
Model Checking: Its Basics and Reality

Masahiro Fujita

Fujitsu Laboratories of America

Santa Clara, CA95054, USA

fujita@a.fujitsu.com

Abstract| Model checking is one of the most prac-

tical techniques by which we can automatically check if

given speci�cations (properties) are satis�ed by given

designs. In this paper we review various veri�cation

e�orts for real designs with model checking as well as a

brief introduction to the algorithms relating to model

checking. The goal of the paper is to give general ideas

on how model checking can be applied to real designs

in which way and what kind of human interaction is

necessary for practical veri�cation.

I. Introduction

As systems to be designed become more and more com-

plicated, it is not su�cient at all to check the correctness

of designs only by simulation. Subtle design errors can

easily survive even under intensive and massive simula-

tion. Also, detecting design errors in the late design stages

is extremely costly and must be avoided as much as pos-

sible. This is why now there are lots of attentions paid to

formal veri�cation.

Formal veri�cation is to mathematically prove that the

behavior allowed by given speci�cation(properties) con-

tains the behavior performed by designs as shown in Fig-

ure 1. It is essentially an exhaustive check on every pos-

sible behavior of designs that is related to the given spec-

i�cation (property to be satis�ed by the designs).

Model checking is an automatic method to prove such

correctness and is now becoming to be fairly widely used

in real design environments. In this paper, we review ba-

sic ideas on model checking without mentioning its math-

ematical aspects, show advantage and disadvantage of the

use of model checking for veri�cation, and review actual

veri�cation e�orts of real designs with model checking.

II. What is model checking ?

Model checking is basically an exhaustive search in all

possible states in the designs by checking whether the

given speci�cation is satis�ed in all of them (Figure 1).

That is mostly an implicit exhaustive search on state

space of designs in the sense that state space of designs are

represented symbolically instead of individually. This is

Specification
= properties
 to be satisfied

Satisfies ?
= contains ?

Designs in HDL

s1

s2 s3

Fig. 1. Framework of model checking

why state-of-the-art model checking programs can verify

designs having up to 10100 or more states [2].

Speci�cation for model checking is a set of properties

that the designs must satisfy. Property can be described

either in temporal logic or automaton. Temporal logic is

an extension to traditional logic with temporal operators

by which we can describe relationships among variables

in di�erent time frames. Natural language description

that corresponds an example of temporal logic formula

is \it is always the case that if a request signal comes,

there will eventually be an acknowledgment". Here, \it

is always the case" and \there will eventually be" are

example temporal operators and specify timings when the

propositions must be held. Another example property is

\if a service is started, on-duty signal will be on until that

service �nishes".

Another way to specify properties for model checking

is to use automata. For example, if we like to specify the

property: \Signal a will be not 1 in any two consecutive

states", then �gure 2 shows an automata that represents

this property. We can use it to watch the behavior of

the designs by simultaneously execute it in parallel to the

designs. If we reach \bad state", then the property is not

satis�ed. This can be checked by model checking.

Figure 3 is an example design for the speci�cation

shown in �gure 2. In model checking, each state in the

designs is checked if it satis�es the property. In this ex-

ample, if we check the property shown in �gure 2 with

the design shown in 3, each state in the design is marked

as \good" or \bad" as shown in �gure 3, corresponding

whether a state satis�es the property in �gure 2 (bad) or

does not (good) . This can be done by tracing the state

transitions in the design from each state along with the

a
a

~a

~a

Bad
state

Initial

Fig. 2. An example speci�cation based on automaton

a=1,
b=0

a=0,
b=1

a=0,
b=0

a=1,
b=1

a=1,
b=1

Bad

Good
Good

Good
Good

Fig. 3. An example design and its veri�cation

speci�cation shown in �gure 2.

This process is essentially an exhaustive search on state

space in designs. Therefore, if we check each state one

by one, it will take exponential time with the number of

ipops or state variables in the designs. This is called an

explicit state traversal. If the numbers of state to be tra-

versed are not many (less than 1 million), this is a realistic

way to verify designs. However, if the numbers of states in

designs are large, explicit state traversal does not work at

all. In such cases, implicit state traversal is applied. That

is, the state space is represented symbolically instead of

each individual state by state, and its state traversal is

computed on sets of states instead of each state. Sets of

states are represented as Boolean formulae and implicit

state traversal can be treated as manipulation of Boolean

formulae. By this implicit state traversal, large designs

having more than 10100 can be veri�ed within practical

time ??.

III. Model checking tools

There are a number of model checking tools reported in

the literature. They can be classi�ed as: temporal logic

model checkers and behavior conformance checkers.

Temporal logic model checkers are the tools that can

check the properties described in temporal logic. Exam-

ples are EMC [4], C�SAR [5], SMV [3], Spin [6], Mur'

[7], UV [8], Concurrency Workbench [9], SVE [10], FOR-

MAT [11], CV [12], HyTech [13], and Kronos [14].

Behavior conformance checkers are the tools that can

check if designs represented in automaton conform the

speci�cation represented in automaton. Examples are

Cospan/FormalCheck [15] and FDR [16].

Besides the aboves, there have been and there will be

a number of model checking tools from various EDA ven-

dors.

These tools o�ers essentially the same powerful-

ness/performance in the sense that all are based on the

same basic algorithms. However, each tool may be tuned

with particular application in mind. In that sense, per-

formance/powerfulness of the tools for real design veri�-

cation can be quite di�erent depending on the types of

designs. I.e., some are good at processor type designs

whereas some others are good at cache coherence type

designs.

IV. What is the realistic way to use model

checking ?

Although there have been signi�cant progress in terms

of performance of model checkers since it was �rst pro-

posed in early 80's, real industrial designs are often far

larger than what can be veri�ed with model checkers as

they are. For example, even if we can say state-of-the-art

model checkers can verify designs having more than 10100

states, they have just 200-300 ipops or state variables.

Typical industrial designs can easily have more than 1000

ipops.

Moreover, the numbers of states for model checkers are

not only just the numbers of states in designs to be veri-

�ed, but also include the numbers of states in the periph-

eral systems that the designs to be veri�ed are working

with. For example, suppose we like to verify a bus arbiter

circuit. It may not have many ipops. However, it is

working with several components that are connected to

the bus. They can be large designs and the numbers of

states including them can simply be huge.

So, real designs are just too large for model checking

to verify them as they are. We need to abstract, re-

duce, or simplify given designs in practice before applying

model checking. The problem of the current model check-

ing tools is that this abstraction/reduction/simpli�cation

process is essentially a manual one. Although there have

been active research on automatic techniques for them,

they are not yet well matured to be easily used.

Examples of such abstraction/reduction/simpli�cation

process are the followings. Suppose we like to verify a

bus arbiter shown in the left of Figure 4. Although we

like to verify the bus arbiter only, its bus is connected to

a processor, a co-processor, a memory system, and an I/O

interface. In order to check properties relating to the bus

arbiter, since it is working with others connected to the

bus, we have to traverse state space for the entire system,

not just the bus arbiter. This is simply too large, and

so, we have to abstract, reduce, or simplify the processor,

co-processor, memory system and I/O interface as shown

B
us arbiter

Co-processor

I/O interface

Memory
system

Processor

Other systems

B
us arbiter

Co-processor

I/O interface
+ others

Memory
system

Processor

Verification
model

Abstracted/simplified
behavior for periphrals

Fig. 4. An example design including bus arbiter

in the right of Figure 4. We may be able to verify the

bus arbiter as it is, but we have to come up with simpler

models for the components connected to the bus. This

process must be a manual one right now and may take

lots of human e�orts.

Figure 5 is another typical situation on how we can

use model checking in actual designs with abstrac-

tion/reduction/simpli�cation process. Here we like to ver-

ify the cache coherence protocol used in the network in-

terface chip in the �gure. In this case, not only abstract,

reduce, simplify peripherals, we have to extract the core

of the cache coherence protocol from the network inter-

face chip design. Moreover, we may have to come up with

a simpli�ed model for all of the other pairs of processing

units and network interface chips, in order to further re-

duce the state space of entire system to be veri�ed with

model checking. All of these processes are currently man-

ual ones. In other words, signi�cant e�orts are typically

needed in order to use model checkers for practical de-

signs. Of course, there can be expected lots of rewords;

we may be able to �nd bugs in the early design stages.

V. Real verification examples

There are plenty of reports on actual application of

model checking to real designs both in software and hard-

ware [1]. We list some of them in the following with brief

explanation, in order to give ideas on what can be realis-

tically veri�ed in which way.

The �rst two have some details on the goals of the ver-

i�caiton while the rest just gives brief descriptions. Es-

pecially the second veri�cation is an example case where

not only model checking but also other techniques such

as theorem proving and normal simulation were applied

to ensure the correctness of the entire parametric designs

for ATM switch, which is one of the current direction of

research on formal veri�caiton.

� Cache coherence protocol on HAL parallel server [18]

Network

Network
interface chip

Processing
unit

Network
interface chip

Processing
unit

. . .

Verification model

Abstracted
model for
processing unit

Abstracted model for network

Abstracted model
for network
interface chip
(cache coherence
 protocol only)

Combined abstracted
model for the remaining
pairs of processing units
andnetwork interface
chips

Fig. 5. An example distributed system

The cache coherence protocol of the HAL S1 System

(Figure 6, a shared-memory and/or message-passing

multiprocessor consisting of standard Intel Pentium

Pro symmetric multiprocessing (SMP) servers con-

nected by HAL's proprietary Mercury Interconnect

to create a cache-coherent, non-uniform memory ac-

cess (CC-NUMA) machine was tried to be veri-

�ed with Mur' [7]. Cache coherent multiprocessors

are an increasingly common architecture for high-

performance servers.

Multiprocessor cache coherence protocols are hard

to design and debug because they are intrinsically

highly concurrent. Simulation is likely to miss impor-

tant corner cases, and replicating and understanding

any bugs that arise is extremely di�cult. The goal

was to quantify the potential usefulness of formal ver-

i�cation by carefully tracking the e�ort and results

of applying formal veri�cation, rather than simply

demonstrating that veri�cation was possible. Based

on the records and experience, the conclusions that

can be drawn on the costs, bene�ts, and appropri-

ate methodologies of applying formal veri�cation are:

(1) if properly applied, protocol-level formal veri�ca-

tion of cache coherence protocols has become su�-

ciently well-understood to be routinely undertaken

by people who know model checking, (2) protocol-

level formal veri�cation, however, doesn't eliminate

DRAM MCU

P

L2

P

L2

P

L2

P

L2

SMP Node

DRAM MCU

P

L2

P

L2

P

L2

P

L2

SMP Node

DRAM MCU

P

L2

P

L2

P

L2

P

L2

SMP Node

Router

Router

Router

Interconnect
Fabric

Fig. 6. Structure of the target parallel system

the need for traditional implementation veri�cation,

which remains a bottleneck in the design process, and

(3) problem-speci�c veri�cation tools and better in-

tegration of formal veri�cation tools into the design

ow would greatly reduce the e�ort required.

� ATM switch chip [19] [20]

Asynchronous Transfer Mode (ATM) technology has

emerged as a backbone for high-speed broadband

communications networks. An ATM network back-

bone typically consists of a number of small ATM

switches interconnected in a matrix topology. An

ATM switch takes data from input ports and for-

wards the input data to the proper output ports in

the same order as the input data. An ATM switch is

typically designed as a RAM-embedded Application

Speci�c Integrated Circuit (ASIC) as shown in Fig-

ure 7. High-level modeling and hardware synthesis,

especially if it is a parameterized modeling, delivers

good results in ATM switch design. The di�culty in

validation comes about because of complex control

module design for a parametric number of concur-

rent processes, corresponding to an arbitrary num-

ber of input/output ports in the high-level model,

communicating through shared signals. While sim-

ulation is e�cient for validating portions of design

that do not have many interacting concurrent pro-

cesses, it is only by general purpose theorem proving

that we can prove properties of designs with generic

parameters, and model checking can e�ciently han-

dle the control part of the design with a small state

space. A pragmatic combination of theorem proving

and model checking in conjunction with small-scale

conventional simulation was applied for e�cient val-

idation of the entire designs. With this approach all

instances of the parameterized design can be veri�ed.

� Cache coherence protocol on IEEE Futurebus+ stan-

R
A

F
0

R
A

F
1

W
A

F

ce
ll

co
un

te
r

w
B

C

co
py

 c
el

l
fla

g
cc

f

s/
p

iH
W

0
iH

W
1 IN

PU
T

M
O

D
U

L
E

C
E

L
L

 P
R

O
C

E
SS

IN
G

 M
O

D
U

L
E

V
er

if
ie

d
by

 T
he

or
em

 P
ro

vi
ng

V
er

if
ie

d
by

 T
he

or
em

 P
ro

vi
ng

+
 M

od
el

 C
he

ck
in

g

s/
p

ce
ll

F
IF

O

(e
xt

er
n

al
 n

et
w

o
rk

 c
lo

ck
)

(i
n

te
rn

al
 s

w
it

ch
 c

lo
ck

)

w
rit

e
co

nt
ro

l
re

ad
co

nt
ro

l
(W

C
)

(R
C

)

da
ta

 fl
ow

co
nt

ro
l f

lo
w

ex
H

W
0

H
W

_c
lk

sw
_c

lk

O
U

T
PU

T
M

O
D

U
L

E

ex
H

W
1 p/
s

oH
W

1

oH
W

0

Fig. 7. Structure of the target ATM switch chip

dard [17]

In 1992 Clarke and his students at CMU used SMV

[3] to verify the cache coherence protocol in the IEEE

Futurebus+ standard. They constructed a precise

model of the protocol and showed that it satis�ed a

formal speci�cation of cache coherence. In that pro-

cess, they found a number of previously undetected

errors in the design of the protocol. Although the

development of the protocol began in 1988, all pre-

vious attempts to validate it were based entirely on

informal techniques, and that is why there remained

several errors in the protocol.

� Cache coherence protocol on IEEE Scalable Coherent

Interface (SCI) [7]

In 1992 Dill and his students at Stanford University

used Mur' to verify the cache coherence protocol of

the IEEE scalable coherent interface. They modeled

a typical con�guration using the C code in the de�ni-

tion of the SCI standard. Since the number of states

of the model was very large, they veri�ed only small

instances of the system. Nevertheless, they found

several errors, ranging from uninitialized variables to

subtle logical errors. The errors also existed in the

complete protocol, although it had been extensively

discussed, simulated, and even implemented.

� Arbiter for multiprocessor architecture: PowerScale

[21]

In 1995 researchers from Bull and Verimag used LO-

TOS to describe the processors, memory controller,

and bus arbiter of the PowerScale multiprocessor ar-

chitecture. PowerScale is based on IBM's PowerPC

and is used in Bull's Escala series of servers and work-

stations. They identi�ed four correctness require-

ment for proper functioning of the arbiter. Correct-

ness was established automatically in a few minutes

using the C�SAR tool.

� IBM/Motorola 60x bus protocol [22]

IBM/Motorola 60x bus protocol was incrementally

modeled at an abstract level in Verilog and veri�ed

using a model checker. The primary purpose of the

modeling activity was to acquaint veri�cation per-

sonnel with details of the 60x bus protocol and to

document speci�c properties of the 60x bus that are

necessary to guarantee compliance with hand-written

protocol documents. This approach gave more pre-

cise speci�cation than somewhat ambiguous English-

language documentation.

� High-level Data Link Controller (HDLC) [23]

A high-level data link controller (HDLC) was being

designed at AT&T in Madrid. In 1996, researchers

at Bell Labs o�ered to check some properties of the

design. The design was almost �nished, so no er-

rors were expected. Within �ve hours, six properties

were speci�ed and �ve were veri�ed, using the For-

malCheck veri�er. The sixth property failed, uncov-

ering a bug that would have reduced throughput or

caused lost transmissions. The error was corrected

in a few minutes, and formally veri�ed using For-

malCheck.

� Token ring controller TC [24]

A minimum con�guration with Token ring controller

and its peripheral, timing generator, was veri�ed

with model checking. First all reachable states from

the initial state were carefully computed and then

various properties were checked. The veri�cation

took some time, but all properties were veri�ed that

gave signi�cant con�dence for the correctness of the

design.

� Analog control protocol for stereo components [25]

in 1996, Bengtsoon et al. model checked a control

protocol used in Philips stereo components. The pro-

tocol was originally veri�ed manually. But here, the

entire protocol was veri�ed automatically with model

checking approach.

� CCITT ISDN user part protocol [26]

Formal modeling and automated veri�cation were ap-

plied to the development of the CCITT ISDN user

part protocol at AT&T in 1989-92. A team of �ve

\veri�cation engineers" formalized and analyzed 145

requirements using a special-purpose temporal logic

model checker. A total of 7,500 lines of SDL source

code (excluding comments) was veri�ed. 112 errors

were found; about 55% of the original design require-

ments were logically inconsistent.

� Control system to make buildings more resistant to

earthquakes [27]

In 1995 the Concurrency Workbench was used to an-

alyze an active structural control system to make

building more resistant to earthquakes. The con-

trol system sampled the forces being applied to the

structure and used hydraulic actuators to exert coun-

tervailing forces. The �rst model had more than

1019 states and was not directly analyzable. By us-

ing semantic minimization it was possible to derive a

much smaller model. A timing error was discovered

that could have caused the controller that could have

caused the controller to worsen, rather than dampen,

the vibration experienced during earthquakes.

� Automotive chip to control the safety feature in a car

[28]

A complex automotive chip, FIRE, was veri�ed with

model checking. FIRE was used to implement safety

features in a car. Smallest model necessary for the

veri�cation was automatically extracted from the

RTL description for FIRE. A couple of bugs were

found that demonstrated the usefulness of model

checking.

VI. Concluding remarks

We have reviewed the current status of model check-

ing tools with their veri�cation examples. Right now the

problem is that users have to spend signi�cant time to

come up with an appropriate model for the veri�cation.

Also, users must provide appropriate speci�cation (sets

of properties to be satis�ed by the designs) in either tem-

poral logic or automaton. Because of these, the model

checking tools are not easily used by designers. On the

other hand, once they become to be able to use the tools,

they will be extremely important tools for early detection

of design errors.

Currently signi�cant researcher are conducting research

on making model checking more easy to use. In the near

future, model checking tools can hopefully be essential

part of design process even for regular designers, not just

for veri�cation engineers.

Acknowledgments

The author would like to thank the following people for

providing the information on actual veri�cation e�orts:

Edmund Clarke, Bob Kurshan, Carl Pixley, Thomas

Filkorn, Kurt Ketzer, and Tom Shiple.

References

[1] E. M. Clarke, J. M. Wing, and E. Al, \Formal methods: state of

the art and future directions,," ACM Computing Survey, Vol.

28, No. 4, pp. 626-643, 1996.

[2] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and

D. L. Dill, \Symbolic model checking for sequential circuit ver-

i�cation,," IEEE Trans. Comput. Aided Des. Integr. Circuits

Syst., Vol. 13, No. 4, pp. 401-424, 1994.

[3] K. L. McMillan, \Symbolic model checking: an approach to the

state explosion problem,," Kluwer, 1993.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla, \Automatic

veri�cation of �nite-state concurrent systems using temporal

logic speci�cations,," ACM Trans. Program Lang. Syst., Vol. 8,

No. 2, pp. 244-263, 1986.

[5] J. Queille and J. Sifakis, \Speci�cation and veri�cation of con-

current systems in C�SAR," Proceedings of Fifth ISP, 1982.

[6] R. Gerth, D. Peled, M. Vardi, \Simple on-the-y automatic ver-

i�cation of linear temporal logic," Proceedings of IFIP/WG6.1

Symposium on Protocol Speci�cation, Testing, and Veri�cation,

June, 1995.

[7] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, \Proto-

col veri�cation as a hardware design aid," Int. Conference on

Computer Design, pp. 522-525, 1992.

[8] M. Kaltenbach, \Model checking for UNITY," Tehn. Rep.

TR94-31, University of Texas at Austin, Dec., 1994.

[9] R. Cleaveland, J. Parrow, and B. Ste�en, \The Concurrency

Workbench: a semantics-based tool for the veri�cation of con-

current systems," ACM Trans. Program Lang. Syst., Vol. 15,

No. 1, pp. 36-72, 1993.

[10] T. Filkorn, H. Schneider, A. Scholz, A. Strasser, and P.

Warkentin, \SVE user's guide," Tech. Rep. ZFE BT SE 1-SVE-

1. Siemens AG, Corporate Research and Development, Munich,

Germany.

[11] W. Damm, B. Josko, and R. Schlor, \Speci�cation and vali-

dation methods for programming language and sytems," Chap.

Speci�cation and veri�cation of VHDL-based system-level hard-

ware designs, Oxford University Press, New York, pp. 331-410,

1995.

[12] D. Deharbe and D. Borrione, \Semantics of a veri�cation-

oriented subset of VHDL," Proceedings of CHARME'95, 1995.

[13] R. Alur, T. Henzinger, and P. H. Ho, \Automatic symbolic

veri�cation of embedded systems," IEEE Trans. Softw. Eng.,

Vol. 22, No. 3, pp. 181-201, 1996.

[14] C. Daws and S. Yovine, \Two examples of veri�cation of mul-

tirate timed automata with KRONOS," Proceedings of 1995

IEEE Realtime systems symposium, RTSS'95, 1995.

[15] Z. Har'el and R. P. Kurshan, \Software for analytical develop-

ment of communications protocols," AT&T Bell Lab. Tech. J.

Vol. 69, No. 1, pp. 45-59, 1990.

[16] A. Roscoe, \Model checking CSP," In A classical mind: essays

in honor of C.A.R. Hoare, A. Rosoe, Ed., Prentice-Hall, 1994.

[17] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long,

K. L. McMillan, and L. A. Ness, \Veri�cation of Futurebus+

cache coherence protocol,," Proceedings of CHDL, 1993.

[18] A. J. Hu, K. L. McMillan, and L. A. Ness, \Formal veri�cation

of the HAL S1 system cache coherence protocol," Proceedings

of Int. Conference on Computer Design, 1997.

[19] S. P. Rajan, M. Fujita, K. Yuan, \High-level design and valida-

tion of ATM switch," Proceedings of IEEE International High

Level Design Validation and Test Workshop, HLDVT'97, 1997.

[20] B. Chen, M. Yamazaki, and M. Fujita, \Bug identi�cation of

a real chip design by symbolic model checking," Proceedings of

the European Design Automation Conference, March, 1994.

[21] G. Chehaibar, H. Garavel, L. Mounier, N. Wawbi, and F. Zu-

lian, \Speci�cation and veri�cation of the powerscale bus arbi-

tration protocol: an industrial experiment with LOTOS," Pro-

ceedings of PORTE/PSTV'96, 1996

[22] M. Kaufmann, and C. Pixley, \Intertwined development and

formal veri�cation of a 60x bus model" Proceedings of Int. Con-

ference on Computer Design, pp. 25-30, October, 1997.

[23] J. Calero C. Roman, and G. D. Palma, \A practical design case

using formal veri�cation," Proceedings of Design-SuperCon'97,

1997.

[24] J. Bormann, J. Lohse, M. Payer, and G. Venzel, \Model check-

ing in industrial hardware design," Proceedings of the Design

Automation Conference, June, 1995.

[25] J. Bengtsson, W. Gri�oen, K. Kristo�ersen, K. Larsen, F.

Larsson, P. Pettersson, and W. Yi, \Veri�cation of an audio

protocol with bus collision using Uppaal," Proceedings of Com-

puter Aided Veri�cation '96, 1996. 1992

[26] G. Holzmann, \Practical methods for the formal validation of

SDL speci�cation," Computet. Commun. Special issue on Prac-

tical Uses of FDT's, 1992

[27] W. Elseaidy, R. Cleaveland, and J. Baugh, \Modeling and veri-

fying active structural control systems," Sci. Comput. Program.

1996.

[28] J. Jang, S. Qadeer, M. Kaufmann, and C. Pixley, \Formal

veri�cation of FIRE: a case study," Proceedings of the Design

Automation Conference, pp. 173-177, June, 1997.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

