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Abstract
In this paper, we propose a statistical power evaluation

framework at the RT-level. We �rst discuss the power
macro-modeling formulation, and then propose a simple
random sampling technique to alleviate the the overhead of
macro-modeling during RTL simulation. Next, we describe
a regression estimator to reduce the error of the macro-
modeling approach. Experimental results indicate that the
execution time of the simple random sampling combined
with power macro-modeling is 50X lower than that of con-
ventional macro-modeling while the percentage error of re-
gression estimation combined with power macro-modeling
is 16X lower than that of conventional macro-modeling.
Hence, we provide the designer with options to either im-
prove the accuracy or the execution time when using power
macro-modeling in the context of RTL simulation.

1 Introduction
Power has become an important issue in chip design.

In a high density circuit, excessive power consumption
may increase the package cost and reduce the reliability.
Portable electronics is another driving force for the low
power design. To achieve low power, the power optimiza-
tion and power estimation tools need to be developed. This
paper focuses on the RT-level power estimation.

Most RT-level power estimation techniques use capac-
itance models for circuit modules and activity pro�les for
data or control signals [8, 4, 6]. Such techniques are com-
monly known as (power) macro-modeling. The simplest
form of the macro-model equation is given by:

Power = 0:5V 2
fCeffS

where Ceff is the e�ective capacitance, S is the mean of
the input switching activity, and f is the clock frequency.
The Power Factor Approximation (PFA) technique [8] uses
an experimentally determined weighting factor, called the
power factor, to model the average power consumed by a
given module over a range of designs.

More sophisticated macro-model equations can be used
to improve the accuracy. Dual Bit Type model, proposed
in [4], exploits the fact that the switching activities of high
order bits depend on the temporal correlation of data while
lower order bits behave as white noise. Thus a module is
completely characterized by its capacitance models in the
MSB and LSB regions. The break-point between the re-
gions is determined based on the applied signal statistics
collected from simulation runs. The Activity-Based Con-
trol (ABC) model [5] is proposed to estimate the power
consumption of random-logic controllers. All of the above
macro-models assume some statistics about the input se-
quence.

�This research was supported in part by DARPA under con-
tract number F336125-95-C1627, SRC under contract number
94-DJ-559, and NSF under contract number MIP-9457392.

The register-transfer level (RTL) power evaluation
problem can be stated as follows: \Given an RTL de-
scription of a datapath-dominated circuit consisting of m
modules and an input vector sequence of length N , calcu-
late the average power consumption of the circuit over the
N cycles". The simulation-based power evaluation process
consists of two steps:

1) Perform RTL simulation and collect the input statis-
tics for all modules in the circuit.

2) Evaluate the power macro-model equation for each
module and sum over all the modules.

Busses, clock trees, control logic, memory, etc. are pro-
cessed separately. Circuit power can be evaluated using
a power co-simulator linked with a standard RTL simula-
tor. The co-simulator is responsible for collecting input
statistics from the output of RTL simulator and produc-
ing the power value. If the co-simulator is invoked by the
RTL simulator at every simulation cycle to collect activity
information, then it is called census macro-modeling (cf.
Figure 1(a)).

There are two problems with the census macro-
modeling:

� Input data statistics must be collected for every simu-
lation cycle. The statistic gathering overhead is how-
ever large and hence slows down the RTL simulation.
For a 16-bit multiplier, the RTL simulation needs only
one instruction, while the statistic gathering requires
tens of cycles. (See Figure 2.)1 Thus the macro-
modeling can slow down the simulation signi�cantly.
This shows that census macro-modeling is costly, es-
pecially when the vector sequence is very long (tens
or hundreds of thousands of vectors).

� Power macro-models are developed by using a train-
ing set of input vectors. The training set satis�es cer-
tain assumptions such as being pseudo-random data,
speech data, etc. Hence the macro-model is biased,
meaning that it produces very good results for the
class of data which behaves similarly to the training
set; otherwise, it produces poor results.

We have developed two novel macro-modeling schemes:

1) Sampler macro-modeling collects and analyzes the in-
put vectors for modules only for a relative small num-
ber of cycles (cf. Figure 1(b)). In this manner, the
overhead of collecting input statistics at every cycle
(which is required by census macro-modeling) is sub-
stantially reduced.

2) Adaptive macro-modeling not only interacts with the
RTL simulator, but also invokes a gate-level simulator

1The overhead changes from one macro-model equation to
another and from one simulator implementation to another.
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Figure 1: Power macro modeling.

on a small number of cycles to improve the estimation
accuracy (cf. Figure 1(c)). In this manner, the \bias"
of the static macro-models (which is due to the choice
of the training set) is reduced or even eliminated.

The sampler macro-modeling uses a simple random
sampling technique to reduce the number of cycles during
which data statistics is collected without loss of much ac-
curacy while adaptive macro-modeling relies on regression
analysis combined with gate-level simulation on a small
number of cycles to \correct" the static macro-model es-
timate and hence can be thought of as a self-adjusting
macro-model. The designer can select either of these tech-
niques to make accuracy versus simulation time trade-o�.

This paper is organized as follows. Section 2 discusses
the general form of macro-model equations. Section 3 gives
background in statistics. Section 4 discusses the basic sim-
ple random sampling technique while Section 5 discusses
the regression estimator. Section 6 provides a statistical
macro-modeling framework for power evaluation at high
level. Experimental results and conclusion are provided in
Sections 7 and 8.

2 Power Macro Model Equations
Power macro-modeling formulations in general consist

of generating circuit capacitance models for some assumed
data statistics. The statistics of input data is gathered dur-
ing RTL simulation of the circuit. Power macro-modeling
problem is de�ned as follows: \Given an input vector se-
quence of size N , an RT-level circuit with m modules, and
assuming N is large enough to capture the typical opera-
tion of the circuit, derive a simple function such that the

*
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c=a*b;
r1 = a^a’;
r2 = b^b’;
for(i=0;i<16;i++){
    sw_a[i] += r1&1;
    sw_b[i] += r2&1;
    r1 = r1 >> 1;
    r2 = r2 >> 1;
}
a’ = a;
b’ = b;

Figure 2: Overhead of macro modeling

function value of the N vector inputs is as close as possible
to the power consumption of the N -vector sequence".

A simple power macro-model equation for the jth mod-
ule in the circuit could be expressed as:

Pj = 0:5V 2
f

njX
i=1

Ci;jSi;j (1)

where f is the clock frequency, nj is the number of inputs of
the jth module, Ci;j and Si;j are the e�ective capacitance
and switching activity for the ith pin of the jth module.
Note that eqn. (1) is only a typical form of macro-model
and is not unique. For example, we can include the spatio-
temporal correlation coe�cients [7] among circuit inputs to
improve the prediction accuracy (this will however increase
the number of variables in the macro-model equation and
thus the evaluation overhead).

Let Pj;k denote the power consumption of the jth mod-
ule at cycle k. We can also write the macro-model equation
in a cycle-by-cycle form as follows:

Pj;k = 0:5V 2
f

njX
i=1

Ci;jSi;j;k (2)

where Si;j;k is the switching activity (0 or 1) for the ith
input of jth module at cycle k. The above equation also il-
lustrates that macro-modeling can be used to estimate the
power consumption at each cycle, this ability is critical
to our statistical approach. We thus distinguish between
one-shot macro-models (such as eqn. (1)) and cycle-
based macro-models (such as eqn. (2)).

The total power based on one-shot or cycle-based
macro-models can be expressed as:

P =

mX
j=1

Pj or Pk =

mX
j=1

Pj;k (3)

where m is the number of modules used in the circuit. To
calculate Si;j , RTL simulation is performed from cycle 1
to cycle N .

Let Ij;k denote the input vector for module j at cycle
k, 0 � k � N . A more general macro-model equation for
module j at cycle k can be expressed as:

Pj;k = Fj(Ij;k�1; Ij;k)

where Fj could be any function of input vector pairs. Let
Ik denote the collection of input vectors, derived from sim-
ulation, for m modules at cycle k, 0 � k � N . Then total
power equation for cycle k is:

Pk = F(Ik�1; Ik)

where F =
Pm

j
Fj. In general, the three basic criteria for

e�ective macro-model design are:



1. The space and time complexity for collection of pa-
rameter values for F and for each evaluation of this
function (should be as small as possible).

2. The accuracy of the macro-model (should be as high
as possible).

3. The error sensitivity of the macro-model to variations
in population behavior (should not be too sensitive).

3 Background
Population refers to the collection of all input vec-

tor pairs f(I1; I2); (I2; I3); : : : ; (IN�1; IN)g collected during
RTL simulation. An individual is any vector pair in the
population. The characteristics are the attributes associ-
ated with each individual. For instance, a characteristic
value may be the macro-modeling power estimate of an in-
dividual (vector pair), or the gate-level power value of the
individual. The characteristic under study is the attribute
we want to estimate over the population, denoted as y.
The auxiliary characteristicswhich is used to help predict
the characteristic under study is denoted by x.

A part or fraction of the population is said to constitute
a sample. The number of individuals included in the sam-
ple is called the sample size. The population mean (total)
refers to the mean (total) value of the characteristic under
study for the whole population. The sample mean refers
to the mean value of some characteristic for a sample The
sampling theory is mainly concerned with ways of obtain-
ing samples to e�ciently estimate the population parame-
ters. Any function of sample values is called a statistic. If
it is used to estimate any population parameter, it is called
an estimator. An estimator is a random variable and may
take di�erent values from one sample to next.

The value that the estimator takes on in any particular
sample is then its estimate. An estimator t is said to be
unbiased estimator for parameter � if E(t) = �, otherwise
it is biased. Thus the bias is given by E(t � �) = B(t).
The mean of squares of error taken from � is called mean-
square error (MSE). Symbolically, MSE(t) = E(t � �)2.
The sampling variance of t is de�ned by V (t) = E[t�E(t)]2
and MSE(t) = E(t� �)2 = V (t) + B(t).

Given two estimators t1 and t2 of a parameter, the es-
timator t1 is said to be more e�cient than t2 if the mean
square error of t1 is less than the mean square error of
t2. The relative e�ciency of t1 as compared to t2 , which
di�ers in respect of sample size or sampling method or
both, may be de�ned as the reciprocal of the ratio of the
sampling variances of the estimator given by both tech-
niques when the same number of individuals are taken.
The total count of all individuals of the population for a
certain characteristic is known as complete enumeration,
also termed census survey. When only a part, called a
sample, is selected from the population and examined, it
is called sample enumeration or sample survey. The sam-
ple survey will be less expensive than a census survey and
the desired information will be obtained in less time.

A con�dence interval is an assertion that the unknown
parameter � lies in a computed range, with speci�ed prob-
ability 1�� (called con�dence level). Let � be the popula-
tion mean of y characteristic and let t be an estimator for
y. Moreover, the distribution of t is assumed to approach
a normal distribution. Take m independent samples and
let the sample means for these m samples be t1; t2; : : : ; tm.

t = 1=m

mX
i=1

ti (4)

S
2 =

1

m� 1

mX
i=1

(ti � t)2 (5)

The con�dence interval of the estimator t can be calculated
by the following procedure [3, p.212]:

1) Determine the critical value t�=2
such that Fm�1(t�=2) = 1 � �=2, where Fm�1(t) is
the t-distribution with degrees of freedom m � 1;

2) Compute the mean t and standard deviation S of the
sample;

3) Compute k = t�=2S=
p
m; and

4) The 100(1��)% con�dence interval for y is given by
(t� k; t+ k).

Con�dence interval estimation is used to estimate the
error range of the estimate with certain con�dence level.
The con�dence interval is also used as the stopping cri-
terion in the well-known Monte Carlo simulation method
[1]. Monte Carlo simulation procedure continues sampling
until the con�dence interval of the estimate is less than
or equal to a user de�ned value. When m is large, the
number of samples needed is inversely proportional to the
variance of estimator t. This also explains why the rela-
tive e�ciency is de�ned as the reciprocal of the ratio of
the sampling variances of two estimators.

We use the following notation:

N number of individuals in the population
y characteristic variate under study
x auxiliary characteristic variate used to

estimate y
� correlation coe�cient of x and y
yi y value of the ith individual in the

population or sample
xi x value of the ith individual in the

population or sample
Y population total of characteristic y
Y population mean of characteristic y

X population mean of characteristic x
S2
y population variance of characteristic y,

S2
y = 1

N

PN

1
(yi � Y )2

s a sample, collection of individuals
n sample size, jsj

4 Simple Random Sampling
The simplest form of random sampling from a �nite

population proceeds in one of the following ways:
1) Individuals are drawn at random, one at a time, and

characteristic of interest is determined for each one.
After each observation and before the next selection,
the individual just drawn is replaced and the popu-
lation is thoroughly mixed. This kind of samples are
called simple random samples with replacement (wr).

2) Individuals are drawn and observed as in 1), but they
are not replaced. This kind of samples are called sim-
ple random samples without replacement (wor).

The SRS (wr) is used through this paper to make equa-
tions easier to read. In practice, the SRS (wor) can be used
instead. When the sample size is much smaller than the
population size, the SRS (wr) is the same as SRS (wor).

The sample mean of a simple random sample can be
used to estimate the population mean, i.e.

ysr =
1

n

nX
i=1

yi (6)
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Figure 3: x-y plot of macro-modeling power vs real delay
power of a 16-bit adder (on 10,000 vectors).

Theorem 4.1 In simple random sampling (wr),the sam-

ple mean ysr is an unbiased estimator of Y and its sam-
pling variance is given by

V (ysr) =
S2
y

n
(7)

Eqn. (7) shows that the MSE of simple random sam-
pling is inversely proportional to the sample size. It im-
plies that if n is large enough, we can get very accurate
estimation of the original population mean.

5 Regression Estimation
The regression estimator applies to situations where the

scatter-plot of y versus x reveals an approximately linear
relation of the form:

y = �+ �x

Let us study the scatter-plot of gate-level power estimate
(y) versus power macro-model equation value (x) for a
16-bit adder (cf. Figure 3). We �nd that the gate-level
power can be roughly predicted by its macro-model equa-
tion value and the relationship can be approximated by a
line. This motivates the use of a regression linear model.

Our purpose is to estimate the population total Y which
can be expressed as:

Y =
X
i2s

yi +
X
i62s

yi

The quantity
P

i2s
yi is known (from the samples). The

unknown quality
P

i62s
will obey the approximate relationX

i62s

yi
:
= (N � n)�+ �

X
i62s

xi

We now use the method of least-square-error on the
available data f(xi; yi)ji 2 sg and �nd estimates (�̂; �̂) for
(�;�) that minimizeX

i2s

(yi � �� �xi)
2

The solution is

�̂ = y � �̂x

�̂ =

P
i2s

(yi � y)(xi � x)P
i2s

(xi � x)2

Hence, we can estimate
P

i62s
yi by the quantity

(N � n)�̂+ �̂
X
i62s

xi

An estimate of the population total is given by

Y =
X
i2s

yi + (N � n)�̂+ �̂
X
i62s

xi

= N(y + �̂(X � x))

This leads to an estimator of the population mean as

ylr = y + b(X � x) (8)

In the above equation we have replaced �̂ with a more
familiar notation b which denotes the sample regression
coe�cient of y on x.

Theorem 5.1 In SRS, the bias of ylr is approximated by

Bias �= �Cov(b; x)
When the sample size is large, usually the Cov(b; x) will

deceases. It becomes zero if the joint distribution of y and
x is a bivariate normal.

Theorem 5.2 In simple random sampling, wr, the large-
sample variance of ylr is given by

V (ylr)
�= 1

n
S
2
y(1� �

2) (9)

where � is the correlation coe�cient of x and y, and the
bias is assumed negligible. 2

Corollary 5.3 For a large sample size, the variance of
regression estimator is less than or equal to the variance
of simple random sampling. The equality holds when �
equals zero. The bias is assumed negligible here.

The relative e�ciency � of regression estimator vs. sim-
ple random sample is:

� =
1

1� �2

The higher the � value (however, �1 � � � 1), the better
the regression estimator.
5.1 A Double Sampling Procedure

To relax the constraint that characteristic x needs to
be calculated for all individuals in the population as re-
quired by the regression estimator, we propose a two-stage
regression estimation procedure. In the �rst stage, a sub-
population s0 of size n0 is randomly selected (wr). In the
second stage, the regression estimator is applied to the �rst
stage sub-population.

The estimator ydblr is de�ned as

ydblr = y(s)� b(s)(x(s)� x(s0));

where subscript dblr denotes double-sampling regression.
The exact properties of this estimator on small samples

are di�cult to study. In general, it is a biased estimator
where the bias arises from the term b(s)(x�x0)). Assuming
that the subpopulation size n0 is large enough, we may
approximate x(s0) by X. Then

E(ydblr) �= Y (10)

V (ydblr) �= (1=n)S2
Y (1� �2) + (1=n0)S2

Y (11)

2All proofs can be found in [2].



Let Cx and Cy denote the costs of measuring the x
and y characteristics of an individual, respectively. Given
a �xed cost C, the optimal allocation problem is to de-
termine optimal values of n and n0 such that V (ydblr) is
minimized. This is the same as minimizing

V (ydblr) + �(n0Cx + nCy �C)

where � is Lagrange multiplier.
The optimal allocation holds when

n
0 =

C

Cx + Cy=r

n = n
0
=r

where r =
q

Cy

Cx(1��2)
. Note that � is not known prior to

simulation, but it can be guessed from past experiences.

6 A Statistical Framework
In the previous section, two estimators were introduced:

random sampler and regression estimator. The sampler
macro-modeling uses simple random sampling to reduce
the macro model co-simulator overhead during RTL sim-
ulation while adaptive macro-modeling uses regression es-
timation to improve the estimation accuracy by invoking
gate-level simulation on a small number of cycles.
6.1 Sampler Power Macro Modeling

To reduce the run time overhead, one can use sim-
ple random sampling to select a sample and evaluate the
macro-model equation for all vector pairs in the sample.
The sample size is determined before simulation. The sam-
pler macro-modeling randomly selects n cycles and marks
those cycles. When the RTL simulator reaches the marked
cycle, the power co-simulator is invoked to collect input
statistics and calculate the macro model equation value.

The con�dence interval of the sample mean can be also
derived. However, to calculate the con�dence interval, we
need more than one sample and the sample mean should be
close to a normal distribution. Based on our experiments,
the sample mean will approach a normal distribution when
the sample size is greater than 30. Instead of selecting only
one sample of large size, we select several samples of size
30. Then the estimate of population mean and the sample
variance are calculated using eqn. (4) and (5).

Once simulation is completed, the con�dence interval
for a given con�dence level is computed (cf. Section 3).
If a �xed-cost approach is taken, the power is reported.
Otherwise if the con�dence interval is not satisfactory, re-
simulation is needed. Note that the cost of re-simulation
is very high. An alternative solution is to cache larger set
of vector pairs than is though to be necessary for achieving
the stopping criterion. If the error level is not satis�ed, the
co-simulation can take samples from cached vector pairs in
stead of re-simulation.
6.2 Adaptive Power Macro Modeling

To reduce the error between the power macro-model
equation and gate-level power value, one can use a regres-
sion estimator. Here characteristic y becomes the gate-
level power value and characteristic x the macro-model
equation estimate (cf. Section 5).

The regression estimator can achieve very high e�-
ciency if the correlation between the gate-level power value
and the macro-model equation estimate is high. The lower
the correlation between the two, the slower the conver-
gence rate of the regression sampler. This also points out
that the static macro-model equation needs to be designed
and trained with great caution. In addition, note that a

non-linear regression model can provide better results for
certain types of circuits (for example, multipliers).

A double-sampling regression estimator can be built on
top of sampler macro-modeling. In the double-sampling
regression estimation scheme, n0 cycles are selected and
marked as `x' and n cycles randomly selected from the
n0 cycles and marked as `y'. Every time the co-simulator
encounters cycles marked `x', the macro-modeling power
is evaluated. On the other hand, every time the co-
simulation enters cycles marked `y' then the vector pairs
are recorded for later gate-level power simulation. After
the RTL simulation is completed, the gate-level simula-
tion is performed on the set of recorded vector pairs. Then,
the regression estimation is performed. Similar to sampler
macro-modeling, the con�dence level and interval can be
derived. Note that for the single-stage regression estima-
tor, the power macro-model equation needs to be evaluated
for all N , which is not e�cient.

We can also use an adaptive macro-modeling approach
which would rely on multi-variate regression analysis. The
variables of regression equation, for example, correspond
to input activity and inter-bit correlations. The accuracy
of the single-variate regression tends to be lower because
of the simple form of the correction to the static macro-
model, while its runtime e�ciency is higher since it re-
quires smaller number of gate-level simulations and has
lower cost associated with the regression analysis itself.

Adaptive macro-models can provide the designers with
information (i.e. the con�dence level) about the accuracy
of predicted value for a given input sequence which is de-
sirable. Adaptive macro-models also guarantee to elim-
inate the estimator bias given enough gate-level simula-
tions, hence, they tend to be more accurate.

7 Experimental Results
16-bit bus-width is assumed in all of our benchmarks.

The macro model we used for the 16-bit adder (subtrac-
tor) follows eqn. (1). For the multiplier which has a
lot of glitches, we used a multi-variable function to par-
tially account for the signal correlations. All of our re-
sults are based on input vector length of 10,000. Full
gate-level simulation and census macro-modeling were per-
formed on each circuit for the sake of comparison. The
benchmarks shown in Tables 1, 2, and 3 are Di�erential
Equation Solver, Elliptic Filter, Chebyshev Filter, IIR Fil-
ter, Discrete Cosine Transform, Robotic Arm Controller,
and Adaptive Transversal Filter that are commonly used in
high-level synthesis benchmarks. Scheduling and resource
binding were performed on these data 
ow graphs. Con�-
dence level of 95% and error level of 5% were used in Tables
1 and 3. 1,000 runs were performed on each benchmark.
All results were generated on a Pentium-120 machine.

Figure 4 shows the plot of error percentage of sampler
macro-model power value with respect to census macro-
model power value as a function of sample size in the sam-
pler macro-modeling. It can be seen that the error of a
sample size > 100 is less than 2%.

Table 1 compares the accuracy of the sampler macro-
modeling with that of census macro-modeling. The `max',
`min' and `avg' columns show the maximum, minimum
and average numbers of required samples that satis�es the
stopping criterion. The `err > 5%' column shows the per-
centage of number of experiment runs that violate the er-
ror level. The `avg err(%)' column shows the average per-
centage error of the power estimate with respect to the
census macro-modeling. The `speedup' is the simulation
time ratio of census macro-modeling over sampler macro-
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Table 1: Sampler macro-modeling e�ciency (error) com-
pared to census macro modeling (sampe size=30)

bench- max, avg err %avg % speed
mark min >5% err bias up

Di�Eq 8, 2 3.7 0.1 1.2 -0.04 47.9
Ellip. 6, 2 3.0 0.0 0.8 -0.01 53.2
Cheby. 6, 2 2.9 0.9 0.7 -0.02 53.6
IIR 5, 2 2.8 0.0 0.6 -0.03 54.8
FDCT 8, 2 3.6 0.2 1.2 -0.06 48.0
Robot 5, 2 2.8 0.0 0.7 -0.05 54.8
ATF 8, 2 3.7 0.2 1.2 -0.07 47.8

average 7, 2 3.2 0.2 0.9 -0.03 51.4

modeling. The average speedup of 50X was observed.
Table 2 shows the error percentage of census macro-

modeling w.r.t. gate-level simulation power. Results show
that the error of macro model is sensitive to the popula-
tion, and hence is not very reliable.

In Table 3, the error percentage (with respect to gate-
level simulation) and the run time of adaptive macro-
modeling with two-stage design is reported. The sub-
population size was set to 1000 and the sample size was
set to 30. The results show that the bias is negligible as
expected. Comparing the mean error of adaptive macro-
modeling with census macro-modeling, the accuracy of the
former is improved by a factor of 16X.

8 Conclusion
In this paper, we presented a statistical framework for

RTL power evaluation. Two new power macro-modeling
techniques are proposed: the sampler macro-modeling
based on the sampling theory and the adaptive macro-
modeling based on the regression analysis. Experimen-
tal results demonstrated that, compared to census macro-
modeling, sampler macro-modeling reduces the simulation
time by a factor of 50X while the adaptive macro-modeling
lowers the estimation error by a factor of 16X.

There are two situations that may be encountered:
Table 2: Census macro-modeling error compared to gate-
level simulation

benchmark Di�Eq Ellip. Cheby. IIR

error(%) 23.1 26.9 30.3 61.8

benchmark FDCT Robot ATF average

error(%) 1.3 64.4 2.1 30.0

Table 3: Adaptive macro-modeling compared gate-level
simulation (sampe size=30)

bench- max, avg err %avg % run
mark min >5% err bias time

Di�Eq 20, 2 4.2 5.2 1.9 0.18 15.4s
Ellip. 13, 2 3.6 2.2 1.6 0.09 11.1s
Cheby. 11, 2 3.5 0.9 1.4 0.04 11.0s
IIR 15, 2 4.1 2.7 1.7 0.02 13.0s
FDCT 15, 2 3.8 3.4 1.8 0.18 38.8s
Robot 16, 2 3.7 3.8 1.8 0.01 40.4s
ATF 24, 2 7.2 8.6 2.2 0.12 22.2s

average 16, 2 4.3 3.8 1.8 0.09 21.7s

1) The macro-model equation estimate is very accu-
rate (with respect to the gate-level power estimate),
but the overhead associated with collecting the input
statistics and evaluating the macro-model equation is
high. The sampler macro-modeling must be used.

2) The macro-model equation estimate is not accurate,
yet its computational overhead is low. The adaptive
macro-modeling must be used here.

There is obviously a trade-o� between the prediction accu-
racy and evaluation cost of the static macro-model. This
paper suggests that one can use a low-cost static macro-
model and then reduce the error by regression sampling or
can use a high-cost static macro-model and then improve
the e�ciency by simple random sampling.
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