
Testability Insertion in Behavioral Descriptions

Frank F. Hsu Elizabeth M. Rudnick Janak H. Patel

Center for Reliable & High-Performance Computing

University of Illinois, Urbana, IL

Abstract

A new synthesis-for-testability approach is proposed

that uses control points at branch conditions to improve

testability. Hard-to-control loops are identi�ed through

analysis of the control-data
ow graph, and control

points are added at the exit conditions of these loops.

Test statements are also inserted if necessary to allow

hard-to-control variables to be directly controllable from

existing primary inputs. Implementation of the pro-

posed techniques using the HLSynth92 and HLSynth95

benchmark circuits results in signi�cant improvements

in fault coverage and reductions in test set size and test

generation time. Furthermore, the impact on area and

performance is minimal, and the ability to do at-speed

testing is not a�ected.

I Introduction

Two di�erent approaches have been used to design
testable circuits. The conventional approach has been
to obtain a gate-level description of a design, either
through synthesis or other means, and then to add
design-for-testability (DFT) hardware. With this ap-
proach, the DFT techniques are applied near the end
of the design cycle. The second approach is to use
synthesis-for-testability (SFT) techniques to improve
circuit testability prior to logic synthesis. Many studies
have been conducted recently on the analysis of testa-
bility and the application of SFT schemes early in the
design cycle [1]{[10]. Use of testability techniques prior
to logic synthesis allows a designer to obtain an eas-
ily testable circuit with reasonable overhead [5]. The
techniques presented in [6]{[8] utilize the information
at the Register Transfer (RT) level to generate easily
testable designs. Dey et al. [9] presented a method to
break data
ow loops by exploiting hardware sharing
to minimize the usage of scan registers. In [10], Lee
et al. presented a data path scheduling algorithm for
easily testable systems. While all of the proposed SFT
techniques have been successful in improving testabil-
ity, most of them rely upon full scan, partial scan, or

�This research was supported in part by the Semiconductor

Research Corporation under contract SRC 95-DP-109, in part

by DARPA under contract DABT63-95-C-0069, and by Hewlett-

Packard under an equipment grant.

built-in-self-test (BIST) to implement the testability
enhancements.

Thus, a majority of the current DFT and SFT ap-
proaches are actually implemented near the end of the
design cycle, when the �nal netlist or the structural
information about the circuit is known. Full scan and
partial scan are the most commonly-used techniques
in practice. Although the scan approach greatly re-
duces the di�culties of sequential circuit test genera-
tion, it also has many disadvantages. Besides the area
overhead required to implement the scan chain and in-
creased time needed for test application, scan-based so-
lutions may have limited capabilities for at-speed test.
Scan tests targeted at stuck-at faults cannot be ap-
plied at the operational speed of the circuit due to
scanning in and out of
ip-
op values. Although two-
pattern tests targeted at delay faults can be used, they
require either a more complex
ip-
op design or a func-
tional justi�cation based path delay test generator [11],
[12], which might not provide as high of fault coverage.
Work done by Maxwell et al. [13] has shown that a
stuck-at fault test set applied at clock-speed is able to
identify more defective chips than a test set having the
same fault coverage but applied at a slower speed.

Two SFT techniques that permit at-speed testing
have been proposed in the past. The nonscan DFT
technique presented in [14] uses RT level structural in-
formation to produce testable data paths. This ap-
proach utilizes multiplexers added at the gate level to
implicitly break feedback loops in the data path and
redirect data to improve controllability and observabil-
ity of logic modules. Similarly, the technique proposed
in [15], [16] provides a means of augmenting data
ow
paths by inserting test statements into the high-level
description prior to logic synthesis. These high-level
approaches improve the data path testability by adding
buses and multiplexers to the circuit; however, high
area overhead for routing these buses result if they are
added indiscriminately.

We propose a new nonscan SFT technique to im-
prove circuit testability while allowing for at-speed ap-
plication of tests. The approach is based on an anal-
ysis of the controllability of branch conditions in the
control-data
ow graph (CDFG). The entry and exit

conditions of some loops in a CDFG are often hard to
control, and hence they may cause di�culties during
automatic test generation. We focus our study on these
hard-to-control (HTC) loops in the system. A con-
trollability measure is �rst employed to identify HTC
loops in a CDFG. The controllability of the exit con-
dition within each of the HTC loops is then enhanced
in order to achieve e�cient fault activation and facili-
tate fault-e�ect propagation during the test generation
process. Improved controllability of the exit condition
allows data paths that already exist in the original sys-
tem to be used. Further analysis of the modi�ed CDFG
may reveal that some variables may be hard to control
for certain data value ranges. In this case, additional
test statements are inserted to allow these variables
to be directly controllable from existing primary in-
puts. Unlike the previous approaches, our approach
performs the behavioral modi�cations at the high level,
such that any implementation of this behavior is inher-
ently testable. The advantage of this method is that it
can use any synthesis tool, since the technique does not
require any modi�cation in the synthesis procedures.

We applied our SFT technique to several high-level
synthesis benchmarks currently available. The exper-
imental results show that when this approach is used,
the circuits generated often require a shorter automatic
test pattern generation (ATPG) time and a smaller
test set to achieve better fault coverage and ATPG
e�ciency. While the testability of the circuit is im-
proved, the implementation of this technique requires
minimal logic overhead and allows test vectors to be
applied at clock-speed. In Section II, we will introduce
our testability measure using the CDFG information
available from the high-level description. Then the
proposed nonscan SFT approach will be discussed in
Section III, followed by experimental results in Section
IV.

II Testability Measure

A typical control-data
ow graph consists of opera-
tion nodes, decision nodes, and transition arcs connect-
ing these nodes. As an example, the high-level descrip-
tion and
ow graph for the Greatest-Common-Divider
(GCD) circuit are shown in Figure 1. The rectangle
processing function contains serial operations that are
to be executed by the circuit. The diamond shape deci-
sion function denotes the decision node with branching
conditions. Our GCD example contains a while loop,
as described in the high-level program. The nodes in
the while loop are connected by bold lines in the cor-
responding control-data
ow graph shown in Figure 1.
Before we study the characteristics of the control-data

ow graph, some terminologies are de�ned as follows.

DEFINITION 1: A node within a control-data

ow graph is the locus of execution for the system if

it is currently being executed by the system.

DEFINITION 2: A decision node within a

control-data
ow graph is K-controllable if the di-

rection of the branch taken can be controlled directly or

indirectly by the input values K clock cycles before the

locus of execution reaches the node, where K is the

smallest such integer.

DEFINITION 3: A decision node within a

control-data
ow graph is non-controllable if the di-

rection of the branch taken cannot be controlled directly

or indirectly by the primary inputs within any prede-

termined number of clock cycles prior to the locus of

execution reaching the node.

In the remaining text, the term locus will mean
locus of execution. During normal operation, the
GCD circuit �rst reads values from the primary in-
puts. Then, depending on the input values, the sys-
tem either sends the result to the primary outputs, or
spends several iterations within the while loop before
the result is ready for output. Notice that while the
locus stays within the loop, the primary inputs are ig-
nored and primary outputs are held constant. Since
each iteration is triggered by a rising edge of the sys-
tem clock, the system becomes uncontrollable and un-
observable for several clock cycles until the locus exits
the while loop. The controllability of a loop-exit node
can be determined using the proposed testability mea-
sure of De�nition 2, where a loop-exit node is the de-
cision node that controls the exit condition of a loop.
In the GCD example shown in Figure 1, decision node
A is 1-controllable, since its decision can be directly
controlled by the primary inputs within one clock cy-
cle before the locus arrives at node A. Decision nodes
B and C are not easily controllable, because the direc-
tion of the branch taken cannot be controlled by the
primary inputs once the locus enters the while loop.
Thus these decision nodes are marked as HTC nodes
in the control
ow.

III Testability Insertion

Once the HTC nodes have been identi�ed using the
above testability measure, the controllability of these
nodes can be augmented. Our SFT technique utilizes
one or two extra test input pins to control the outcome
of the conditional branches, directly guiding the control

ow and indirectly a�ecting the values of the variables,
as shown in Figure 2. We use control points of various
types, depending on the situation. Control points of
type T1 are AND'ed with the original branch condi-
tion to allow the condition to be forced false. Control
points of type T2 are OR'ed with the original branch

process

begin

X := PortX;

Y := PortY;

If (X == 0) or (Y == 0) then

GCD := 0;

else

while (X != Y) loop

X := X - Y;

else

Y := Y - X;

end if;

end loop;

GCD := X;

end if;

PortGCD <= GCD;

end process;

if (X > Y) then

output GCD

Yes

GCD := XGCD := 0 X := X - Y Y := Y - X

X != Y

X > Y

No

Yes

Yes

input Y
input X

(X == 0) or
(Y == 0)

No

No

A

B

C

Figure 1: The high-level description and the control-data
ow graph for circuit GCD.

X = 0

B := X

C := C + 1
B := B / 2

Out <= C

B > 0

C := 0
X := PI

(x=0) --> (x=0) AND C1

Type T2: force true

Type T1: force false

Type T3: complement

(x=0) --> (x=0) OR C2

(B>0) --> (B>0) AND C1

(x=0) --> (x=0) XOR C3

(B>0) --> (B>0) XOR C3

(B>0) --> (B>0) OR C2

Type T4: load

else C := C + 1
if C4 then C := PI

NO

YES

NO

YES

Figure 2: Four types of controllability insertion in the

high-level description.

condition to allow the condition to be forced true. Con-
trol points of type T3 enable the branch condition to
be complemented through an exclusive-OR function.
If hard-to-control variables remain in the circuit after
control points of type T1, T2, or T3 have been used,
a control point of type T4 is added to enable the vari-
ables to be loaded from existing primary inputs. Each
test pin can be connected to various decision nodes
in the
ow graph as long as only one node with aug-
mented controllability is being executed in any clock
cycle. The added controllability not only reduces the
di�culties of sequential circuit test generation, but it
also increases the fault coverage when testing the syn-
thesized circuits. The advantage of controlling the data

path through the control of conditional branches is that
the area overhead is small and is independent of the
width of data registers.

Although the technique can augment any decision
nodes in the CDFG, our presentation of this SFT ap-
proach will concentrate on improving the controllabil-
ity of HTC exit nodes of functional loops. The GCD
circuit contains a single loop. Decision node B of Fig-
ure 1 is chosen to demonstrate the advantages of our
approach. The non-controllable node B causes the sys-
tem to have very low controllability and observability
while the locus stays within the loop. Implementation
of the proposed testability scheme using a control point
C1 of type T1 AND'ed with the original loop-exit
condition (X!=Y) allows the locus to exit the while

loop using the extra control point C1. With the added
controllability, faults activated within the loop can be
quickly propagated to the primary outputs.

Additional improvements in controllability can be
made by adding a control point of type T2. Control
point C1 of type T1 is AND'ed with the original loop-
exit condition (X!=Y); then the result is OR'ed with
control point C2 of type T2. While control point C1
allows the locus of the system to escape the while loop
without completing the computation, control point C2
enables the locus to stay within the loop even after
the result has been calculated. The purpose of C2
is to activate certain faults within the loop when those
faults cannot be activated under normal circumstances.
Thus, by using two extra test signals to guide the direc-
tion of control
ow, the test generator is able to create
vectors that activate more faults.

Another variation of this approach is to use a single
control point, C3 of type T3, that is exclusive-OR'ed
with the original branch condition. The use of control
point C3 allows the locus of the system to escape the
while loop early or remain in the loop longer than it
normally would. This modi�ed approach is especially
useful for reducing the number of test pins when mul-
tiple decision nodes are to be controlled independently.

The proposed techniques can be extended for cas-
caded loops and nested loops. Each loop represents
a closely connected group of states in the total state
space of the system. During normal operation, the
locus of the system enters a state space at a speci�c
entry state and exits at a speci�c termination state.
When the locus stays within one state space, the func-
tions of other state spaces lie idle. Implementation of
the proposed SFT scheme provides extra transitions
from the middle of a state space to the initial point of
the next state space. Thus, the time required to tra-
verse through all the state spaces is reduced because
the extra test signal is able to e�ciently pass the lo-

cus through the loops. As shown in [17], reducing the
distance among states of a sequential circuit leads to
higher fault coverage, and fewer test vectors are re-
quired to test the circuit. Even after the controllabil-
ity of branch conditions has been improved, some vari-
ables may still be hard to control for certain data value
ranges. Direct control of these variables is then neces-
sary to make the circuit testable. Rather than adding
multiple extra input pins, the variables are loaded from
existing primary inputs under control of a single con-
trol point, C4 of type T4. Control point C4 is imple-
mented using one extra test pin or existing test pins of
type T1, T2, or T3.

In summary, the proposed SFT technique utilizes
one or two extra test pins to guide the control
ow
during the testing process. The test pins provide a
method for the locus to escape from a functional loop
or to stay within a loop after the normal function of the
loop is �nished. As a result, the distances among the
states are reduced, increasing the e�ectiveness of au-
tomatic test generation and reducing test application
time. Additional test statements are inserted if neces-
sary to allow HTC variables to be directly controllable
from existing primary inputs.

IV Experimental Results
The proposed SFT techniques were implemented us-

ing the high-level synthesis benchmarks HLSynth92
and HLSynth95. The high-level circuit descriptions are
written in VHDL code, and they were translated into
a synthesizable subset of the VHDL language in or-
der to evaluate their testability. Then the HTC nodes
were identi�ed, and proper modi�cations to the VHDL

code were performed. Finally, gate-level implementa-
tions were obtained for the original circuits and circuits
with enhanced testability using a commercial logic syn-
thesis system. Characteristics of the benchmark cir-
cuits are listed in Table I. The table lists the number
and types of functional loops that exist in each high-
level description, the number of HTC loops, the num-
ber of HTC variables, and the number of conditional
branches. CircuitGCD calculates the greatest common
divisor value of two numbers; Di�eq solves di�erential
equations; Barcode processes signals received from a
barcode reader; and DHRC performs di�erential heat
computation.

Several circuit implementations were synthesized for
each high-level description. Experimental results are
shown in Table II. One implementation uses the origi-
nal description, and another uses the description with
control point C1 of type T1 AND'ed with the branch
condition. For all circuits except Barcode, a third
implementation uses the description with two control
points, C1 of type T1 and C2 of type T2, where C1
is AND'ed with the branch condition and C2 is OR'ed
with the result. For some of the circuits, the orig-
inal description with two control points of type T3
were also used; in this case, the control points were
exclusive-OR'ed with the branch conditions for two de-
cision nodes. In two circuits, one extra control point,
C4 of type T4, was added to allow the HTC variables
to be controlled directly from existing primary inputs.

Table I: Circuit Characteristics
Functional HTC HTC Conditional

Circuit Loops Loops Variables Branches

GCD 1 single 1 0 3

Di�eq 1 single 1 1 1

Barcode 2 nested 2 1 5

DHRC 2 cascaded 2 0 2

Table II: Area and Performance Impact of Proposed SFT

Techniques

Control Test Est. Est. Primi-
Circuit Points Pins Area Delay tives

GCD - 0 1156 98 1354

GCD1 T1 1 1159 98 1398

GCD2 T1,T2 2 1146 98 1386

GCD3 T3(2) 2 1135 99 1370

Di�eq - 0 31,776 93 40,924

Di�eq1 T1 1 30,842 105 39,430

Di�eq2 T1,T2 2 30,843 105 39,438

Barcode - 0 678 47 713

Barcode1 T1 1 684 46 681

Barcode3 T3(2),T4 2 729 44 744

DHRC - 0 4619 98 4950

DHRC1 T1 1 4745 99 4919

DHRC2 T1,T2 2 4775 99 4970
DHRC3 T3(2),T4 2 4562 99 4916

Table III: Deterministic ATPG Results of Proposed SFT Techniques

Control Test Faults Test Fault ATPG Time

Circuit Points Pins Total Detected Untestable Aborted Vectors Cov.(%) E�.(%) (min)

GCD - 0 2145 1557 9 579 202 72.59 73.01 113.6

GCD1 T1 1 2113 1984 8 121 487 93.89 94.27 34.0

GCD2 T1,T2 2 2118 2068 6 44 792 97.64 97.92 17.6

GCD3 T3(2) 2 2254 2212 1 41 795 98.14 98.18 31.1

Di�eq - 0 57,486 57,398 6 82 949 99.85 99.86 45.4

Di�eq1 T1 1 54,814 54,805 0 9 854 99.98 99.98 31.0

Di�eq2 T1,T2 2 54,819 54,807 0 12 754 99.98 99.98 30.9

Barcode - 0 1037 613 16 408 1147 59.11 60.66 70.2

Barcode1 T1 1 999 738 19 242 2250 73.87 75.78 47.0

Barcode3 T3(2),T4 2 1306 1126 2 178 866 86.22 86.37 34.9

DHRC - 0 8217 7272 68 877 488 88.50 89.33 163.6

DHRC1 T1 1 8327 7669 114 544 704 92.10 93.47 116.1

DHRC2 T1,T2 2 8260 7697 146 417 1091 93.18 94.95 93.1

DHRC3 T3(2),T4 2 8371 7792 100 479 1389 93.08 94.28 126.6

For the Barcode circuit, the test pins used to im-
plement the T3 functions were also used for the T4
functions; thus, the number of test pins required was
two. During logic synthesis, the optimization direc-
tive was set to minimize circuit area, and the timing
constraint (clock cycles) was set to a �xed constant
across di�erent variations of a given design. Estimates
of the area and delay were provided by the synthesis
tool. The small variations among the sizes and delays
are caused by the randomness of the circuit optimiza-
tion process. As shown in Table II, the proposed SFT
techniques produce almost no area overhead, while the
circuit delays are kept within a reasonable range of the
target speed.

The testability enhancements were evaluated using
a commercial ATPG system that uses a deterministic,
fault-oriented algorithm. Results are given in Table
III. The faults modeled are stuck-at faults on the in-
puts and outputs of macro-cells, i.e., pin faults. Fault
coverage is the percentage of total faults detected, and
ATPG e�ciency is the percentage of total faults either
detected or identi�ed as untestable. ATPG times are
shown for an HP 9000 J200 workstation with 256 MB
RAM. The proposed technique is able to increase the
fault coverage and fault e�ciency of the synthesized
circuits by increasing the e�ectiveness of the test gener-
ation process. The number of aborted faults is greatly
reduced by the augmented controllability in the cir-
cuits, and the time required to perform automatic test
generation is often reduced.

The progression of testability improvement is shown
by the results for the GCD circuits in Table III. The
testability in general for GCD is very low, and many
faults are aborted during test generation. By adding
a control point of type T1, we are able to increase
the fault coverage from 72.6% to 93.9%, and the time

for test generation drops by 70%. Adding a control
point of type T2 further increases the fault coverage
to 97.6%, and the test generation time drops by 84%.
Adding controllability to the \if (X > Y)" decision
node in addition to the while loop using two test pins
of type T3 results in further improvements in fault cov-
erage. In summary, the testability of GCD is improved
by the proposed scheme, and the impact on circuit area
and performance is negligible.

Unlike GCD, which has low fault coverage initially,
Di�eq is highly testable even without implementing
any testability enhancement scheme. However, the
proposed SFT approach can still be applied to fur-
ther improve its testability. As shown in Table III,
adding the extra control points enables the test gen-
erator to produce smaller test sets that achieve higher
fault coverage and are generated within a shorter pe-
riod of time. Even though the performance is lowered
for the testability-enhanced Di�eq circuits synthesized
in this experiment, the implementation of the proposed
technique requires virtually no area overhead. Thus,
designers may take further optimization steps to im-
prove the performance of the circuit without signi�cant
impact on circuit area.

While GCD and Di�eq each contain a single loop
only, Barcode contains two nested loops. The inner
loop makes at least 255 iterations each time it is in-
voked. With one test pin of type T1 controlling the exit
condition of the inner loop, the system is able to return
the locus to the outer loop prior to completion of the
iterations. As shown in Table III, the fault coverage is
improved from 59% to 74%, and the number of aborted
faults is greatly reduced. Adding a control point of type
T2 allowing the locus to stay in the inner loop after
the 255 iterations would not be helpful, since reach-
ing the end of 255 iterations is already di�cult for a

gate-level ATPG. However, using two control points of
type T3 to control two di�erent decision nodes through
exclusive-OR functions is e�ective. Furthermore, Bar-
code contains an embedded loop counter, and embed-
ded counters are notorious for making any circuit hard
to test at the gate level. Therefore, it may be necessary
to make the loop counter directly controllable to get a
high fault coverage. Thus, a control point of type T4
was added to load the counter directly from existing
primary inputs. The two test pins added as type-T3
control points were also used as type-T4 control points
to minimize the number of test pins. Signi�cant im-
provements in fault coverage resulted, at the cost of an
estimated 7.5% increase in area.

Unlike Barcode, which has two nested loops, DHRC
has two cascaded loops. The �rst loop initializes the
memories in the design; then the second loop performs
the computations. The high-level description of DHRC
is a modi�ed version of the DHRC benchmark, because
the original description is incomplete. The problem size
has been reduced so that logic synthesis can be done
within a reasonable period of time. The design with-
out testability enhancement is fairly testable. Addition
of control points of types T1 and T2 results in fewer
aborted faults, shorter test generation time, and higher
fault coverage for the deterministic ATPG. Use of two
control points of type T3 (which required only one test
pin) combined with a control point of type T4 (to load
the counter directly from existing primary inputs) also
resulted in higher fault coverage.

V Conclusions

We have presented an SFT approach to add con-
trollability to HTC loops in a system. The HTC loops
are identi�ed using a new high-level testability mea-
sure that evaluates the controllability of conditional
branches in a high-level circuit description. Imple-
mentation of this approach does not utilize any scan
design, and modi�cations are done at the high level
only. Logic synthesis can be performed by any high-
level synthesis system. Experimental results on several
high-level synthesis benchmarks show that when this
approach is used, the circuits generated often require
shorter ATPG times to produce test sets that achieve
better fault coverage and fault e�ciency. The test vec-
tors can be applied at clock-speed, and testability is
improved at the cost of one or two extra input pins,
while area and performance overheads are minimal.

References
[1] L. J. Avra and E. J. McCluskey, \High-level synthe-

sis of testable designs: An overview of university sys-

tems," Proc. Test Synthesis Seminar, Int. Test Conf.,

TS Paper 1.1, 1994.

[2] S. Chiu and C. A. Papachristou, \A partial scan cost

estimation method at the system level," Proc. IEEE

Int. Conf. Computer Design, pp. 146{150, 1993.
[3] T. C. Lee, N. K. Jha, and W. H. Wolf, \A condi-

tional resource sharing method for behavioral synthesis

of highly testable data paths," Proc. Int. Test Conf.,

pp. 744{753, 1993.
[4] M. Potkonjak, S. Dey, and R. K. Roy, \Behavioral

synthesis of area-e�cient testable designs using inter-

action between hardware sharing and partial scan,"

IEEE Trans. Computer-Aided Design, vol. 14, no. 9,

pp. 1141{1154, Sept. 1995.
[5] T. Thomas, P. Vishakantantaiah, and J. A. Abraham,

\Impact of behavioral modi�cations for testability,"

Proc. IEEE VLSI Test Symp., pp. 427{432, 1994.
[6] V. Chickermane, J. Lee, and J. H. Patel, \A com-

parative study of design for testability methods using

high-level and gate-level descriptions," Proc. Int. Conf.

Computer-Aided Design, pp. 620{624, 1992.
[7] S. Bhattacharya, F. Brglez, and S. Dey, \Transforma-

tions and resynthesis for testability of RT-level control-

data path speci�cations," IEEE Trans. VLSI Systems,

vol. 1, no. 3, pp. 304{318, Sept. 1993.
[8] H. Harmanani and C. Papachristou, \An improved

method for RTL synthesis with testability tradeo�s,"

Proc. Int. Conf. Computer-Aided Design, pp. 30{35,

1993.
[9] S. Dey, M. Potkonjak, and R. Roy, \Exploiting hard-

ware sharing in high-level synthesis for partial scan op-

timization," Proc. Int. Conf. Computer-Aided Design,

pp. 20{25, 1993.
[10] T. C. Lee, W. H. Wolf, and N. K. Jha, \Behavioral

synthesis for easy testability in data paths scheduling,"

Proc. Int. Conf. Computer-Aided Design, pp. 616{619,

1992.
[11] B. Underwood, W. Law, S. Kang, and H. Konuk,

\Fastpath: A path-delay test generator for standard

scan designs," Proc. Int. Test Conf., pp. 154{163,

1994.
[12] P. Varma, \On path delay testing in a standard

scan environment," Proc. Int. Test Conf., pp. 164{173,

1994.
[13] P. C. Maxwell, R. C. Aitken, V. Johansen, and I. Chi-

ang, \The e�ect of di�erent test sets on quality level

prediction: when is 80% better than 90%?," Proc. Int.

Test Conf., pp. 358{364, 1991.
[14] S. Dey and M. Potkonjak, \Non-scan design-for-

testability of RT-level data paths," Proc. Int. Conf.

Computer-Aided Design, pp. 640{645, 1994.
[15] C.-H. Chen, C. Wu, and D. G. Saab, \BETA: Behav-

ioral testability analysis," Proc. Int. Conf. Computer-

Aided Design, pp. 202{205, 1991.
[16] C. Chen, T. Karnik, and D. G. Saab, \Structural

and behavioral synthesis for testability techniques,"

IEEE Trans. Computer-Aided Design, vol. 13, no. 6,

pp. 777{785, June 1994.
[17] F. Hsu and J. H. Patel, \A distance reduction ap-

proach to design for testability," Proc. IEEE VLSI

Test Symp., pp. 158{163, 1995.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

