Embedded program timing analysis based on path clustering and
architecture classification

R. Ernst, W. Ye
Technische Universitat Braunschweig, Institut fir Datenverarbeitungsanlagen
Hans-Sommer-Str. 66
38106 Braunschweig
ernst@ida.ing.tu-bs.de, ye@ida.ing.tu-bs.de

Abstract

Formal Program running time verification is an impor-
tant issue in system design required for performance op-
timization under “first-time-right” design constraints and
for real-time system verification. Simulation based ap-
proaches or simple instruction counting are not appropri-
ate and risky for more complex architectures in particu-
lar with data dependent execution paths. Formal analysis
techniques have suffered from loose timing bounds leading
to significant performance penalties when strictly adhered
to. We present an approach which combines simulation
and formal techniques in a safe way to improve analysis
precision and tighten the timing bounds. Using a set of
processor parameters, it is adaptable to arbitrary processor
architectures. The results show an unprecedented analy-
s18 precision allowing to reduce performance overhead for
provably correct system or interface timing.

1 Introduction

Program running time determination is an important
issue in embedded system design required for performance
optimization. In hard real time systems, program timing
is part of the system functionality and incorrect timing as-
sumptions can have disastrous consequences. Formal run-
ning time analysis is, therefore, highly desirable. Rather
than a single value, formal analysis techniques provide up-
per and/or lower running time bounds. One reason is that
program timing is data dependent, other reasons are im-
perfect program path analysis (in principle a known unde-
cidable problem) and computer architecture impacts which
are very computation expensive to analyze. While data de-
pendent program timing is real and leads to unavoidable
differences in lower and upper timing bounds, inaccura-
cies in path analysis and architectural modeling are arti-
facts leading to wider bounds than can occur in reality.
To assure correct minimum and maximum timing of the
design, bounds must always be conservative, i.e. maxi-
mum bounds must be higher and minimum bounds must
be lower than the real timing bounds. Therefore, inaccu-
rate bounds are expensive because they require to design
systems with higher performance to meet the maximum
time or rate constraints. As an example, if an analysis has
50% inaccuracy, the designer must provide 50% more per-
formance than needed in reality to be able to verify correct
timing using timing analysis. The problem is that 50% in-
accuracy of the analysis is already pretty good in practice
if all effects are taken into account and if more complex
architectures are considered.

0-89791-993-9/97 $10.00 [J 1997 IEEE

We developed a classification of orthogonal architecture
and program properties which covers all practical processor
designs. These properties are used to assign on individual
analysis technique to each class which is highly accurate
for the respective class. While these individual analysis
techniques themselves are taken from practice or from lit-
erature, this paper shows for which classes they can be
applied in a safe way.

In previous work on timing analysis a single general
technique has been applied to the problem. Specific
program or architecture properties have hardly been ex-
ploited, except for few instances such as cache properties.
A detailed discussion of program path characteristics and
target architectures reveals that bounds can be much closer
if the analysis approach uses architectural knowledge. We
also show that program path analysis must consider cer-
tain characteristics, such as pipelining, to be reliable.

In this paper, we consider program path characteristics
as well as architecture properties to maximize the accu-
racy of timing bounds thereby minimizing analysis cost.
The paper is organized as follows. Section 2 focuses on pro-
gram path analysis. [t starts with a problem definition and
a summary of previous work. Then, a path classification is
introduced which isolates input data dependent from inde-
pendent path segments. In section 3 the hardware archi-
tectural impacts on timing analysis are described and an
architecture classification that fits the program path clas-
sification is introduced. In section 4 and 5 we present our
SYMTA approach which is based on these classifications
and its implementation. Finally, in section 6 we summarize
the experimental results for the SYMTA approach.

2 Program Path analysis
2.1 Problems and previous work

For path analysis techniques [10] [7], a program is di-
vided in basic blocks.

Definition 1 A basic block is a program segment which
18 only entered at the first statement and only left at the
last statement [1].

Function calls are considered as single statements. Any
program can be partitioned into disjoint basic blocks. The
program structure is represented on a directed program
flow graph with basic blocks as nodes. Fig. 1 shows an
example.

For each basic block the worst or best case execution
time for each basic block is determined. Then, a longest or

shortest path analysis on the program flow graph is used
to identify lower and upper running time bounds.

This procedure does not yet provide sufficient accuracy.
For acceptable program timing analysis one must identify
feasible paths through a program.

Definition 2 A feasible program path (or trace) is a
path in this flow graph corresponding to a possible sequence
of basic blocks when the program is executed, i.e. leading
from the first to the last basic block of a program.

Definition 3 A program path segment is a segment
of a program flow graph.

This definition implies a hierarchy of program path seg-
ments. However, not all paths in the program flow graph
represent feasible program paths.

Definition 4 A false program path is a path in the
program flow graph which cannot be executed under any
input condition.

Fk>=0 % X
s=k; @2
while (k<10) {
if (OK) =
j++.
else {
j=0;
OK=true;
} x4 B j=0;
k++; ok=true;
}
r=j; 49
.

Figure 1: An example program flow graph

False path identification is mandatory for programs with
loops since loops correspond to cycles in the flow graph
which lead to an infinite number of potential paths. The
approaches by Mok [9], Puschner and Koza [12], Park and
Shaw [11] require iteration bounds for all loops in the pro-
gram which the user must provide by loop annotation. The
approach by Gong and Gajski [4] can identify more false
paths by specifying the branching probabilities.

While making formal analysis feasible, loop bounding
alone is not sufficient for accurate timing analysis. Nested
loops are often interdependent, function timing is invo-
cation dependent and conditions depend on each other.
These dependencies can be rather complex as shown in
the example in fig. 1, taken from [7]. Here, block x5 is
executed at most once which would not be detected by
program flow graph analysis alone. Therefore, as a second
step, the user is asked to annotate false paths. The num-
ber of false paths can be very large. Instead of enumerating
false paths (or, conversely, feasible paths), a language for

user annotation with regular expressions is introduced in
[11]. Still, the number of required path annotations can
be extremely large in practice, as demonstrated with even
small examples in [7].

A major step forward was the introduction of implicit
path enumeration [5], [7]. Here, the user provides linear
(in)equations to define false paths. For fig. 1, a simple
equation would be 725 < £1” meaning that node x5 is
at most executed as often as node x1. To evaluate these
(in)equations, Malik et al. map the upper and lower bound
timing identification to two ILP (integer linear pro-
gramming) optimization problems, the one optimizing
for the shortest program running time, the other one for
the longest running time.

2.2 Execution time model

The standard execution time model is the sum-—of-
basic—blocks model. Let a program consist of N basic
blocks with ¢; execution count of basic block bb; and ¢;
execution time of basic block bb;, ¢+ = 1,2,...,N. Then,
the sum—of—basic—blocks model assumes for the total
program execution time T [7]:

N
T:Zc,‘ X t;
1=0

This model assumes that all executions of a basic block
take identical time. However, data dependent instruc-
tion execution times and superscalar or superpipelined
architectures with overlapped basic block execution have
widely varying basic block execution times, with a substan-
tial effect the overall execution time, as demonstrated in
[13]. For these common architectures, the sum—of—basic—
blocks model cannot provide close bounds, but must be
pessimistic to be correct.

For higher accuracy, basic block sequences and data
flow must be considered. This shall be called the
sequence—of—basic—blocks model.

2.3 Path classification and analysis

Complete sequence—of—basic—blocks analysis re-
quires exhaustive path analysis in the worst case and there-
fore, must be considered infeasible. It is, however possible
to exploit program properties to simplify path analysis.
The first observation is that many embedded system pro-
grams or at least parts of such programs have a single fea-
sible program path. An FIR filter is a simple example and
an FFT is a more complex one. In other words, there is
only one path executed for any input pattern, even though
this path may wrap around many loops, conditional state-
ments and even function calls which are used for program
structuring and compacting. This shall be called single
feasible path (SFP) property. The current analysis ap-
proaches give different lower and upper timing bounds for
SFP programs because they do not distinguish between in-
put data dependent control flow and program structuring
aids. In the best case, they may be accurate but require
much user interaction for SFP programs. In contrast, sim-
ulation would choose the one correct path for any input
pattern without further user interaction. Fig. 2, a part
of an FFT algorithm, shows that the if/else and the in-
ner while loop are very difficult to annotate, although the
program is SFP. Obviously, most practical systems contain
non-SEFP parts. These parts shall have the MFP prop-
erty (multiple feasible paths). Interestingly, a look at

n=nn<<1;
i=1 i=1;
for (i=1; i<n; i+=2) {
iG> {
swap(datal[i],data[j]);
swap(data[i+1],data[j+1]);
1
s
m=n>>1;
while ((m >= 2)&&(j > m)) {

>>=1; (

J
m

Figure 2: An example of the SFP property

embedded system algorithms reveals that at least for data
dominated applications or applications with a signal pro-
cessing component or complex computation, we find long
program path segments with SFP property. So, it seems
worth while to have a closer look at SFP exploitation. If
we would be able to isolate SFP and MFP parts then we
could try to exploit the SFP property in all programs.

To apply different techniques to MFP and SFP parts,
we need some disjoint program partitioning. This is the
first difficulty since the set of program paths is not dis-
joint. The solution is a program partitioning which will be
explained later. For the moment, let us assume that SFP
and MFP program segments are not overlapping.

So, the first parameter for classification refers to the
application program and distinguishes MFP and SFP pro-
gram segments.

2.4 Data flow analysis

Data flow analysis is relevant to program timing when
the data access timing is address dependent. One example
are architectures with data caches, the other important
case are Interleaved memory banks. The SFP property
does not cover this case. However, if for a given (non
false) program path segment,

e all instructions or statements always access the same
data variables and array indices under whatever input
conditions

e and the program path segment is SFP

then the data access sequence is unique for this part of the
program. This shall be the single data access sequence
(SDS) property. Examples for programs with SDS are
filter or FFT algorithms. For all other cases we use the
term multiple data access sequences (MDS)!. So,
data access is the second classification parameter.
2.5 Multitasking and context switch im-
pact

Static scheduling and context switch as in many smaller

or high-performance signal processing systems can be

INote that SDS could be defined such that it would not
require SFP as a necessary condition, but an exploitation of
SDS without SFP would require intricate architecture analysis
which shall be omitted here.

treated with the same path analysis techniques.

Static priority scheduling (e.g. RMS) or dynamic
scheduling (e.g. EDF) are hard to analyze if the process
executions are interdependent. This is the case for cache
architectures. There are, however, efficient approaches to
improve cache performance and predictability, e.g. [8] and
[6], which can directly be applied to our case. Then, the
program path segments must be analyzed to identify po-
tential remaining cache misses due to context switch. This
is not a major limitation but has not been investigated in
this project.

3 Architecture classification and anal-
ysis
Architecture properties are important for basic block
timing as well as path timing. We are interested in ar-
chitecture properties from the analysis perspective. Two
techniques to determine the timing of basic block and path
segments are used.

1. Instruction timing addition (ITA)

The instruction or statement execution times in a ba-
sic block or along a path segment are added. These
execution times are taken from a table. This is a very
computation time efficient approach. It is somewhat
similar to circuit timing analysis. Asin circuit timing
analysis, minimum and maximum instruction execu-
tion times can be considered.

2. Path segment simulation (PSS)
The basic block or path segment is simulated using
a cycle true processor model which can be exactly
modeled hardware timing and architectures [2].

We distinguish several orthogonal architecture properties
relevant this context:

e data dependent instruction execution times

This 1s typical for some microcoded CISC architec-
tures. Examples are multiplication instructions im-
plemented with shift — and — add or blockmove in-
structions. It can also occur in processor families
where some of the processors have not implemented
all instructions but trigger an exception on not im-
plemented instructions to emulate them by software
functions with possibly data dependent execution
times. Data dependent instruction execution times
lead to data dependent basic block execution times.
PSS cannot generally guarantee accurate timing re-
sults, here, even for segments with SFP property. ITA
would be appropriate.

o pipelined architectures
Pipelining makes ITA imprecise. Pipelining is used in
RISC processors. If pipelining is deep enough to allow
overlapping execution of several basic blocks, which is
the case for most of the larger RISC processors, then
even basic block simulation would not help. More pre-
cisely, I'TA must neglect most of the performance gain
due to pipelining because it cannot anticipate pipeline
hazards. In other words, if a user would design a sys-
tem based on ITA data, RISC processor performance
gain through pipelining would be of no or very little
use. PSS precision depends on the length of the sim-
ulated path since, to be conservative, worst and best
case behavior must be assumed at the beginning and
at the end of a path segment. This causes imprecision

which depends on the pipeline length. So, the longer
the paths, the more precise is PSS.

o superscalar architectures

Superscalar architectures can execute several basic
blocks at a time. They apply dynamic instruction
scheduling leading to out-of-order execution and out-
of-order completion and even speculative computa-
tion [3] . Here, ITA is completely inappropriate. PSS
is the correct choice and it’s precision, again, depends
on the path segment length.

e program caches

Program cache behavior depends on the sequence of
instruction fetches. Therefore, PSS is exact for SFP
program path segments (supposed the cache is mod-
eled in simulation). ITA alone does not cover caches,
unless one would count a potential cache miss for ev-
ery access to another memory page. There are, how-
ever, efficient extensions to ITA to regard at least
direct mapped caches [7].

o data caches
Data cache behavior depends on the sequence of data
accesses. Therefore, PSS is precise for path segments
with SDS. ITA has the same problems as for program
caches.

A typical processor can combine several of the properties.

The comparison shows that I'TA alone is only suitable
for very simple architectures. On the other hand, PSS
is a problem for data dependent architecture behavior.
The comparison shows that there is not a single technique
which is best for all cases.

4 The SYMTA approach

SYMTA (Symbolic hybrid timing analysis) is a hybrid
approach combining simulation and formal analysis adapt-
able to different architecture and program properties.

4.1 Hierarchical flow graph clustering

As a first step, the input program is mapped to a hi-
erarchical control flow graph. In this graph, every control
construct, such as :f, case,loop, corresponds to a hierar-
chical node and the leaf cells are the basic blocks of the
program. Each of the control constructs has an associated
condition that decides which of the paths of the construct
is executed. Functions are mapped to extra graphs, but
can be copied to the calling statement for higher analysis
accuracy. This way, an MFP function with an invocation
dependent control flow can become an SFP function. Like
in [7], we assume structured programs without goto’s be-
tween hierarchical nodes, because this simplifies flow anal-
ysis.

4.2 SFP identification

The second step in the approach is the identification of
SFP program parts. More precisely, we want to partition

the flow graph nodes into SFP and MFP nodes.

(1) Since MFP requires that at least one control construct
depends on input data, we can immediately conclude
that every path segment which does not contain an
input data dependent control construct must be SFP.

(2) Now we can apply a simple induction over the levels
of hierarchy:

o Leaf nodes (basic blocks) are SFP by definition

e (1) = A hierarchical node is SFP, if

— it only contains SFP nodes

— and its associated condition is independent
of input data.

This defines a simple recursive clustering approach to flow
graph partitioning. It automatically cuts the program into
SFP and MFP path segments. The FFT in fig. 2 would
completely be clustered in one SFP.

SFP clustering is not sufficient when MFP path seg-
ments are embedded. Fig. 3(a) shows an example. The
example implements a bubble sort algorithm. In this pro-
gram, the two loops are input data independent such that
they always have the same iteration count while the if con-
dition is dependent on the input data a[].

We extend the clustering algorithm to merge adjacent

SFP blocks:

(3) If the associated condition of a hierarchical node de-
pends on input data, this node is MFP. Set cut points
at the beginning and the end of the MFP nodes.

(4) Repeat clustering according to (2) ignoring the MFP
nodes but regarding the cut points.

The new clusters found in (4) shall also be defined as SFP,
since, except for the path fork and join in the embedded
MFP blocks, there is only one path outside these blocks.
To be conservative for correct timing analysis, it is, there-
fore, sufficient to analyze the MFP node separately and
assume worst case behavior at the remaining cut points?.
This is guaranteed by leaving the cut points in (4) inside
the SFP clusters. Then no false SFP paths leading to in-
correct bounds can be introduced in the next steps. So, the
result is still correct, but (4) maximizes SFP path length.
Since for most higher performance architectures as well as
for architectures with caches, analysis precision increases
with path length, this appears to be a good compromise
for high precision without path explosion. The results will
show the high efficiency.

Fig. 3(b) shows the result for the example in fig. 3(a).
Only blocks b5, the condition basic block, and b6, are in
MFP path segments. Fig. 3(c) shows how the remaining
program path segments are clustered to SFP nodes.

What we need for this clustering approach is an algo-
rithm to determine condition (see above), i.e. input data
dependency of conditions. This requires a global data flow
analysis [1] with a transitive closure over all data depen-
dencies of variables in control statements. A global data
flow analysis, however, does typically not cover dependen-
cies over array elements and operation on data. Therefore,
the global data flow analysis is complemented with sym-
bolic simulation of basic blocks [14]°.

In the same step using the same technique, basic block
symbolic simulation also determines the SDS property for
basic blocks in SFP paths. This is a very useful side effect.

2Worst case behavior here means the maximally extended
upper and lower timing bounds for that architecture

3We also tried complete symbolic program analysis but this
was only feasible for very small examples and with unacceptable
memory resources and computation time. Also, in the examples
which we tried it did not provide much additional information
useful to SFP determination.

for (i=0;i<14;i++)
for (j=i+1;j<15;j++)
if (a[i]<a[j])
{

tmp=al[i];

a[i]=aljl;

a[j]=tmp;
}

2]

MFP

tmp=ali];
afi]=a[j];

. u/
Cut Point .

®

(@ (b)
Figure 3: An example program

4.3 Path segment timing - adaptation to
processor architectures

Next problem is the running time determination of the
remaining complex SFP nodes. As seen before this is
strongly architecture dependent. So far, we have presented
PSS and ITA for basic block timing analysis. While PSS
can be directly applied to any SFP segment if a cycle true
simulator is available, this is not the case for I'TA which is
only applicable to basic blocks. On the other hand, ITA
can be useful for simple architectures without pipelining
in particular with data dependent instruction timing.

Again, the solution resorts to the SFP property. The
ITA approach obtains the same timing result on whatever
path a basic block is executed. So, all we need to know is
the number of times ¢¢; a basic block b; is executed. Then
we can multiply this iteration count by the basic block
running time £(b;). Note that it; is unique because of the
SFP property and can therefore be obtained by source code
profiling which does not need a simulator but can run on
a workstation® .

Given the hierarchical SFP node p which appears in
the reduced flow graph, we can simply use the sum—of—
basic—blocks model.

Hp) = Y its x t(by)

So, whenever ITA is accurate it 1s a good choice, since it
is faster than PSS which must use a cycle true simulator.
A famous example for such an architecture is the 8051.
In case of data dependent instruction timing, I'TA pro-
vides a lower and an upper bound for each basic block,
tmin(bi) and tmaz(b;) and, therefore a lower and an upper

4In reality the problem is a bit more complicated since we
have to take care of source code and assembly code basic block
correspondence.

® © 1 ® 0 © &
®

©

for the SFP 1dentification

bound tmin(p) and fmae(p) which is then used for MFP

analysis.

Pipelined and superscalar architectures can accurately
be treated with PSS, as already shown. At the transition
point between SFP nodes, worst case behavior must be
assumed, i.e. no stalling for the lower bound and maximum
time stalling for the upper bound. This overhead time can
be added to SFP blocks or can be collected in extra nodes
as e.g. proposed in [13].

Program cache miss timing can be treated with PSS.
At the transition point between SFP nodes, one can either
assume a default cache miss when accessing another mem-
ory page or use a more precise cache model and analyze
potential misses with higher precision. The difference in
precision between PSS and ITA depends on the number of
page transitions and real cache misses in the SFP nodes,
but generally PSS seems to be the much better choice when
applicable (see above).

Similar arguments hold for data caches if one replaces

the role of SFP nodes by SFP nodes with SDS property.

A major problem are high performance architectures
with data dependent instruction execution times since nei-
ther ITA nor PSS are directly applicable with acceptable
precision. As an example, many RISC processors, such as
the PowerPC (used in embedded systems, e.g., as Motorola
RCPU) implement integer divisions with data dependent
timing. One approach is to analyze basic blocks with data
dependent instructions using I'TA hoping that there are few
such instructions (which is usually true), another one is to
extend the timing bounds by the difference between min-
imum and maximum instruction execution timing. Both
approaches are conservative. One could choose whatever
gives the narrower bounds. This extension would be suffi-
cient, but we currently cannot present results for this spe-
cific feature since it is not yet implemented in the timing

analysis tool.

All other combinations of properties lead to subprob-
lems of the architecture in the previous paragraph. So,
the approach is complete over processor architecture and
program properties, now.

4.4 Global timing analysis using nodes
with bounded timing property

For global timing analysis, each hierarchical SFP node
is merged to a single SFP node with a single running time.
All remaining hierarchical nodes are MFP nodes and all
leaf nodes are SFP with accurate running time. When
leaf node timing has been determined, we apply the ILP
approach presented in [7] which seems to be the most pow-
erful MFP analysis approach known today.

In fig. 3 we let the program simulate on a SPARC
simulator. Thereby we obtain the execution time of the
SFP cluster Teim (SFP) = 2113 cycles. By ILP solution,
for one iteration of the MFP cluster (block 5 and 6) we get
Tip(5,6) = 43 cycles in the worst case and 22 cycles in the
best case. The MFP part is embedded in the SFP cluster
and will be still executed 105 times for both worst and best

case. Therefore, Ti7"*' (M FP) = 105-T{77"'(5,6) = 105x

43 = 6825 cycles in the worst case and Tibl;St(MFP) =
105 - ibl;St(B, 6) = 105 x 22 = 2310 cycles in the best case.

The total number of cycles of the program is given as:

worst case: T' = Teim(SFP) + ;f;”t(MFP) =2113 +
6825 = 8938 cycles.

best case: T = Tuim(SFP) + T (MFP) = 2113 +
2310 = 4423 cycles.

The execution time for the program in fig. 2 will be
simulated entirely without ILP solution because it is com-

pletely SFP.

5 A SYMTA timing analysis tool
We have developed a tool using the SYMTA approach.
Figure 4 shows the flow graph. First step is symbolic pro-

60 gra@

;

data flow analysis &
symbolic execution

SFP-MFP clustering

program PSS,
ITA+profiling

ILP analysis

time boun@

s(er(i n)equ@

Figure 4: The flow graph of SYMTA timing analysis
tool

gram execution and data flow analysis. The analysis re-
sults are used for clustering. Next step is either a PSS of

the whole program or program profiling with subsequent
ITA analysis.

PSS takes user provided input data for simulation which
must be complete to cover all paths in the program. If
not, I'TA must be executed for the remaining basic blocks.
The tool is able to identify basic blocks which are not cov-
ered and, then, switches to ITA for these blocks. This can
only occur for basic blocks embedded in hierarchical MFP
nodes.

We have selected two processors for our experiments: a
complex 32-bit superscalar SPARC RISC processor with 4-
stage pipeline and floating point operations; and a simple
8-bit processor Intel 8051 with no pipelining and no data
dependent operations which is widely used in microcontrol
systems. PSS is used as primary analysis technique for
the SPARC while the 8051 is analyzed using ITA with
profiling. For the SPARC processor, we use the GNU C
compiler and for the 8051 we use a commercial compiler.
Debug information is used to identify the source level basic
blocks in the assembly code.

Now, the following timing information is produced by

the PSS:

o the execution time of the SFP nodes including the
SEP clusters.

e the worst case and best case execution times for data
dependent operations and the execution counts of ba-
sic blocks of the program. They are later used for the
ILP solver.

Final step is the ILP solution on the reduced program flow
graph. The system accepts user provided (in)equations to
improve accuracy for MFP parts.

In the next section we will give some experimental re-

sults using SYMTA.

6 Experimental results

The first table demonstrates the cluster results for a va-
riety of algorithms taken from different sources. We have
evaluated the SFP analysis which is shown in table 1. The
first column provides the total number of nodes in the pro-
gram flow graph. The second column contains the nodes
which are located in SFP parts. The third column contains
the number of nodes in MFP parts. The experimental re-
sults have revealed that many parts of the programs have
SFP property which can be precisely analyzed using sim-
ulation.

Programs Total Nodes Nodes Source
H nodes ‘ in SFP in MFP lines ‘
3D-image 94 | 8 | 90% | 9 10% 164
diesel 65 65 100% 0 0% 160
fft 78 78 100% 0 0% 145
bsort 14 8 57% 6 43% 25
smooth 48 39 1% 9 19% 86
blue 80 53 66% 27 34% 127
check-data 18 0 0% | 18 | 100% 44
whetstone 122 | 122 | 100% 0 0% 251
line 101 19 19% 82 81% 250
key3 100 | 100 | 100% | O % 151

Table 1: Experimental results for the Clustering

Measured bounds(cycles)

Analyzed bounds(cycles)

Analysis time®

Programs | —prpr="T—WoET™ BCET | WOET (sec)
SPARC
3D-image 34908 37848 33874 38037 0.79
diesel 62944 62994 61445 63333 0.84
fft 1498817 1499176 1494650 1499290 135.69
bsort 4423 8938 4423 8938 0.34
smooth 3635651 4846511 3570227 4881135 304.90
blue 3564938 316865761 3345041 346541760 4325.23
check-data 80 431 65 435 0.23
whetstone 2928459 3369459 2880230 3378098 298.19
line 514 1619 381 2035 0.39
8051

fft 26421460 26421460 | 26419338 26488288 0.23
bsort 9347 15045 7804 18167 0.12
smooth 9737378 9737516 9737469 9737522 0.23
key3 1218229 1223314 1164883 1265227 0.39
check-data 68 559 63 588 0.17

* The example programs have been analyzed on the SPARC 10 workstation.
** WCET: The worst case execution time; BOET: The best case evecution time.

Table 2: Experimental results of the example programs in SYMTA

Table 2 shows the timing results and compare them
with the results of an extensive simulation. In order to
evaluate the results of our approach, we have to know
the real bounds of the programs. Therefore, we selected
such programs, where worst case input data can be clearly
identified with some effort. The measured bounds in the
first column are obtained by simulating the program using
these data. The second contains the analyzed bounds of
the example programs running on both processors using
our approach.

7

Conclusion

We have presented an approach to formal timing anal-
ysis and verification with tight timing bounds. The ap-
proach combines several analysis and simulation tech-
niques to best exploit different program and architecture
properties. Data flow analysis and symbolic execution are
used to safely select the analysis technique with the tight-
est bounds for each program segment. The approach was
applied to two very different processor architectures and a
variety of programs showing a very high precision. Other
potential applications of the approach are software test
generation and timing analysis in the high-level synthesis.

References

[1] A.V. Aho, R. Sethi, J.D. Ullman, Compiler
principles, Techniques and Tools, Bell Telephone
Laboratories, Inc. 1987.

T.M. Conte, Ch.E. Gimarc, Fast simulation of
computer architectures, Kluwer Academic
Publishers, 1995.

(2]

M. Johnson, Superscalar Microprocessor Design,
Prentice Hall, Englewood Cliffs, NJ, 1991.

J. Gong, D. D. Gajski, S. Narayan Software
execution from executable specification, The Journal
of Computer & Software Engineering, 2(3),
239-258(1994).

[5]

[11]

[12]

[13]

[14]

Y-T.S Li, S. Malik, A. Wolfe, Performance Analysis
of Embedded Software with Instruction Cache
Modelling, Proc. of [CCAD 1995. IEEE Society
Press, pp. 380-387, 1993.

D.B. Kirk, Predictable Cache Design for Real-Time
Systems. PhD Thesis Department of Electrical and
Computer Engineering Carnegie-Mellon Uni versity,
Nov. 1990.

S. Malik, W. Wolf, A. Wolfe, Y. S. Li, T. Yen,
Performance Analysis of Fmbedded Systems, NATO
ASI, Workshop on Hardware—Software Co-Design,
Tremezzo, Italy, 1995.

F. Mueller, R. Arnold, D. Whalley, Bounding
Worst-Case Instruction Cache Performance, in
Real-Time Systems Symposium. 1994 . Krithi, A.,
Editor. Puerto-Rico: IEEE P ress. p. 172-181.

A. Mok et al. Evaluating Tight Fxecution Time
Bounds of Programs by Annotations, Proc. IEEE
WS Real-Time Operating Systems and Software,
May 89, pp. 74-80.

C. Y. Park, Predicting Deterministic Fxecution
Temes of Real-Time Programs, PhD Thesis,
University of Washington, Seattle 98195, Aug. 1992.

C.Y. Park, A.C. Shaw, Fxperiments with a program
timing tool based on source-level timing schema. Proc
11th IEEE Real-Time system Symp., pp. 72-81,1990

P. Puschner Ch. Koza, Calculating the mazimum
execution time of real-time programs, The Journal of
Real-Time Systems, 1(2), 160-176, Sept. 1989.

W. Ye, R. Ernst, Th. Benner, J. Henkel, Fast Timing
Analysis for Harware—Software Cosynthesis, Proc. of
ICCD 1993. IEEE Society Press, pp. 452-457, 1993
W. Ye, R. Ernst, Worst Case Timing Fstimation
based on Symbolic Execution, COBRA report,
Institute of Computer Engineering, Technical
University Braunschweig, Oct. 1995.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

