations where there is not
enough detailed information available to the network,
only right or wrong assessment. Sometimes this type
of learning is called “learning with a critic,” as op-
posed to “learning with a teacher” in supervised neural
networks [16]. There are several classes of reinforce-
ment learning: (1) Where a specific reinforcement is
attached to a specific Input/Output (I/0) association
pair; (2) Where the environment is modeled randomly
and therefore the reinforcement is expressed proba-
bilistically; and (3) Where the environment is dynamic
and the reinforcement is given after a series of consec-
utive actions. A general block representation for the
reinforcement learning is given in Fig. 1. Where the
network interacts with its environment and receives a
reinforcement signal which could be a scalar or a vec-
tor quantity, in response to the network’s actions on
the environment. The reinforcement signal (p:), at the
i'* neuron is an indication of the cumulative correct
response.

This paper presents a specific RNN algorithm and
a VLSI circuit implementation for recognizing four
chemicals, each of which is characterized by the per-
Centage change in the resistanse of sensor array as
a function of three features.: Temperature; Satura-
tion level; and Sensor exposure time to the analyte/air
mixture,
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Figure 1: Reinforcement learning: General block rep-
resentation.

3 RNN Design

In this paper a specialized RNN is developed to
classify FOUR different chemicals, based on their dis-
tinguishing features. The features composition of each
chemical are presented in the form of a TRAINING
VECTOR to the NN. The NN system consists of an
input layer with FOUR input neurons. The input fea-
tures vector is multiplied by weights pertaining to each
neuron and then passed through a nonlinear element.
Each input is evaluated by the network to develop a
distribution of reward or penalty signals and to con-
sequently accomplish classification of the chemicals.
The synaptic weights will iteretively converge in or-
der to reflect the characteristics of the chemicals. The
network outputs conform to the appropriate type of
chemical. A block diagram for the implemented RNN
system is depicted in Fig. 2 and Fig. 3 where the
change in weights (AW;;) is made equal to the rein-
forcement rate (R;) (which is a function of a learning
rate (n) times the reinforcement signal) multiplied by
eligibility (E;;). The learning rate is higher for posi-
tive reinforcement (reward) and lower for negative re-
inforcement (penalty).

AWy = Ri(n)E;;. (1)
Several algorithms for RNN have been researched and
investigated including [17], [18] with only one pub-
lished implementation using pRAM in [17].

4 Electronic Nose Implementation

The specialized RNN approach is used to classify
four volatile compounds: acetone, methanol, benzene
and chloroform. The factor gi in the neurons states,
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Figure 2: ANN Block diagram for identifying
methanol, acetone, benzene, and chloroform based on
sensor resistance measurements. Each chemical has
3-features. The learning approach is the specialized
RNN.

Fig. 2, is a measure of the percentage change in re-
sistance of the sensor, and R; is the reinforcement
rate. Sensors of spun polypyrrole soluble onto inte-
grated gold electrode arrays (15 um spacing between
electrodes) [15] are assumed, for measuring the per-
centage changes in resistance after 5-seconds exposure
of the sensor to static air saturated with the analyte
at room temperature. Conducting polymer thin-film
sensors are chosen since each sensor gives a large in-
crease in resistance with different analytes.

With sensors coated with doped polypyrrole and ex-
posed to air saturated with analyte vapor for 5-seconds
at room temperature, the percentage chahge in sensor
resistance is given as

R-R,

AR,
R,

2)

For the considered chemicals: Methanol (with AR, =
—0.7), Acetone (with AR, = —0.42), Benzene (with
AR, = 0.26), and Chloroform (with AR, = 1).
Matrix formulation and supporting MATLAB simu-
lation of the specialized approach are given by the
author in [19]. The considered features for chemical
classification are: Temperature, Saturation level, and
Sensor exposure time to the analyte/air mixture.
Published practical gas sensors include: Highly sensi-
tive lammable gas detector [20]; Semiconductor gas
sensor array of 4-elements for SnO- [12]; Sensors for
detecting NO and CO traces [13]; Sensors for recog-
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nizing two vapors; and Glucose sensors using immobi-
lized glucose oxidants with long term stability [14].

5 Summary and Conclusions

In this paper, a novel ANN system is designed and
simulated for integrated circuit chip implementation
of an electronic nose capable of recognizing Methanol,
Acetone, Benzene, and Chloroform. The design may
be altered, to be programmable, for recognizing other
volatile organic compounds. The inputs to the ANN
system are the measurements from the polypyrrole
spun integrated electrode sensor arrays. The key fea-
tures used for identifying the chemical vapors are:
temperature; saturation level; and sensor exposure
time to the analyte/air mixture. Each feature affect
the sensor resistance change differently. Other fea-
tures may be added at the cost of expanded hardware.
Conducting polymer sensors have been used since they
give a considerable increase or decrease in resistance
with different analytes.
The RNN algorithm and its hardware implementation
present a key building block in the development of
bionic brain [20], upon testing and verification. The
RNN learning approach is generally more robust than
traditional statistical methods. All VLSICs are imple-
mented using ORBIT facilities through the MOSIS 2
pm n-well CMOS process.
Totally supervised learning is NOT recommended
with chemical-sensors. This could be due to fea-
tures overlap and incompleteness in measurements.
Although unsupervised NN approaches (e.g. SOFM)
may still have potential in chemical recognition, the
performance of RNN Learning is guided by the re-
ward and penalty which are readily available, based
on sensors measurements. Prototype test results will
be presented.
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