

Parallelization in Co-Compilation for Configurable Accelerators

A Host / Accelerator Partitioning Compilation Method

J. Becker

Microelectronics Systems Institute
Technische Universitaet Darmstadt (TUD)

D-64283 Darmstadt, Germany
Phone: +49 6151 16-4337

Fax: +49 6151 16-4936
e-mail: becker@mes.tu-darmstadt.de
http://www.microelectronic.e-technik.

tu-darmstadt.de/becker/becker.html

R. Hartenstein, M. Herz, U. Nageldinger

Computer Structures Group, Informatik
University of Kaiserslautern

D-67653 Kaiserslautern, Germany
Fax: +49 631 205 2640

Home fax: +49 7251 14823
hartenst@rhrk.uni-kl.de

http://xputers.informatik.uni-kl.de

standard
transistors,
nand, nor..

memory,
micro-

processor

recon-
figurable

dynamically

customized
for TV, clock,
calculator,

customized
logic (ASIC),

add-on

customized

standardized

1957

1967

1977

1987

1997

year

etc.

procedural

programming

(computing

structural

programming

(computing

in time)

in space)

1st
 D

es
ig

n
C

ris
is

2nd
 D

es
ig

n C
ris

is

(TTL)

outsourcing:
system vendor to
component vendor

crisis symptom:
limitations of the
microprocessor

accelerators

chips

paradigm shift:
hardware to

software migration

paradigm shift:
procedural to

structural migration

application of
transistor and

integrated circuit.

algorithm: fixed

resources: fixed

paradigm:
algorithm: variable

resources: fixed

new paradigm:
algorithm: variable

resources: variable

new paradigm:

Fig. 1: Makimoto’s wave: summarizing the history of paradigm shifts in semiconductor markets.

the future?

Abstract— The paper introduces a novel co-compiler and its
“vertical” parallelization method, including a general model for
co-operating host/accelerator platforms and a new parallelizing
compilation technique derived from it. Small examples are used
for illustration. It explains the exploitation of different levels of
parallelism to achieve optimized speed-ups and hardware re-
source utilization. Section II introduces novel vertical paralleliza-
tion techniques involving parallelism exploitation at four differ-
ent levels (task, loop, statement, and operation level) is explained,
achieved by for configurable accelerators. Finally the results are
illustrated by a simple application example. But first the paper
summarizes the fundamentally new dynamically reconfigurable
hardware platform underlying the co-compilation method.

I. I

NTRODUCTION

Tsugio Makimoto has observed cycles of changing main-
stream focus in semiconductor circuit design and applica-
tion [1] (fig. 1). Makimoto’s model obviously assumes, that

each new wave is triggered by a paradigm shift. The sec-
ond wave has been triggered by shifting from hardwired to
programmable microcontroller. The third wave will be
triggered by shifting to using reconfigurable hardware plat-
forms as a basis of a new computational paradigm.

Makimoto’s third wave takes into account that hardware has
become soft. Emanating from

field-programmable logic

(FPL, also see [2]) and its application the awareness of the
new paradigm of

structural programming

 is growing. Com-
mercially available FPGAs make use of RAM-based recon-
figurability, where functions of circuit blocks and the structure
of their interconnect is determined by bit patterns having been
downloaded into “hidden RAM” inside the circuit. Modern
FPGAs are reconfigurable within seconds or milliseconds,
even partially or incrementally. Such “dynamically reconfig-
urable” circuits may even reconfigure themselves. An active
circuit segment programs an idling other segment. So we have

two programming paradigms: program-
ming in time and in space, distinguishing
two kinds of “software”:

n

sequential software (code
downloaded to RAM)

n

structural software (down-
loaded to hidden RAM)

But Makimoto’s third wave is heavily de-
layed. FPGAs are available, but are main-
ly used for a tinkertoy approach, rather
than for a new paradigm. Is it realistic to
believe, that Makimoto’s third wave will
come? If yes, what is the reason of its de-
lay? Although FPGA integration density
has passed that of microprocessors, the
evolution of dynamically reconfigurable
circuits is approaching a dead end. For a
change new solutions are needed for

some fundamental issues [3]. This paper analyzes the state
of the art and introduces a fundamentally new approach,
which has to cope with:

A. The Hardware Gap

Comparing the Gordon Moore curve of integrated memory
circuits versus that of microprocessors and other logic cir-
cuits (fig. 2) shows an increasing integration density gap, cur-
rently by about two orders of magnitude. We believe, that the
predictions in fig. 2 [4] are more realistic than the more opti-
mistic ones of Semicon’s “road map” [5] (also [6]).

A main reason of this gap is the difference in design style
[7]. The high density of memory circuits mainly relies on
full custom style including wiring by abutment. Micropro-
cessors, however, include major chip areas defined by stan-
dard cell and similar styles based on “classical” placement
and routing methods. This is a main reason of the density
gap, being a design gap. Another indication of increasing
limitations of microprocessors is the rapidly growing usage
of add-on accelerators: both boards and integrated circuits.

Both, standard cell based ASICS and FPGAs ([2], [8]), are usu-
ally highly area-inefficient, because usual placement algo-
rithms use only flat wiring netlist statistics being much less rel-
evant than needed for good optimization results

.

A much better
placement strategy would be based on detailed data dependen-
cy data directly extracted from a high level application specifi-
cation, like in synthesis of systolic arrays ([9],[10],[11]), where
it’s derived directly from a mathematical equation system or a
high level program (“very high level synthesis”).

Due to full custom design style FPGA integration density
(fig. 3) grows very fast (at a rate as high as that of memory
chips) and has already exceeded the of general purpose mi-
croprocessors [12]. But in FPGAs the reconfigurability
overhead is very high (fig. 4). Figures having been pub-
lished indicate 200 physical transistors needed for a logical
transistor ([13],[14]) or, only 1% of chip area is available
for pure application logic [15]. Routing takes up to hours of

computation time and uses only part of the logic elements
— in some cases even only about 50%. So FPGAs would
hardly be the basis of the mainstream paradigm shift to dy-
namically reconfigurable, such as e. g. predicted by Makim-
oto’s wave [1] (also see analysis in [7]).

The reason of the immense FPGA area inefficiency is the
need for configuration memory and the extensive use of re-
configurable routing channels, both being physical reconfig-
urability overhead artifacts.

B. Closing the Hardware Gap

An alternative dynamically reconfigurable platform is the
KressArray [16], being much less overhead-prone and more
area-efficient than FPGAs by about 3 orders of magnitude
(fig. 5). (This high density may be reason to need low power
design methods [18]). Also the KressArray integration densi-
ty is growing a little faster than that of memories (fig. 5). The
high logical area efficiency is obtained by using multiplexers
inside the PEs (processing elements) instead of routing chan-
nels. Fig. 6 illustrates a 4 by 8 KressArray example. Fig.
8 illustrates the mapping (fig. b) of an application (fig. a: a
system of 8 equations) onto this array.

The Kress Array is a generalization of the systolic array — the
most area-efficient and throughput-efficient datapath design

n a hardware gap
n a software gap

n a modeling gap
n an education gap

1960 1970 1980 1990 2000
100

103

106

64M
16M

4M

1k
4k

16k
64k

256k
1M

(×1,6 / y
ear

)

432

109

2: The Gordon Moore curve and microprocessor curve - with design gap [4].

α

2010

1G
4G

16G1012

mem
ory

transistors/chip

year to market

256M

design gap

6804068020

80386

68030

8086

6800080858080×100 / d
eca

de

P-IIP5

micro
proces

sor

4004

8008

(the ÒroadmapÓ
prediction for
microprocessors
is too optimistic)

1990 2000

106

109

2010

1012
transistors/chip

Microprocessor

FPGAs

Xilinx fabricated

Xilinx: “planned”

Xilinx: “perhaps”

mem
ory

of full custom style
FPGA pre-design is

Transistor count
exceeds that of the
microprocessor

Progress: parallel to
Gordon Moore Curve

Fig. 3: FPGA high growth
rate of integration density —
compared to memory and
microprocessor.

year

1990 2000

106

109

2010

1012
transistors/chip

Microprocessor

mem
ory

FPGAs l
ogic

al

DeH
on

Tred
en

nick

FPGAs p
hysic

al

Fig. 4: The hardware
gap of reconfigurability:
physical versus logical
integration density of
FPGAs — compared
to microprocessors
and memory chips.

logical chip area

reconfigurability

uses only 1% of

overhead in FPGAs:

physical chip area
[DeHon] - 1 logical
transistor per 200
physical transistors
[Tredennick]

year
103

style known, using wiring by abutment of extremely opti-
mized full-custom essential cells, and, providing massively
pipelined highly parallel solutions for highly sophisticated ap-
plication algorithms like systems of equations. Systolic array
methodology also includes formal design problem capture
at very high level (e. g. equation systems) and elegant and
concise formal synthesis methods.

The limited applicability of systolic arrays to only a small
class of applications with regular data dependencies (“sys-
tolizable algorithms”) is not due to its physical layout and
organizational principles. The limitations are caused just by
the narrow-minded mathematics-based synthesis methods
(linear projections only), traditionally used for systolic ar-
rays, where reconfigurability would not make sense because
of uniformity of its highly regular results of perfectly regu-
lar interconnect: linear full length pipes only, all PEs (pro-
cessing elements) having exactly the same function, etc.

By discarding the projection method and replacing it by an
optimizer the design space is widened by orders of magni-
tude. Now reconfigurability makes sense. Results are no
longer uniform. Highly flexible hardware is needed. Kres-
sArray consequences are:

As an optimizer Kress uses a mapper called DPSS (data path
synthesis system), being a simulated annealing optimizer [16].
Configuration code is conveyed by wormhole routing [17],
which is supported by KressArray hardware. Because of the
absence of routing channels the structure synthesis is carried
out by a placement-only algorithm. Kress uses a simulated an-
nealing optimizer [16]. No

netlists are used: data dependency
data are fully preserved to obtain optimum placement results.

The mapping problem has been mainly reduced to a place-
ment problem. Only a small residual routing problem goes
beyond nearest neighbor interconnect, which uses a few PEs
also as routing elements. DPSS includes a data scheduler to
organize and optimize data streams for host/array communi-
cation, being a separate algorithm carried out after place-
ment [16]. Instead of hours known from FPGA tools DPSS
needs only a few seconds of computation time. Permitting
alternative solutions by multiple turn-around within minutes
the KressArray tools support experimental very rapid proto-
typing, as well as profiling methods for known from hard-
ware/software co-design (also see section II ff.).

In coarse granularity reconfigurable circuits like Kress-Arrays
“long distance” interconnect is much cheaper and shorter than
known from bit-level abutment arrays ([19] e. g. like in Al-
gotronix FPGAs). The original Kress-Array architecture [16]
has evolved to newer architectures ([7], [20]), also supporting
“soft” implementations of data sequencers and other feedback
datapaths, as well as of systolic arrays (this novel systolic array
synthesis method is a by-product of Kress’ DPSS).

C. Closing the Software Gap

The area of conventional (fine granularity like FPGAs) field-
programmable logic (also see [2]) suffers also from a

soft-
ware gap

 [21]: only a few application development tools are
available, which are difficult to use. Using reconfigurable
platforms currently available commercially is mainly based
on tinkertoy approaches at glue logic level. To much hard-
ware expertise, and even also routing and placement expertise
is needed for structural software implementations. We need
much more powerful application development support envi-
ronments, like compilers accepting application problems ex-
pressed in programming languages, like C or Java. But such
structural software compilers are currently not available.

Previous section “The Hardware Gap” has also shown, that for
shifting from systolic array to the much more flexible Kres-
sArray this hardware gap has been partially closed by a funda-
mentally different synthesis method (from mathematical
methods to simulated annealing), i.e. by closing a software
gap at a lower level. The achievement is the novel method of
combination, since simulated annealing per se is not new.

But, although Kress’ DPSS accepts C language sources it is
mainly a technology mapper. It does not fully bridge the
coarse granularity software gap. New software is also need-
ed for integration into the usually embedded application en-
vironment, where automation of host/accelerator partition-
ing and other support is highly desired [3] (also see fig. 7).

R&D in Custom Computing Machines (CCMs: [22]), such
as FCCMs (FPGA-based CCMs [23] [24]), deals with ar-
chitectures and applications of dynamically reconfigurable
accelerators. In some CCM architectures accelerators sup-
port a host, like e. g. a PC or workstation, so that two sepa-
rate programming paths are included (also see fig. 7),

n

traditional (sequential) software running on the host,

n

structural software running on a
reconfigurable accelerator co-processor.

The conclusion is, that the implementation of such dichoto-
mous configware/software systems is a hardware/software

applications: any — no restrictions
interconnect [7]: programmable at 5 levels

interconnect: no restrictions: globally, locally &
in PE individual

PE functions: locally individual, also routing

pipeline shape: free form: meandering, zig zag,
spiral, feed back, forks, joins,

1990 2000

106

109

2010

1012
transistors/chip

Microprocessor

mem
ory

FPGAs l
ogic

al

DeH
on

Tred
en

nick

Kre
ss

Arra
y

Fig. 5: Closing the hard-
ware gap: KressArray logi-
cal integration density —
compared to microproces-
sors, FPGA and memory.

density is larger

KressArray:

by about 3 orders

logical integration

of magnitude

than that of FPGAs

years
103

co-design problem, so that hardware experts are needed to
“program” such platforms. To close this software gap to pro-
vide easy access by programmers a co-compiler is needed for
automation of such soft-hardware/software co-design.

This new software has to cope a new class of parallelism,
other than in classical parallel computing or glue logic de-
sign. It has to manage vertical and horizontal paralleliza-
tion. Exploiting such parallelism with optimized code trans-
formations in

structural programming

requires new paral-
lelizing compilation techniques.

In traditional parallelizing compilers loop optimization
techniques transform sequential loops (on

process level

) in-
to parallelized loops (also at

process level

). This type of par-
allelization we call “horizontal parallelization”. In contrast,
parallelizing loops in

structural programming

performs a
“vertical” move, one abstraction level down: sequential
loops (

process level

) are transformed into parallelized
loops (

data-path level

) [25]. This parallelization we call
“vertical parallelization”. Subsections D thru F of section II
of this paper introduce a method to bridge the gap.

D. Closing the Modeling Gap

The areas of custom computing machines [26], as well as of
hardware/software co-design [27] are incoherent since being
torn apart by the wide variety of architectures. A general com-
mon model has been missing: the modeling gap. But for custom
computing machines using coarse granularity dynamically re-
configurable datapaths like the KressArray now also a new fun-
damental machine paradigm is available ([28], [29]), This new
paradigm might also be used for hardware/software co-design.

To implement the integration of such

soft ALUs

 like the Kres-
sArray into a CCM, a deterministic data sequencing mecha-
nism is also needed, because the traditional so-called von
Neumann paradigm does not support “soft” datapaths [30],
because of the tight coupling between instruction sequencer
and ALU [31]. As soon as a data path is changed by structural
programming, a “von Neumann” architecture falls apart and
requires a new instruction sequencer.

The solution is the use of data sequencers [32] instead of an in-
struction sequencer. The new computational paradigm thus ob-
tained (published elsewhere [28], [30], also see figure 9) is the
counterpart of the traditional computer paradigm, not support-
ing reconfigurable data paths [20]. This paradigm provides an
innovative basic model for a new direction of parallel comput-
ing ([33], [34], [35]). Details and principles of the new para-
digm have been published elsewhere ([28], [29], [36]). It is
good backbone paradigm to close the software gap for both,
coarse granularity dynamically reconfigurable platforms, as
well as for the development of co-compilation methods.

E. Closing the Education Gap

Current computer science curricula do not create awareness, that
hardware has become soft, nor, that hardware, structural and se-
quential software are alternatives to solve the same problems.
Lack of awareness is blocking the paradigm shift. Intel has giv-
en courses to teach 250,000 people to enable the paradigm shift
from hardwired electronics to microcontroller, what has been
needed to create a market for microprocessors. A new machine
paradigm, as universal as the computer [28], ready for the next
paradigm shift. Section II summarizes new parallelizing compi-
lation techniques to enter this new world of computing.

Principles and applications of dynamically reconfigurable
circuits as a basis of the new paradigm of

structural pro-
gramming

 should be included in academic main courses to
remove the mental barriers blocking the paradigm shift. But
with reconfigurable platforms and related programming tools
available today such a paradigm shift is not likely to happen.
To create innovative expertise and awareness in many appli-
cation areas new equipment of next generation reconfig-
urable platforms should be distributed in academia and re-

Fig. 6: example of
a KressArray

(buses not shown).

rALU

reconÞgurable ALU

reconÞgurable
interconnect

¥¥¥

bus

microprocessor or
microcontroller (host)

dynamically reconÞgurable
accelerator(s)

partitioning co-compiler

Fig. 7: Co-compilation supports host/accelerator application development.

high level programming language source (e. g. : C)

host code
(sequential)

accelerator
conÞguration code

b)

y10 := a0 * (b0 + 2 * c0);
y20 := 5 * d0 + e0 + (f0 + b0);
y30 := g0 * (h0 + 2 * e0);
y40 := (5 * d0 + e0) * f0;

y11 := a1 * (y10 + 2 * c1);
y21 := 5 * y20 + e1 + (f1 + y10);
y31 ;= y30 * (y40 + 2 * e1);
y41 := (5 * y20 + e1) * f1;

2* 2* 5* 2* 2*

+*+

+

+

+ * +

*

*+

5* +

*

a0

d0

y21

+* +

c1c0

b0

f0
y10

e0

temp

temp

a1

y41

y31

g0

e1y20

e1

f0

y30f1

h1

e0

b0 y40
f1

y11

bus

a)

Fig. 8: A KressArray DPSS mapping example: a) application, b) result.

i n te r leaved

smart interface

rALU Array
Kress

Fig. 9: Xputers: basic block diagram reflecting the basic machine principles.

2-D Data Memory

smart interface

(e. g. KressArray)
reconfigurable ALU Array

decision data

address
sequences

(generic)
data streams

(loosely
coupled)

(multiple) Data
Sequencers

search institutes, as well as new application development
support software, such as e. g. introduced by this paper. Since
this new area is immature, many highly significant results are
expected: motivating a new generation of researchers.

F. A new Class of Custom Computing Machines

Not only in desktop or embedded systems the microproces-
sor’s role is changing. More and more silicon area is occu-
pied by application-specific add-on accelerator silicon [7]
(for graphic, multimedia, image (de-) compression etc.),
much more area than for the microprocessor itself (4

th

 phase
in fig. 1). Designing microprocessor-based systems has be-
come a hardware/software co-design problem in general.

That’s why for bridging the software gap we need more than
just compilers accepting high level language sources. We need
a co-compile (i. e. a partitioning compiler) providing code for
both, accelerator and host (fig. 7). The co-compilation envi-
ronment introduced by this paper supports accelerators based
on a novel machine paradigm (the Xputer paradigm [28] [29]
[36]). This is a new class of CCMs, a major step forward be-
yond contemporary CCMs being a tinker toy approach.

G. Reconfigurable vs. traditionally parallel

By run time to compile time migration reconfigurable plat-
forms lead to implementations avoiding the massive run
time switching overhead, known from multi-processor plat-
forms based on traditional forms of parallelism [20] [31].
Such run time to compile time migration is a consequence
of parallelism exploitation at different levels of abstraction,
than known from traditional parallelism at process level. For
more details see following sections.

II. P

ARALLELIZING AND PARTITIONING CO-COMPILATION

Structural software being really worth such a term would re-
quire a source notation like the C language and a compiler
which automatically generates structural code from it. For
such a new class of accelerator hardware platforms a com-
pletely new class of (co-) compilers is needed, which gener-
ate both, sequential and structural code: partitioning com-
pilers, which separate a source into two types of cooperat-
ing code segments ([37], [38]):

n structural software for the accelerator(s), and

n sequential software for the host.

In such an environment parallelizing compilers require two
levels of partitioning:

n host/accelerator (or sequential/structural software)
partitioning for optimizing performance, and

n a structural/sequential partitioning of structural soft-
ware (second level) for optimizing the hardware/
software trade-off of the Xputer resources.

For Xputer-based accelerators the partitioning application de-
velopment framework CoDe-X (co-design for Xputers) is be-
ing implemented, based on two-level hardware/software co-
design strategies [25], [39]. CoDe-X accepts X-C source pro-
grams (Xputer-C, figure 10), which represents a C dialect.
CoDe-X consists of a 1st level partitioner, a GNU C compiler,
and an X-C compiler. The X-C source input is partitioned in a
first level into a part for execution on the host (host tasks, also

permitting dynamic structures and operating system calls)
and a part for execution on the accelerator (Xputer tasks).

Program parts for accelerator execution are expressed in a C
subset, which lacks dynamic structures and restricts the
form of index functions for referencing array variables with-
in loop bodies [25], [40]. At second level such structural
software for configurable accelerators can be partitioned by
the X-C compiler in a sequential part for the data sequenc-
er(s), and a structural part for the rALU array.

By using C extensions within X-C experienced users may hand-
hone their source code by including directly data-procedural
MoPL code (Map-oriented Programming Language [25], [39],
[41]) into the C description of an application. Also less experi-
enced users may use generic MoPL library functions similar to
C function calls to take full advantage of the high acceleration
factors possible by the Xputer paradigm (see figure 10).

The MoPL language [42] provides an elegant and compre-
hensible method to systematically express generic data ad-
dress sequences (“scan patterns”) to run on data sequencers
(fig. 9) [32]. With primitives like data goto, data jumps, data
loops, parallel data loops, nested data loops etc., such scan
patterns are the data-procedural counter part of control flow.
Exercising MoPL use gives a feel of the new computational
world of the paradigm of structural programming.

In subsection A the profiling-driven host/Xputer partitioning is
explained first. Section E sketches the 2nd partitioning level in-
tegration into the CoDe-X framework, which is realized mainly
by the X-C subset compiler [40], and section F describes the
data path synthesis system (DPSS) [16], which performs fur-

Fig. 10: The CoDe-X Co-
Compilation Framework:

a) overview, b) optimizing
 partitioner, c)

accelerator compiler.

paritioner

profiler

X-C compiler

X-C subset

configurationC
Host

Partitioner

X-C

Profiler

sequential

Analyzer / DPSS: Data Path
Synthesis System

C

Host

Section
Compiler

Xputer

 Section
Compiler

Optimizing
Partitioner

X-C subset

MoPL
Compiler

MoPLX-C

operator
library

Function
Library

code
X-C

subset

normal programmer expert user
a)

b)

structural

codecode

code

Xputer
code

co-compiler

extension)
(expert

c)

MoPL
extension

ther transformation of derived structural code into loadable
rALU array configuration code (fig. 10).

A. Profiling-driven Host/Accelerator Partitioning

Exploiting Task Level Parallelism: the profiling-driven first
level partitioning of the dual CoDe-X partitioning process is
responsible for the decision which task should be evaluated
on Xputer-based accelerators and which one on the host.
Generally, four kind of tasks can be determined:

n host tasks (containing dynamic structures,

n Xputer tasks (candidates for Xputer migration),

n MoPL-code segments included in X-C source,

n generic Xputer library function calls.

The host tasks have to be evaluated on the host, since they
cannot be performed on Xputer-based accelerators. This is
due to the lack of an operating system for Xputers for han-
dling dynamic structures like pointers, recursive functions
etc., which can be done more efficiently by the host. The ge-
neric Xputer library functions and its MoPL-code segments
are executed in any case on the accelerator.

All other tasks are Xputer tasks, which are the candidates for
the iterative first level partitioning step determining their final
allocation based on simulated annealing ([25], [31], [39]).
The granularity of Xputer tasks depends on the hardware pa-
rameters of the current accelerator prototype, e.g. the maxi-
mal nesting depth of for-loops to be handled by data sequenc-
ers, the number of available PEs within a KressArray, etc.

For all generated tasks corresponding host and/or Xputer per-
formance values are determined, which are used in each itera-
tion of the first level partitioning process for evaluating the com-
plete application execution time, which represents the optimiz-
ing goal of this process. For details about performance evalua-
tion in CoDe-X see [25], [43]. Since this host/accelerator parti-
tioning methodology should be independent from an Xputer
hardware prototype version, a hardware parameter file controls
the partitioning. Thus, CoDe-X partitioning strategies and algo-
rithms can be used also for future accelerator prototypes. Based
thereon, the first level partitioning method of CoDe-X can be
subdivided into the following major steps:

n a compiler front end performs syntax and semantic analy-
sis of X-C input programs including also the verification of
correct included MoPL-3 code segments as well as of gener-
ic Xputer-library function calls by using a MoPL-3 parser,

n a set of tasks is derived from the resulted program graph G
(see above listed four kind of tasks), whereas the tasks’ gran-
ularity depends on the given Xputer hardware parameters,

n a data flow analysis step identifies inter-task data depen-
dencies, resulting in inter-task communications, e.g. mem-
ory re-mappings. Output of this step is a task graph repre-
senting all task’s control and data dependence relations,

n based on the hyperplane concurrency theorem by Leslie
Lamport [44], a new vertical hyperplane theorem has been
developed [25] for performing optimizing code transforma-
tions to appropriate Xputer tasks. So potential intra-task code
parallelism can be exploited and optimize the accelerator’s
hardware utilization. Correspondingly, the resulting opti-
mized task version(s) are included in an extended task graph,

n an application performance analysis determines the per-
formance values of each task within the extended task graph
related to host and/or accelerator execution [25], [43],

n the final task allocations of all movable tasks will be de-
cided in an iterative partitioning algorithm based on simulat-
ed annealing [25], [31]. The cost function to be minimized
during this algorithm is the complete application execution
time, which is estimated in each iteration by using the tasks’
determined performance values and considering concurrent
task executions, as well as communication-, reconfiguration,
and synchronization-overhead during run time,

n finally, the task scheduling step computes the schedul-
ing positions of all tasks within their execution queues of
the host and Xputer-based accelerator modules, depen-
dent on their data dependencies and critical path location
within the task graph (see below).

Since this paper focuses on parallelism exploitation by
CoDe-X, in the following the necessary code optimization
techniques, as well as the implemented task scheduling step
are explained. For further details see [25], [31], [39], [43].

B. Code Optimization Techniques at 1st level Partitioning

The 1st level partitioner (see optimizing partitioner in
figure 10) of the current CoDe-X version applies five different
code transformations, dependent on the tasks’ internal data
flow situation, as well as on the achievable performance in-
crease and/or the obtained accelerator hardware utilization.
Therefore, to identify parallelizable index space subsets within
nested loops, Lamport’s hyperplane concurrency theorem [44]
has been extended to the vertical hyperplane theorem [25] ac-
cording to the restricted statical X-C subset of Karin Schmidt’s
X-C compiler [40] and its corresponding index space.

In general, Lamport’s hyperplane concurrency theorem [44]
can be applied to fully-nested loops, which satisfy the as-
sumptions (A1) - (A5), whereas generated variables are a
variables on left sides of assignments:

(A1) it contains no I/O statement,

(A2) it contains no transfer of control to any statement
outside the loop,

(A3) it contains no subroutine or function call which can
modify data,

Fig. 11: Examples of critical path locations for different tasks Ti of task graph TG.

T1

T2

T6 T7

T3

T8

T5

T4

T9 T10

T11

T12

40

60

10

10

10

20

20

20

20

30

3040

critical_path(T1) = 40

critical_path(T6) = 150

critical_path(T7) = 150

Task Graph TG

(A4) Any occurrence in the loop body of a generated
variable VAR is of the form VAR (e1, ... , er), where each
ei is an expression not containing any generated variable,

(A5) each occurrence of a generated variable VAR in the
loop body is of the form: VAR (Ij1 + m1, ... , Ijr + mr),
where the mi are integer constants, and j1, ... , jr are r
distinct integers between 1 and n. Moreover, the ji are
the same for any two occurrences of VAR. Thus, if a
generation A(I2 - 1, I1, I4 + 1) appears in the loop body,
then the occurrence A (I2 + 1, I1 + 6, I4) may also
appear, but the occurrence A (I1 + 1, I2 + 6, I4) may not.

But array variables of transformed loop nests would possi-
bly require index functions, which cannot be expressed in
the X-C subset representing structural software. Therefore,
in addition to the hyperplane concurrency theorem, two
more conditions (S1 and S2, see below) have to be fulfilled
for transforming fully-nested X-C subset loops in equivalent
X-C subset loop nests (with allowed index functions):

(S1) each generated variable VAR, which also appears on
the right-hand side of assignment statements, is used
within the complete body of a fully-nested X-C subset
loop only in the form: VAR(Ijr, . . . , Ijs), 1 ≤ jr, js ≤ n,

(S1) a generated variables VAR, which appears within
the body of a fully-nested X-C subset loop in the form
VAR(Ijr+ mjr, . . . , Ijs+ mjs), 1 ≤ jr, js ≤ n, and $k Œ
{jr, . . . , js} with mk ≠ 0, is not allowed to appear again
within this loop body.

Based thereon, the vertical hyperplane theorem is formu-
lized in theorem 3-1 as follows:

Theorem 0-1: Vertical Hyperplane Theorem
Assume that the loop in figure 12 (1) satisfies the assump-
tions (A1) - (A5), as well as (S1), (S2), and that none of the
index variables I1, ... , Ik is a missing variable. Then it can
be rewritten into the form of the loop (Par_for_all: for all
index points Œ Ik is the loop body parallel executable) given
in figure 12 (2). Moreover, the mapping J used for the re-
writing is the identity function and can be choose to be inde-
pendent of the index set I.

Note, that in this vertical hyperplane theorem the linear
mapping ϑ, used for transforming the index space of the X-
C subset loop nest, is a special case: the identity function
(see figure 12). Thus, the index functions of the resulting
loop nest remain unchanged and can be still compiled in ex-
ecutable accelerator code, e.g. in parameters for the data se-
quencer(s) (performing the variable’s access sequences) and
configuration code for the rALU array (implementing the
loop body on data path level).

Thus, Lamport’s hyperplane concurrency theorem is suitable
only for “horizontal parallelization” (process level → process
level), whereas the vertical hyperplane theorem is the basis
for a “vertical parallelization” of structural software, e.g. X-C
subset loops (process level → data-path level). For the proof
of the vertical hyperplane theorem and more details about
this novel code parallelization method see [25].

Based thereon, the following four parallelizing transforma-
tion techniques are applied (see also [45]):

n strip mining: transformation of loop nest with a large in-
dex space into several nested loops with smaller index spac-
es by organizing the computation in the original loop into
parallel executable chunks of approximately equal size,

n loop fusion: transformation of two adjacent loops into
one single loop over the same index space computing the
same, which reduces the number of tasks and optimizes
therefore the hardware utilization,

n loop splitting: reverse transformation of loop fusion,
which rearranges statement instances in such a way that
parts of a loop body are executed for all elements of their
index space before other parts that textually follows.
Loop splitting can partition one large task into multiple
smaller tasks, each to be executed by one accelerator
module without reconfiguration,

n loop interchanging: transformation of a pair of loops
by switching inner and outer loop, without affecting the
outcome of the loop nest.Loop interchanging supports
possible vectorization of the inner loop, and/or parallel-
ization of the outer loop.

The fifth transformation technique implemented by CoDe-
X’ 1st level partitioner doesn’t require a data flow analysis
according to the adapted hyperplane theorem and is called:

n loop unrolling: increasing the step width of single loop
iterations and decreasing therefore the total number of it-
erations, by unrolling the loop body up to a certain factor.
This technique is applied for increasing performance and
optimizing the accelerator’s hardware utilization, e.g. re-
ducing the number of idle DPUs within a KressArray.

Fig. 12: Loop nest transformation à la vertical hyperplane method.

(1) X-C subset loop nest

(2) Parallelized X-C subset loop nest

Conditions to be fulÞlled:
¥ assumptions

¥ extended conditions

hyperplane concurrency

+

loop body

loop body

ϑ: Zn → Zn: ϑ(i1, ..., in) → (i1, ..., in)identity
function

vertically

 (S1) and (S2)

(A1) - (A5) of

theorem

Results:
¥ Par_for_all loop parallelizes

for-loops from level 1 to k
 within above X-C subset
loop nest of level n

¥ transformations applicable:
+ strip mining
+ loop fusion
+ loop splitting

parallelized

¥
¥
¥
¥

¥
¥
¥
¥

{

}

{

}

C. Strip mining

The transformation technique to be explained more detailed
in this paper is strip mining (see figure 11), which exploits
parallelism on task level, given within X-C input programs.
For more examples, application and parallelism exploitation
of the other above introduced code transformation tech-
niques please see [25]. Strip mining makes it possible to
compute these chunks concurrently on different Xputer-
based accelerator modules.

In figure 11 the strip mining application of a computation-
intensive loop nest within an image smoothing algorithm is
shown (see also application example in section III). In our
approach the block size of the chunks depends on hardware
parameters describing the current accelerator prototype (e.g.
the number of available accelerator modules) in order to
achieve an optimized performance/area trade-off.

This technique can be used e.g. often in image processing
applications by dividing an image in stripes of equal sizes in
order to manipulate these stripes concurrently on different
accelerator modules [39], whereas each strip execution rep-
resents one Xputer task.

D. Scheduling and Run Time Reconfiguration(s)

The Xputer Run-time System (XRTS) [46] provides the soft-
ware-interface from the host to Xputer-based accelerators.
The main purpose of this system is controlling and synchro-
nizing applications executed on the accelerator, but addi-
tional features like program debugging are also possible.
The Xputer Run-time System can be started interactively or
inside a host process and has following features:

n XRTS loads Xputer object files (sequential/structural
code for data sequencer(s) / rALU Array)

n XRTS loads application data binary files with optimized
distribution to the memories of different modules to min-
imize inter-module communication

The run time scheduling process (RTS-process) for per-
forming task scheduling, communication/synchronization
and reconfiguration(s) during run time activates the XRTS
and is generated by CoDe-X’ 1st level partitioner after the
final task allocation and scheduling is determined. For de-
tails about the RTS-process and its implementation see [25].

Next, the task scheduling step is described first. This step
determines a deadlock-free total execution order of all allo-
cated tasks. Parallel task execution and reconfiguration are
possible, according to the detected inter-task data depen-
dencies. Therefore, a static resource-constrained list-based
scheduling technique is applied by building a task priority
list for each hardware resource, e.g. the host and its con-
nected accelerator modules. A task is inserted into the prior-
ity list of its allocated hardware resource according to a two-
stage priority function, which is explained below. Since this
scheduling problem is NP-complete, appropriate heuristics
have been selected for finding a good solution.

The list-based scheduling algorithms [47] belong to the
heuristic methods. Since it is a very flexible scheduling
method, it is described in detail in literature. In our case, a
priority function for building a priority list is used to choose
from all candidate tasks the tasks to schedule next. The list-

based scheduling algorithm in our approach tries to mini-
mize total execution time under resource constraints, and is
applied as follows (see also [25]): The heuristic priority
function for building the priority lists is introduced, since it
is an important issue of the proposed scheduling method:

n inter-task data dependencies have the highest priority; for
each hardware resource the list of its allocated tasks is pre-
ordered according to these determined data dependencies,
which results in a partial task execution order, and guaran-
tees consistency of data dependent task executions, and,

for second priority criteria several possibilities exist [25]:

n shortest ASAP first or shortest ALAP first. Tth easiest
and most straightforward way is to order the priority
queues according to each task’s determined ASAP- or
ALAP-synchronization point in relation to the program’s
data flow, e.g. shortest ASAP first or shortest ALAP first,

n an related alternative is to take each task’s mobility
metric as criterion, which can be computed as the differ-
ence of the determined ASAP- and ALAP-synchroniza-
tion points, e.g. shortest mobility first. Thus, tasks with
tight data dependency constraints are scheduled first,
which may handicap the execution of other tasks,

n taking each task’s critical path location within the task
graph as priority criterion, which is probably the most so-
phisticated choice in our case and implemented in the cur-
rent CoDe-X version. The idea here is to schedule tasks
first that have many and/or computation-intensive data de-
pendent tasks to be executed thereafter, because this may
be critical for the total application execution time.

Examples of different critical path locations within a task
graph TG are illustrated in figure 11. The numbers at the
upper right corner of all tasks represent some pre-computed
fictitious task execution time values for host or accelerator
execution, dependent on their allocation.

Fig. 13: Strip mining example of smoothing algorithm.

for (i=0; i<477; i++)
for (j=0; j<357; j++) {
p_new[i][j] = (p[i][j] + p[i+1][j] +

p[i+2][j] + p[i][j+1] +
p[i+1][j+1] + p[i+2][j+1] +
p[i][j+2] + p[i+1][j+2] +
p[i+2][j+2]) / k;

}

parbegin
for (i=0; i<238; i=i++)
for (j=0; j<357; j++) {
p_new[i][j] = (p[i][j] + p[i+1][j] +

p[i+2][j] + p[i][j+1] +
p[i+1][j+1] + p[i+2][j+1] +
p[i][j+2] + p[i+1][j+2] +
p[i+2][j+2]) / k;

}
for (i=239; i<477; i=i++)
for (j=0; j<357; j++) {
p_new[i][j] = (p[i][j] + p[i+1][j] +

p[i+2][j] + p[i][j+1] +
p[i+1][j+1] + p[i+2][j+1] +
p[i][j+2] + p[i+1][j+2] +
p[i+2][j+2]) / k;

}
parend

A
c
c
e
l
e
r
a
t
o
r

M
o
d
u
l
emapped for

execution

A
c
c
e
l
e
r
a
t
o
r

M
o
d
u
l
e

mapped for

execution

A
c
c
e
l
e
r
a
t
o
r

M
o
d
u
l
e

concurrent

Strip
Mining

Based on the assumptions introduced above, the static re-
source-constrained list-based scheduling technique is im-
plemented in the CoDe-X framework in building a task pri-
ority list for each hardware resource (host and Xputer-based
accelerators) according to the following criteria:

n first criteria: data dependencies (consistency),

n second criteria: critical path location (figure 11).

The introduced resource-constrained list-based scheduling
technique generates as output the completed task sequence
incl. the task scheduling information, and is applied to each
iteration of CoDe-X’ profiling-driven first level partitioning
loop after the task allocation step. The static task schedul-
ing information is necessary for estimating the total applica-
tion execution time in each iteration, which is the cost func-
tion to be minimized during the host/accelerator partitioning
process. List-based scheduling algorithms are widely used
in synthesis systems since they are simple to adjust on given
problems with appropriate priority functions, and they differ
not much from optimal ones [48].

E. Resource-driven Partitioning

To Exploit Statement Level Parallelism the X-C compiler
[40] realizes the 2nd level of partitioning and translates accel-
erator migrated X-C subset code segments into code which
can be executed on the Xputer. It divides the restricted (e.g.
index functions) accelerator source code into sequential
code for the data sequencer hardware, and structural code
for the rALU array. The compiler performs a data and con-
trol flow analysis. The Xputer hardware structure itself pro-
vides best parallelism at statement or expression level.

Exploiting statement level parallelism [40] deals with the
fundamental problems similar to those in compiling a pro-
gram for parallel execution on a multiprocessor system.
These problems are: (1) Identify and extract potential paral-
lelism, (2) partition the program into a sequence of maximal
parallelized execution units according to the granularity of
the architecture and the hardware constraints, (3) compute
an efficient allocation scheme for the data in the Xputer data
map, and (4) generate efficient and fast code.

First, a theory is needed for the program partitioning and re-
structuring. Result of this step is the determination of a partial
execution sequence with maximal parallelized execution units.
Secondly the program’s data has to be mapped in a regular way
onto the 2-dimensionally organized Xputer Data Memory, fol-
lowed by a computation of the right address accesses (data se-
quencing) for each variable. Code generation for Xputer-based
accelerators results in structural code for the configuration of
the rALU array, and more sequential code containing the pa-
rameter sets for the multiple data sequencers. For details and
examples about this compilation method see [40].

F. Parallel Data Path Synthesis

After the sequential/structural partitioning step, the structur-
al code derived from the X-C subset compiler has to be
mapped onto the KressArray device. To do this, the DPSS
[16] is used. The input language of the DPSS is ALE-X
(arithmetic & logic expressions for Xputer). It can be edited

manually, or it can be generated from the X-C subset com-
piler in the Xputer software environment [40].

The main steps in the process from the ALE-X input to the
rALU array configuration code are the placement and routing
of the operators and the I/O scheduling. The placement and
routing of the operators (e.g. operations within a loop body) is
performed by a simulated annealing controlled optimizing al-
gorithm, which tries to minimize global data accesses within
the rALU array. The I/O scheduling of corresponding operands
realizes a kind of data scheduling with critical path data sched-
uled first. For details about these steps see [16], [49].

The kind of parallelism to be exploited by DPSS application
mapping onto the rALU array is parallelism by pipelining at
loop and operation level. The DPSS applies loop folding to
inner loops, which performs the pipelining of loop iterations
(loop level parallelism). If the DPSS receives vectorizable
code from the 2nd partitioning level (see [40]), the corre-
sponding statements can be executed in parallel (statement
level parallelism). Additionally, the DPSS can pipeline vec-
torizable statements within the rALU array in executing
them in a PE-pipeline (operation level parallelism), if not
enough PEs are available for executing them in parallel.

Once the scheduling is done, the KressArray code is gener-
ated. The configuration code is generated from the place-
ment information of the PEs and a library with the code for
the operators. The sequence(s) of data words inside the scan
window(s) is determined by the I/O scheduling. For more
details and examples on parallelizing datapath synthesis
with DPSS see [16].

III. ILLUSTRATING PARALLELIZING CO-COMPILATION

To illustrate the parallelism exploitation of the introduced com-
pilation techniques by this paper the already used image
smoothing algorithm is summarized in this section. Although
being of bad quality the smoothing filter algorithm used here
has been selected for its simplicity. A smoothing effect is
shown in figure 14. Given an N x N image p(x,y), the proce-
dure is to generate a smoothed image p_new(x,y), whose gray
level at each point (x,y) is obtained by averaging the gray-level
values of the pixels of p contained in a predefined neighbor-
hood (kernel) of (x,y). In other words, the smoothed image is
obtained by using equation eq. 1:

(eq. 1)

for x,y = 0,1, ..., N-1. S is the set of coordinates of points in
the neighborhood of (but not including) the point (x,y), and
M is a pre-computed normalization factor.

The tasks containing I/O routines for reading input parame-
ters and routines for plotting the image are executed by the

p_new x y,() 1
M
----- p x y,()

x y,() S∈
∑=

Smoothing
Þlter

Fig. 14: Illustration of a smoothing filter operation.

host, because they cannot be executed on the Xputer. The
remaining tasks are potential candidates for mapping onto
the accelerator. For more details about partitioning of such
image processing applications and their complete task struc-
ture please see [25]. One computation-intensive task of
these potential migration candidates has been taken in
section A as example task for applying the introduced com-
pilation techniques for configurable accelerators.

Parallelism at task level was exploited in applying the vertical
hyperplane theorem, and based thereon the code transforma-
tion strip mining, resulting in several tasks to be executed con-
currently on different accelerator modules (see section A). To
the inner loop of each of these tasks vectorization can be ap-
plied (see [40]), resulting in parallelism at statement level (if
enough hardware resources, e.g. PEs within rALU array are
available), or parallelism by pipelining at operation level (if
not enough PEs are available for statement parallelization
[16]). Additionally, loop folding (see section F) can be applied
for achieving parallelism by pipelining at loop level.

The DPSS mapping of one vectorized task (vectorized state-
ment of inner loop, see figure 11) incl. the time scheduling of
corresponding KressArray operators is shown in figure 15.
Hereby, the Σ−operator stands for summing up 3 subsequent
pixel values pij. The derived structure takes the values of the
p2j pixel column as input to the sum operators and emits the
new value for p_new00 from the division operator. The values
of the pixels p0j and p1j need not to be read, as they are stored
inside the sum operators from the previous steps.

The next step of the DPSS is the data scheduling of necessary
operands. The sequencing graph in figure 15 contains also this
scheduling information, whereas 2 operands pij can be brought
over 2 parallel busses to PEs of the rALU array. For demonstra-
tion purposes, we assume a simplified timing behavior for our
filter example, where an I/O operation has a delay of one time
step, an addition or sum operator two time steps and a division
by the smoothing constant three time steps. For more details
and examples of DPSS mappings see [16].

IV. CONCLUSIONS

The KressArray, a novel dynamically reconfigurable technolo-
gy platform has been briefly recalled. It has been recalled, that
the KressArray is the generalization of the systolic array, but
resulting in a general purpose platform. It has been shown,
that for about the next ten years the integration density of
KressArrays grows faster than that of memory. Long term

growth will equal that of memory. The logical area efficiency
of the KressArray goes by at least three orders of magnitude
beyond that of FPGAs. It has been shown, that FPGAs obvi-
ously do not have the potential for a break-through.

Microprocessor and -controller applications often feature by
far more silicon area for add-on accelerators than for the host,
resulting in a design cost explosion. KressArray-based solu-
tions are a highly promising alternative to accelerator imple-
mentation, also for compilation/downloading instead of design,
and, by upgrading thru downloading instead of re-design.

A novel parallelizing co-compiler for coarse grain dynamically
reconfigurable computing machines has been outlined — the
first complete co-compilation method, bridging the software
gap for such target architectures by accepting C language
source programs, and generating both, sequential software
for the host, as well as structural software to (re-) configure
structurally programmable accelerator hardware.

It has been illustrated, how this compilation framework
CoDe-X is the implementation of a two-level partitioning
method, and, how the structural software segments are fur-
ther optimized by the second level sequential/structural
software partitioner, and corresponding loadable structural
code, data schedules and storage schemes are generated.

The paper has contrasted the multiple parallelism levels ex-
ploitation by the novel “vertical parallelization” technique to
traditional “horizontal” parallelization. This new application
development approach, featuring task-, loop-, statement-,
and operation-level parallelism, has been illustrated by a
computation-intensive but simple example. The general mod-
el for the underlying technology platform and its “high level
technology mapping” have been introduced briefly, which
provide instruction level parallelism, being drastically more
area-efficient than using FPGAs and similar platforms.

V. LITERATURE

 [1] D. Manners, T. Makimoto: Living with the Chip; Chapman & Hall, 1995

 [2] annual int’l Workshops on Field-programmable Logic and Applica-
tions (FPL); Lecture Notes on Computer Science, Springer Verlag

 [3] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C.
Ebeling, R. W. Hartenstein, O. Mencer, J. Morris, K. Palem, V.
Prasanna, H. Spaanenburg: Current Issues in Configurable Com-
puting Research; (to appear) IEEE Computer

 [4] R. Hartenstein: Wozu noch Mikrochips?; ITpress Verlag, 1994

 [5] R. Weiss: Going for the gold - ASIC's go mainstream; Computer
Design, Sept. 1996, pp. 79-80.

 [6] R. Weiss: Coping with success, thanks to choices and tools; Com-
puter Design, Sept. 1996, pp. 65-66.

 [7] R. Hartenstein (invited paper): The Microprocessor is no longer
General Purpose: why Future Reconfigurable Platforms will win;
IEEE International Symposium on Innovative Systems in Silicon,
Oct. 1997 (ISIS’97), Austin, Texas, U.S.A.

 [8] annual IEEE Workshops on FPGAs (FPGA)

 [9] Y. S. Kung: VLSI Array Processors; Prentice-Hall 1988

 [10] N. Petkov: Systolische Algorithmen und Arrays; Akademie-Verlag 1989

 [11] N. Petkov: Systolic Parallel Processing (Advances in Parallel Com-
puting, Vol 5); North Holland 1993

 [12] N. N.: Programmable Logic Breakthrough ‘95; Tech. Conf. and
Seminar Series, Xilinx, San José, CA, 1995

1
2
3
4
5
6
7

9
8

10

tim
e

st
ep

s p20 p21
p22

Σ Σ
Σ

+

÷

p_new00

11
12

Fig. 15: Parallel execution of vectorized statements of smoothing-filter example.

p22 p23
p24

Σ Σ
Σ

+

÷

p_new02

p21

p22
p23

Σ
Σ

Σ

+

÷

p_new01

13

 [13] N. Tredennick: The Case for Reconfigurable Computing; Micro-
processor Report, 10,10 (5 Aug 1996),

 [14] N. Tredennick: Technology and Business: Forces Driving Micro-
processor Evolution; Proc. IEEE 83, 12 (Dec 1995)

 [15] A. DeHon: Reconfigurable Architectures for General Purpose
Computing; report no. AITR 1586, MIT AI Lab, 1996

 [16] R. Kress et al.: A Datapath Synthesis System for the Reconfigurable
Datapath Architecture; Asia and South Pacific Design Automation Con-
ference 1995 (ASP-DAC'95), Chiba, Japan, Aug. 29 - Sept. 1, 1995

 [17] R. Kress: A fast reconfigurable ALU for Xputers; Ph. D. disserta-
tion, Kaiserslautern University, 1996

 [18] D. Auvergne et al.: Power and Timing Modeling and Optimization
of Integrated Circuits; ITpress Verlag 1993

 [19] Soon Ong Seo: A High Speed Field-Programmable Gate Array Us-
ing Programmable Minitiles; Master Thesis, Univ. of Toronto, 1994

 [20] R. Hartenstein, J. Becker, M. Herz, U. Nageldinger: A General Ap-
proach in System Design Integrating Reconfigurable Accelerators;
Proc. IEEE 1996 Int’l Conference on Innovative Systems in Silicon
Oct. 9-11,1996 (ISIS’96); Austin, TX, USA

 [21] R. Kress: The Software Gap; Proc. 4th Reconfigurable Architectures
Workshop (RAW-97; in conjunction with 11th Int’l. Parallel Processing
Symposium, IPPS’97), Geneva, Switzerland, April 1-5,1997; in [50]

 [22] J. Becker et al.: Custom Computing Machines vs. Hardware/Software
Co-Design: From a globalized point of view; Proc. Workshop on Field-
programmable Logic and Applications (FPL’96), Darmstadt, 1996

 [23] D. Buell, K. Pocek: Proc. IEEE Int’l Workshop on FPGAs for Cus-
tom Computing Machines 1993 (FCCM'94), Napa, CA, April 1993

 [24] see [23], but also IEEE FCCM-1994, thru -1998

 [25] J. Becker: A Partitioning Compiler for Computers with Xputer-
based Accelerators; Ph. D. diss., Kaiserslautern 1997.

 [26] IEEE annual Conferences on FPGA-based Custom Computing
Machines (FCCM); each April, Napa, CA, U.S.A.

 [27] K. Buchenrieder: Hardware/Software Co-Design; ITpress Verlag, 1994

 [28] R. Hartenstein, A. Hirschbiel, K. Schmidt, M. Weber: A Novel Para-
digm of Parallel Computation and its Use to Implement Simple High
Performance Hardware; InfoJapan'90- Int’l Conf. memorizing the 30th
Anniversary of the Computer Society of Japan, Tokyo, Japan, 1990

 [29] R. Hartenstein, A. Hirschbiel, K. Schmidt, M. Weber: A Novel Par-
adigm of Parallel Computation and its Use to Implement Simple
High Performance Hardware; Future Generation Computer Systems
7 (1991/92), p. 181-198, (North Holland: invited reprint of [28])

 [30] R. Hartenstein, J. Becker, M. Herz, U. Nageldinger: A General Ap-
proach in System Design Integrating Reconfigurable Accelerators;
Proc. IEEE Int’l. Conf. on Innovative Systems in Silicon, Oct. 9-11,
1996 (ISIS’96); Austin, TX, USA,

 [31] R. Hartenstein, J. Becker, M. Herz, R. Kress, U. Nageldinger: A
Parallelizing Programming Environment for Embedded Xputer-
based Accelerators; High Performance Computing Symposium ‘96,
Ottawa, Canada, June 1996

 [32] M. Herz, et al.: A Novel Sequencer Hardware for Application Spe-
cific Computing; Proc. 11th Int'l. Conf. on Application-specific
Systems, Architectures and Processors, (ASAP‘97), Zurich, Swit-
zerland, July 14-16, 1997

 [33] R. Hartenstein (invited paper): High-Performance Computing:
Über Szenen und Krisen; GI/ITG Workshop on Custom Comput-
ing, Schloß Dagstuhl, Germany, June 1996

 [34] R. Hartenstein, (invited paper & opening key note): Custom Comput-
ing Machines - An Overview; Workshop on Design Methodologies for
Microelectronics, Smolenice Castle, Smolenice, Slovakia, Sept. 1995

 [35] R. Kress et al.: Customized Computers: a generalized survey; Proc.
Workshop on Field-programmable Logic and Applications
(FPL’96), Darmstadt, Germany, 1996

 [36] R. Hartenstein, A. Hirschbiel, M. Riedmueller, K. Schmidt, M. We-
ber: A Novel ASIC Design Method based on a Machine Paradigm;
IEEE J-SSC 26,7 (July 1991), p. 975-989

 [37] R. Kress: Structural Programming with Reconfigurable Data Paths;
ITpress Verlag 1998

 [38] J. Becker: Reconfigurable Accelerators; Parallelizing Co-Compila-
tion of Structurally Programmable Devices; ITpress Verlag 1998

 [39] R. Hartenstein, J. Becker: A Two-level Co-Design Framework for
data-driven Xputer-based Accelerators; published in Proc. of 30th

Annual Hawaii Int’l Conf. on System Sciences (HICSS-30), Jan. 7-
10, Wailea, Maui, Hawaii, 1997

 [40] K. Schmidt: A Program Partitioning, Restructuring, and Mapping
Method for Xputers; Ph.D. diss., Kaiserslautern 1994

 [41] A. Ast, J. Becker, R. Hartenstein, R. Kress, H. Reinig, K. Schmidt:
Data-procedural Languages for FPL-based Machines; 4th Int.
Workshop on Field Programmable Logic and Applications.,
FPL’94, Prague, Sept. 7-10, 1994, Springer, 1994

 [42] A. Ast et al.:Data-procedural Languages for FPL-based Machines;
in: R. Hartenstein, M. Servit (editors): Proc. Int’l Workshop on
Field-Programmable Logic and Applications, Prague, Czech Re-
public, Sept. 1994 (FPL-94), Springer Verlag, LNCS-849

 [43] R. Hartenstein, J. Becker, K. Schmidt: Performance Evaluation in
Xputer-based Accelerators; Proc. 4th Reconfigurable Architectures
Workshop (RAW-97; in conjunction with 11th Int’l. Parallel Processing
Symposium, IPPS’97), Geneva, Switzerland, April 1-5,1997; in [50]

 [44] L. Lamport: The Parallel Execution of Do-Loops; Communications
of the ACM, Vol. 17, No. 2, p. 83-93, Febr. 1974

 [45] D. Loveman: Program Improvement by Source-to-Source Trans-
formation; Journal of the Association for Computing Machinery,
Vol. 24,No. 1, pp.121-145, January 1977

 [46] U. Nageldinger: Design and Implementation of a menu-driven Run
Time System for the MoM-3; Master Thesis, Kaiserslautern, 1995

 [47] N. Park, A. Parker: Sehwa: A Software Package for Synthesis of
Pipelines from Behavioral Specifications; IEEE Transactions on
Computer-Aided Design, vol. 7, no. 3, pp. 356-370, March 1988

 [48] G. De Micheli: Synthesis and Optimization of Digital Circuits;
McGraw-Hill, Inc., New York, 1994

 [49] R. Hartenstein, R. Kress: A Scalable, Parallel, and Reconfigurable
Datapath Architecture; Sixth International Symposium on IC Technol-
ogy, Systems & Applications, ISIC’95, Singapore, Sept. 6-8, 1995

 [50] R. Hartenstein, K. Prasanna: Reconfigurable Architectures; High
Performance by Configware; ITpress Verlag 1997

 [51] K. Kennedy: Automatic Translation of Fortran Programs to Vector Form;
Techn. Rep. 476-029-4, Rice University, Houston, TX, Oct. 1980

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

