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Abstract

The stability of a continuous-time state variable filter
is analyzed using the Routh-Hurwitz criterion. This
criterion assesses stability by indicating the number of
poles that lie in the right-half plane. The filter is
examined separately with integrators implemented with
an op-amp and an OTA-C. Both amplifier types are
characterized by a dominant-pole frequency response,
and the stability of each implementation is compared.
HSPICE simulations confirm the theoretical analyses,
which indicate that the gain-bandwidth product of the op-
amps and the bandwidth of the OTAs must be much larger
than the desired frequency of operation to ensure
stability. Since the analyses assume a dominant-pole
response, all higher-order poles of the actual amplifier
must also be much greater than the unity-gain frequency
to minimize excess phase.

L. Introduction

Several classes of continuous-time active filters,
including state variable structures, rely on integrators to
provide the required poles and zeros [1]. Traditional
integrator architectures use voltage-mode operational
amplifiers (op-amps) with capacitive feedback to integrate
the applied voltage signal. However, the limited
frequency response of conventional op-amps, as well as
the dominant-pole open-loop constraints required for
stable closed-loop operation, restricts the operation of the
resultant filter to frequencies below 100 kHz [2]. Since
modern communication systems require the processing of
signals near | GHz, research into other integrator
topologies, such as the operational transconductance
amplifier-capacitor (OTA-C), has increased in recent
years [3]-[5].

To assess the performance of each implementation,
this" paper compares the stability of a continuous-time
State variable filter implemented with op-amp integrators
o the stability of the same filter implemented with
OTA-C integrators. In each case, the frequency response
of the basic amplifier is characterized by a dominant pole.
'Ijhe filter, shown in Fig. 1, requires two integrators and
Simultaneously offers low-pass, bandpass, and high-pass

0-8186.8409-7/98 $10.00 © 1998 IEEE

output nodes [1]. In sections III and IV, the bandpass
transfer function of each implementation is found, and its
stability analyzed using the Routh-Hurwitz criterion. This
criterion assesses the stability of the resulting fourth-order
transfer functions, and provides design equations that
relate the stability of the filter to circuit parameters.
HSPICE simulations confirm theoretical results.

R1
R,
s T
. / Ve Vee Ve
R3

= R

4

Figure 1. State variable filter

H. Circuit transformation

For analytical simplicity the filter is transformed in
Fig. 2 by replacing the op-amp and feedback resistors with
controlled sources.
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Figure 2. Modified state variable filter

The coefficients of these sources are
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Assuming both integrators in the filter of Fig. 2 are ideal,
the quality factor (Q) and the magnitude at the center



frequency of the bandpass output (Hzp) can be shown to
be
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The center frequency depends on the transfer function of
the integrators, which is different for the op-amp and
OTA-C implementations.  Expressions for the center
frequency are given in sections III and IV. The filter of
Fig. 2 containing k.p, ks, and kgp is used to analyze and
simulate both integrator implementations, where ks = -1.9
and k;» = -1. The third coefficient, kgp, is varied to select
the desired Q of the filter.

II1. Op-amp realization

Fig. 3 depicts a model of the voltage-feedback op-
amp integrator used to implement the filter of Fig. 2. The
frequency response of the open-loop op-amp gain is
characterized by a dominant pole created by Rpp;z and
Cporr. The controlled source, 4,, buffers the output,
while Ry and Cpr comprise the integrating elements.
Although Rjy and Ryyr are included in the HSPICE
simulations of the filter, these elements are assumed ideal
(i.e., Ry = w0 and Royr = 0) in hand calculations.
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Figure 3. Op-amp integrator model

A. Theoretical analysis

Supplanting each integrator in the filter of Fig. 2 with
the model of Fig. 3 (assuming Royr = 0) results in the
fourth-order circuit depicted in Fig. 4. Analyses show that
the bandpass transfer function is
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where
X, =14o[T, + T, (14 4,)]+ 5° T T, N
X =1+5[T21 +T22(1+A2!)]+52T21T22 (8)

and T,,=R,JC,j,fori=l,2andj= 1, 2.

The bandwidth (BW) of each op-amp and center frequency
(w,) of the filter are

1

BW = )
RporeCrote
where Rporz = Ry = Ryand Cpor e =Cyy = C;;, and
- kLP
w, = 10
"R C. (109)

where Rmn= RlZ = Rzz and Cm,,= ClZ = sz.

The stability of the bandpass transfer function is
assessed by analyzing the pole locations.  Although
finding the exact pole locations is mathematically
cumbersome, applying the Routh-Hurwitz criterion to the
characteristic polynomial of the circuit indicates the
number of poles that lie in the right half of the complex
frequency plane. Applying the Routh-Hurwitz criterion
directly to the denominator of (6) is analytically
impractical, so three approximations are made based on
the relative values of circuit parameters. Typical values
are selected for the open-loop gain (4o) and bandwidth of
the op-amps to be 4, = 200 kV/V and BW = 2.5 kHz.
Using typical values of 0, the three assumptions, 4y >> 1,
Ay >> 20, and 4, >> 1/Q, are easily satisfied.

Under these conditions, and assuming the two
integrators are matched such that 4y, = 4,;, T\, = T, and
T1» = Tx, the characteristic potynomial of (6) becomes
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Figure 4. State variable filter with op-amp integrators
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where
a, =T,’T,’ (12)
a, =2T|1T12(T1| +AHTIZ) (13)
a, =2AI17;17;2+7}IZ+A1127';22+k8PA117;IT}2 (14)
a =kBPAH(7;1 +Ausz) (15)
a, = 4,° (16)

The Routh-Hurwitz criterion states that the number of
algebraic sign changes in the first column of the Routhian
array is numerically equal to the number of right-half
plane zeros of the polynomial in question [6]. For a
fourth-order polynomial in the form of (11), the Routhian
array is

s'la, a, a,
sla, a 0
s’ ¢ 0 an
s'ld 0 0
sle 0 O

where ¢, ¢, d,, and e, are defined by (18) through (21).
Routhian array first column elements ay, a3, ¢,, and e, are
positive, so stability is ensured if d) is also positive.
Element 4, is positive for

2
ABW | 20, 4oL _4

Y- *2)

(2]

With 4BW >> @, and Q >> 1, (22) may be approximated
as

ABW >20w, (23)

B. Simulation results

For low values of Q, the filter is stable to higher
frequencies where the assumption, 4oBW >> @, is no

longer valid. Under such conditions, the more precise
inequality of (22) is required to accurately describe the
stability of the filter. For Q < 2.12, for example, (22)
correctly predicts the filter is stable for all frequencies,
while (23) predicts stability for all frequencies only for O
= 0. HSPICE simulations verify the accuracy of both (22)
and (23), however, as (23) is more straightforward, it will
be used to present simulation results.

To ensure stability, (23) indicates that the gain-
bandwidth product (GBP), A,BW, of the op-amps used in
the state variable filter of Fig. 1 must be at least twice the
product of the quality factor, 0, and the desired center
frequency, @, Moving the poles farther from the
imaginary axis to eliminate peaking at the center
frequency requires the GBP of the op-amps to be even
larger — typically 10 times larger — than 2Qm, HSPICE
simulations verify this claim, as indicated by the resuits in
Table 1 on the following page. In all simulations, O, and
the center frequency magnitude, Hgp, are designed to be
10 and 19, respectively. Since Q >> 1, the filter will
become unstable at lower frequencies where the
assumption, 4oBW >> @,, is valid. Therefore, (23) may be
used to predict stability.

In the first simulation of Table 1, (23) is not satisfied
with the chosen values of O, @,, and GBP. Accordingly,
the filter is unstable and has poles in the right half of the
complex frequency plane. The next three simulations use
an increasingly larger GBP, and the resulting Hpp
decreases as the poles move into the left-half plane and
farther from the imaginary axis. The fifth simulation
doubles the original GBP from 500 MHz to 1 GHz,
causing the frequency of oscillation to double from 28
to 56 MHz.

The first five simulations use the BW to change the
GBP, so the last simulation changes the GBP with the
gain, 4o. In this case, the original GBP is multiplied by
ten, forcing the resulting oscillation frequency to a value
ten times the original. The simulated circuit, therefore,
behaves exactly as (23) predicts.

- 4All7;17;2 +27}l2 + 2‘41127;22 + kBPAHTI'IﬂZ

o= 4a, - q,a, (18)
a, 2
C2=a0=A”2 (19)
4 oS ac, (Tl + 2k AT + 2k AT + k" 4T, T = 44, T, T T, + ALT,) 0)
Sl =
Cl 4AHTI17;2+27;IZ+2AHzT;22+kBPAIlTI'|7;2
G=c,=4,’ @n
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Op-amp Specifications Desired Center | Actual Center Pole Locations

# Ao BW GBP Frequency, f» Frequency Hpgp from HSPICE
T F200kv/V | 2.5kHz | 500 MHz 28 MHz 27 MHz 4.4k | (0.002 *,26) MHz

(-528 +,26) MHz

2 1200 kV/V 5kHz 1 GHz 28 MHz 27 MHz 40 | (-0.641£,27) MHz
(-1030 +,27) MHz
3 1200kV/V | 12.5kHz | 2.5GHz 28 MHz 28 MHz 24 (-1080 +,28) MHz
(-2530 £,28) MHz
4 200 kV/V 25 kHz 5 GHz 28 MHz 28 MHz 21 (-1240 £ 28) MHz
(-5030 +,28) MHz
5 | 200kV/V 5kHz 1 GHz 56 MHz 53 MHz 4.1k | (0.005£,53) MHz
(-1060 + j53) MHz
61 2MV/V] 25kHz 5 GHz 280 MHz 264 MHz 4.5k | (0.024 +,265) MHz
' (-5280 +,265) MHz

Table 1. State variable filter instability conditions using op-amp integrators

IV. OTA-C realization

Since the op-amp integrator is a closed-loop
architecture, the op-amp itself must be compensated to
ensure a dominant-pole open-loop frequency response.
This narrow-banding reduces the GBP, and therefore,
reduces the frequencies at which the op-amp integrator
can be operated. The OTA, however, remains an open-
loop configuration and achieves integration by capacitive
output termination. This open-loop topology helps to give
the OTA-C a superior frequency response to that of the
op-amp integrator. Fig. 5 shows a model of an OTA-C
integrator where gm: is the transconductance of the
amplifier, Rour is the amplifier output resistance, and Cinr
is the integrating capacitor. The sub-circuit of gm1, RroLe,
and Cpore, creates a dominant pole to simulate the
frequency response of the actual amplifier.
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Figure 5. OTA-C integrator model

A. Theoretical analysis

Replacing each integrator in the filter of Fig. 2 with
the model of Fig. 5 again results in a fourth-order circuit.
This filter is shown in Fig. 6.
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Figure 6. State variable filter with OTA-C integrators
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The bandpass transfer function is

_[iﬁ_e_z : kSXZl (24)
VS Xanl - ku’AnAlezlAzz + kBPXZI

where
X11=1+5(Tn +le)+SZT11le (25)
Xy =l+5(T2| +T22)+52T21T22 (26)

and T, = R;Cyj, 4y = &miRy> fori=1,2andj=1,2.

Simplifying (24) with gni1 = VRn and g = 1/Ray, the
bandwidth of the OTA and center frequency of the filter
are

1

BW = 2N
ReoreCrove
where Rporr = Rii = Rz and Cpore = Cn = Cy, and
-k
w,= EnVT Tip (28)
Ca)r

where gn = gmi2 = &m22 and Cpn=C12 = Caa.

Repeating the stability analysis used for the op-amp
implementation, the Routh-Hurwitz criterion is once again
applied. Before simplifying the denominator of (24),
assumptions concerning the relative values of the circuit
parameters need to be made. Typical values selected for
the transconductance (gm) bandwidth, and output
resistance (Rour = Rz = Ry,) of the OTA are gn = 15
mmhos, BW = 700 MHz, and Rour = 75 k& Using
typical values of O, the four assumptions, g=Rour >> @
gmRour >> 1/Q, gnRour >> 1, and gnRourBW >> a, are
easily satisfied.



With the proper assumptions, and again assuming the
two integrators are matched such that that 4,, = 4, T, =

Ty, and Ty; = Ty, the characteristic polynomial of (24)
has the same form as (11), where
= 7;127;22 (29
a, =21, T, (30)
a, =7;2(le +kBPAIZTI|1) (1)
a; = kgp A, T, (32)
a,= 4y’ (33)

The fourth-order Routhian array has the same form as
(17), and the remaining array elements can be calculated
from (18) through (21) to be

¢ = 27}22 + kBPAl2T;|T{2

| ) (34)
=4, (35)
d = (2T;; + kgp AT, Jhgp 4T = 44" T T, (6)

2T, + kgp A, Ti,
e =4, X))

Again, Routhian array first column elements ay, a, ¢, and
€, are positive, so stability is ensured if &, is also positive.
Element d, is positive for

B. Simulation results

The inequality of (39) is also derived in [7] using a
simplified analysis which requires O > 1. Although (38)
reduces to (39) for moderate values of Q, (38) is far more
accurate for @ < 1. At Q = 0.5, for example, (38)
correctly predicts the filter will be stable at all
frequencies, while (39) predicts instability for @, > BW.
HSPICE simulations verify the accuracy of both (38) and
(39), however, as (39) may be used for most filters, it will
be used to present simulation results.

To ensure stability, (39) indicates that the bandwidth,
BW, of the OTAs used in the state variable filter of Fig. 1
must be at least twice the product of the quality factor, 0,
and the desired center frequency, @, Similar to the op-
amp implementation, moving the poles farther from the
imaginary axis to eliminate peaking at the center
frequency requires the BW of the OTAs to be even larger
— typically 10 times larger — than 2Qa, HSPICE
simulations verify this claim, as indicated by the results in
Table 2. As in the previous case, O and Hgp are designed
to be 10 and 19, respectively, for all simulations. Since O
> 2, (39) may be used to predict stability.

In the first simulation of Table 2, (39) is not satisfied
with the selected values of O, @,, and BW. As in the first
simulation in the op-amp analysis, the filter is unstable
and has poles in the right-half of the complex frequency
plane. The next three simulations use an increasingly
larger BW, and the resulting Hgp decreases as the poles
move into the left-half plane and farther from the

2BW 1 imaginary axis. The last simulation doubles the BW from
@ >40 - 'é (38) 700 MHz to 1.4 GHz, causing the frequency of oscillation
" to double from 36 to 72 MHz. The stability of the OTA-C
ForQ>2, (3 8) may be approximated as integrator filter, therefore, behaves exactly as (39)
predicts.
BW >20w, (39)
Desired Center | Actual Center Pole Locations
# | OTA BW | Frequency, f, Frequency | Hap from HSPICE
1 | 700 MHz 36 MHz 36 MHz 1k } (0.033 +£/36) MHz
(-701 £ j36) MHz
2| 14GHz 36 MHz 36 MHz 39 | (-0.887 £36) MHz
(-1400 = j36) MHz
31 35GHz 36 MHz 36 MHz 24 | (-1.44 £j36) MHz
(-3500 £ j36) MHz
4 7 GHz 36 MHz 36 MHz 21 | (-1.63 +/36) MHz
(-7000 % j36) MHz
5| 1.4GHz 72 MHz 72 MHz 883 | (0.076 +72) MHz
(-1400 + j72) MHz

Table 2. State variable filter instability conditions using OTA-C integrators
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V. Conclusion

The Routh-Hurwitz criterion is used to accurately
assess the stability of a continuous-time state variable
filter implemented with op-amp and OTA-C integrators.
The resulting inequalities governing the stability of the
two fourth-order transfer functions are similar. The
results of the Routh-Hurwitz analyses indicate that the
GBP of the op-amps, and the BW of the OTAs need to be
very large if the filters comprising them are to be stable at
the high frequencies used in state of the art
communications circuits.
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