
This paper presents a very efficient Boolean logic optimi-
zation method. The boolean optimization is achieved by add-
ing and removing redundant wires in a circuit. Our algorithm
applies the reasoning of Automatic Test Pattern Generation
(ATPG) which can detect redundancy efficiently. During the
ATPG process, mandatory assignments are assignments
which must be satisfied. Our algorithm analyzes different
characteristics of mandatory assignments during the ATPG
process. New theoretical results based on the analysis are
presented which lead to significant performance improve-
ments. The fast run time and the excellent scaling to large
problems make our Boolean optimization method practical
for industrial applications. Experiments show that the optimi-
zation results are comparable to those of [11] while the run
time is two orders of magnitude faster (average 126x speed
up). Furthermore, we report optimization results for several
large examples, which were previously thought to be too large
to be handled by Boolean optimization methods.

1   Introduction

Logic synthesis is a step that realizes a set of logic
expressions using cells from a technology library. Usually, the
objectives in logic synthesis are to optimize area, delay,
power and testability. Among logic optimization algorithms,
Automatic Test Pattern Generation (ATPG) based optimiza-
tions [2] [3] [4] [5] [11] [15] [16] [17] are becoming very
popular because of the following advantages. First of all,
ATPG based algorithms require little memory to process large
circuits. Although the running time of a ATPG algorithm may
be exponential, the memory requirement is linear in the size
of the circuit. The amount of effort spent in running fault tests
can be accurately controlled. ATPG based algorithms have
good failure characteristics; when the algorithm aborts, this
does not imply that the entire algorithm needs to be aborted,
as is the case with most BDD based algorithms. In addition,
ATPG optimizations can implicitly use circuit observability
and controllability don’t cares without the need to explicitly
calculate them.

One of ATPG’s strengths is the ability to detect effi-
ciently redundant wires in a circuit. As a result, most ATPG
based algorithms achieve optimization by adding and remov-
ing redundant connections in circuits. For example, [11] adds

one redundant wire and then removes redundant wires caused
by the previous change. Area optimization can be achieved by
adding one and removing many wires in a circuit. Another
ATPG based algorithm [3] targets some particular wire. The
algorithm tries to remove a target wire by adding to the circuit
another set of wires. Removing some critical wire can be very
useful for many applications. For example, one may remove a
wire in the critical paths to improve delay. [6] removes a wire
to improve partitioning. In FPGA, [3] removes unroutable
wires after routing. It adds routable wires to correct an
unroutable FPGA circuit.

The motivation of this paper is to establish a theoretical
background for the single wire addition and removal
[3][4][5]. We investigate some necessary conditions for a
wire to be redundant. Using these conditions, we are able to
improve the results and speed up the run time of many ATPG
based algorithms. Two essential issues are addressed in this
paper:
1. Which wires can be removed after adding a new redun-

dant wire?
2. Which new redundant wire, when added, will make the

existing target wire redundant?
We study the characteristics of mandatory assignments

[1], which must be satisfied for every test vector. We discuss
two very important concepts, “forced” and “observability”
mandatory assignments, which are used to distinguish among
mandatory assignments. These two attributes of mandatory
assignments can be computed along with the calculation of
mandatory assignments. Very little computational overhead is
required to determine these two additional attributes. Based
on these, we derive theorems that improve the results of
ATPG based optimizations.

2   An example

In this section, we illustrate some basic concepts while
walking through an example from [11]. This paper first iden-
tifies that there is a redundant wiree->m (dotted in the FIG-
URE 1b) which can be added to the circuit. Adding this wire
e->m causes two originally irredundant wirese->g and a->f
(dotted) to become redundant. To detect the redundancy ofa-
>f and e->g, [11] applies redundancy removal to the entire
circuit. The drawbacks of this technique are two fold. First,
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running the redundancy removal on the entire circuit requires
enormous CPU time for big circuits. In addition, there is no
hint of which wire should be added since no information is
available.

In this paper, our first set of theorems provide necessary
conditions for wires to be redundant after adding another
wire. For example, in FIGURE 1b, suppose we consider to
add a redundant wire e->m. With proper analysis of manda-
tory assignments when detecting the redundancy of e->m,
we can quickly determine that {h->z, d->z, g->h, f->h, c->g,
b->e, b->f} cannot be redundant. This leaves only {a->f, a-
>e, e->g} as possible candidates for redundancy checking if
e->m is added. Finally, we need only to perform the redun-
dancy test on these three wires. The redundancy information

about these wires not only can reduce the run time but also
can direct the optimization to choose a good redundant can-
didate for adding.

Another contribution of this paper is to speed up and
improve the results of finding “alternative wires” [3][4]. A
single alternative wire of a target wire is a wire whose addi-
tion can make the target wire redundant. For example, in the
FIGURE 2, after adding the wire g5-> g9 and removing the
wire g1->g4, the circuit’s function remains the same. g5->g9
is a single-alternative wire for g1->g4.

In this paper, we will develop methods that allow us by
performing the stuck-at fault test of g1->g4 to conclude that
any among wires, c->g9, c->g8, c->g9, g2->g4, g2->g8, g2-
>g9, g7->g4, g7->g9, f->g4 and f->g8, cannot possibly be an
alternative for g1->g4. Therefore, we can skip the redun-
dancy test for those wires. This will substantially reduce the
cpu run time in comparison to the algorithms in [4].

This paper is organized as follows: Section 3 reviews
some concepts in testing that we will be using in this paper.
Section 4 introduces two attributes of mandatory assignment,

namely “forced” MAs and “observability” MAs. Section 5
derives some necessary conditions for redundancy of a wire.
Section 6 gives necessary and sufficient conditions for a wire
to be an alternative wire. Section 7 describes an efficient
implementation of the algorithm of [4], using the theorems
of the previous two sections. Finally results and conclusions
are presented.

3 Background and Definitions

In the following, we review some standard logic synthe-
sis terminology and ATPG related concepts which will be
used throughout the paper. Here we only consider circuits
consisting of AND, OR and INV gates. Complex gates can
be handled by decomposing them into AND, OR and INV
gates.

A Boolean network is a directed acyclic graph where
each node is associated with a Boolean functionfi, and a
Boolean variableyi. There is awire directed from a nodeni
to a nodenj if the functionfj depends on the variableyi. The
dominators [10] of a wireW is a set of gatesG such that all
paths fromW to any primary output have to pass through all
gates inG. The value of an input to a gate is said to becon-
trolling if it determines the value of the gate’s output regard-
less of the values of the other inputs; the controlling value is
1 for an OR or a NOR gate, and 0 for an AND or a NAND
gate. The inverse of the controlling value is called the non-
controlling value orsensitizing value.

Consider the dominators of a wireW. The side inputs of
a dominator are its inputs not in the transitive fanout of the
wire W. To generate a test for a stuck-at fault at wireW, all
side inputs of the wire W’s dominators must be assigned
their sensitizing values. For a wire stuck-at-1 {0} fault test, a
test vector must generate a 0 {1} at the source node of the
wire. We refer the 0 {1} at the source node of the wire as an
activating value for the test.

Let wr be a wire being tested for a stuck-at 0 {1} fault; a
faulty circuit is the circuit in whichwr is replaced by a con-
stant 0 {1}. An input combinationv is atest vector if an out-
put of the good circuit and faulty circuit are different when

FIGURE 1  Redundant wires caused by adding another
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applyingv. If no such a test vector exists, then the wire under
stuck-at faulttest is redundant.

Themandatory assignments (MA) are the value assign-
ments to nodes required for a test to exist and must be satis-
fied by any test vector. The process of computing these
mandatory assignments and checking their consistency is
referred to asimplication [1].

The process of implication is as follows. The MAs on
the side inputs of a dominator are set to sensitizing values
and the MA on the source node of the target wire is set to the
activating value. These MAs can then be propagated by
using some simple rules such as if the output of AND {OR}
gate is 1 {0}, the inputs are 1 {0}. If all the inputs of an AND
{OR} gate are 1 {0}, the output is 1 {0} etc. [1]. This pro-
cess is calleddirect implication. More MAs can be found by
more complicated approaches such as recursive learning
[12].

If the mandatory assignments of a stuck-at fault test can-
not be consistent, the fault is untestable and therefore, the
wire is redundant.   A wire to be removed is referred to as the
target wire. The corresponding stuck-at fault is called the
target fault.

4   Forced mandatory assignments and
observability mandatory assignments

In this section, we discuss two very important concepts,
“observability” mandatory assignments and “forced” manda-
tory assignments. These two concepts are used to form the
backbone of our theorems. As mentioned in section 3, a MA
of a stuck-at fault can be derived from MAs that activate the
fault or sensitize a fault propagating path to one primary out-
put.

Definition 1: During a stuck-at fault test for wr = ns->nd, we
define a MA to be anobservability MA if the MA must be
set to sensitize a fault propagating path to one primary out-
put.

The observability MAs are mandatory assignments
which are necessary to make the fault observable at a pri-
mary output. The observability MA is derived from MAs
that sensitize the dominators but excluding the effect of the
activating MA. The observability MAs are a subset of all the
MAs. Note that since the activating value does not play a
role, the observability MAs do not depend on the source
node ns of wr

For example, in the Fig 2(a), the observability MAs for
g1->g4 are {c=1, g2=0, g7=0, f=1}. Note that MAs {g1=0,
g5=0} are not observability MAs because they need to be
derived from the activating MA.

Now we define the “forced” MA. Letn be a node in the
circuit C. Suppose after a stuck-at fault test,n has a MA. In
the case of five-valued logic [1], the MA can be 0, 1, D orD.

We build the new circuitC’(n) as follows. If the MA is 1 or
D, disconnectn from its fanouts and connect those fanouts to
a constant 0. If the MA is 0 orD, we connect those fanouts to
a constant 1. See FIGURE 3. (The reason why D andD are
inserting different value can be found in [3].)

Definition 2: Suppose a noden has a MA after performing a
stuck-at fault test in C. We say thatn has aforced MA in C if
when we perform the same stuck-at fault test inC’(n),   the
fault becomes untestable.

Forced MAs can be seen as MAs which are required for
the fault to be testable. Modifying the circuit structure to
change a forced MA will cause a conflict and will make the
fault untestable. Non-forced MAs are due to an incidental
consequence of the test, but changing the circuit structure to
change a non-forced MA will not make the original fault
untestable.

For example in FIGURE 2(a), consider the g1->g4
stuck-at-1 test. We have MA={g1=0, c=1, g2=0, g5=0, g7=0,
f=1}. c=1 is a forced MA because disconnecting c with g4
and inserting a 0 at an input ofg4 will make the stuck-at fault
untestable. The MAg5=0 is non-forced. It is so because after
disconnectingg5 and o1 and connecting o1 to 1, g1->g4 is
still testable.

According to the definition of forced MA, the MAs on
the dominators are all forced. This is because putting a con-
stant value at a dominator makes the target fault untestable.
This definition suggests a precise way of finding forced man-
datory assignments in a stuck-at fault test. However, in real-
ity, computing whether a MA is forced applying the
definition directly is very time-consuming. In the following,
we discuss how these forced MAs can be calculated in prac-
tice.

During the process of direct implication, if the output of
an AND {OR} gate is 1 {0}, all the inputs must be 1 {0}. We
refer to this process as backward implication.

Lemma 1: The MAs obtained by setting side inputs of dom-
inators to non-controlling values and the activating MA on
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the source node of the target fault are forced. In addition, the
MAs obtained by backward propagation are also forced.

Proof. This theorem follows directly from the definition
of a forced MA. QED

Lemma 1 suggests that whether a MA is forced can be
determined while performing direct implication. Therefore,
no additional test is required to decide whether a MA is
forced or not. For example, in FIGURE 2(a), let us consider
g1->g4 stuck-at-1. We have {c=1, g7=0, f=1} as forced MAs
because they are the side inputs of dominators, and {g2=0,
g5=0} as not forced MAs because they are obtained from
forward propagating other MAs.

MAs can be also derived from recursive learning which
applies direct implication recursively. If a MA is obtained
from recursive learning, one can also use the notion of back-
ward implication to decide whether it is a forced MA. In this
paper, we do not discuss finding forced MAs in recursive
learning.

Intuitively, a forced MA is the MA that must be main-
tained for the fault to be testable. If a forced MA is changed,
the fault becomes untestable. For example in FIGURE 2(b),
g9 (a dominator) has a forced MA in the g1->g4 s-a-1 test. If
a redundant wire g5->g9 is added to the circuit, the MA of g9
is changed to 0. As a result, g1->g4 is redundant after adding
g5->g9.

5   Wires cannot possibly be redundant after
adding one redundant wire

A redundant wire is a wire that we can add/remove from
the circuit without changing the circuit’s behavior. Adding a
redundant wire to a circuit may result in redundancy of other
wires. In the following, we explain how to use the concepts
of forced MA and observability MA to identify whether a
particular wire can be redundant after adding another redun-
dant connection.

Two assumptions are made in this paper: First, the cir-
cuit under consideration is irredundant, that is, no wire in the
circuit is redundant. This assumption of irredundancy is very
important in our proofs. We will be using these theorems as
filters to screen out wires that are not possible to be redun-
dant. As a result, when the circuit in consideration contains
some redundant wires, applying these theorems may fail to
screen out some wires, causing unnecessary work to be per-
formed. The second assumption is that we only consider
adding a redundant wire and checking whether another wire
can be removed individually. We do not consider a possibil-
ity of finding “two simultaneously redundant wires [4].” Two
wires are simultaneously redundant if we can add one and
remove the other simultaneously but we cannot add or
remove either of them individually.

Without losing generality, let us consider adding a
redundant wirewr = ns-> nd to an AND gate in an irredun-

dant circuit C in FIGURE 4(a). Since wr is redundant, com-
puting the MA of the wr s-a-1 test is inconsistent. Because of
this inconsistency, the MAs in the circuit are meaningless.
The following theorems and lemmas show which wires can-
not become redundant after adding a redundant wire.

Lemma 2: The observability MAs for the redudant wire
wr=ns->nd must be consistent in the circuit C.

Proof. Let nd be an AND {OR} gate. Suppose the
observability MAs are inconsistent. Any new connection
which does not exist in C that fanins to nd is a redundant
wire. Therefore, a constant 0 {1} that fanins to nd is also
redundant. We can then conclude that nd can be replaced by
constant 0 {1} which contradicts our irredundancy assump-
tion. QED.

Lemma 3: Let nd be an AND {OR} gate. The wirewr=ns->
nd is redundant, if and only if ns has anobservability MA=1
{0} for w r stuck-at fault test. (A similar theorem is shown in
[11].)

Proof. Let us compute observability MAs forwr first.
Based on Lemma 2, these observability MAs are consistent.
Then, assign 0 {1}, the activating value, at thens. Since wr is
redundant, the MAs are inconsistent. Therefore, when com-
puting observability MAs, ns must have had an observability
MA=1 {0}. QED

Note that observability MAs don’t depend on the source
of the target fault. In FIGURE 1, the observability MAs for
(any node)->mstuck-at-1 test are {e=1, h=1}. Since e=1, e-
>m is a redundant wire. For another example, in FIGURE 2,
suppose we know thatg5->g9 is a redundant wire.   When
computing observability MAs for(any node)->g9, since
assigning g5=0 will cause conflict (g5->g9 is redundant), g5
must have a 1.

Let (C ∪ wr) denote a circuit C with an added wire wr
and (C\wr) be a circuit C from which the wirewr has been
removed. Suppose an irredundant wire wt in C becomes
redundant after adding a redundant wire wr = ns-> nd.

Lemma 4: wr becomes irredundant after removing wt in
(C∪wr\wt).

wr

ns

nd

MA=0

z

m n

(a) (b)

FIGURE 4  Adding a redundant wire wr in an
irredundant circuit.



Proof. If wr is still redundant after removing wt, wt is
redundant without adding wr. This conflicts with our original
assumption that C is irredundant. QED.

Lemma 5: For the wr stuck-at fault test, the observability
MA at ns in C is different from (C∪wr\wt).

Proof. If the ns has the same observability MA, wr is
still redundant after removing wt. This contradicts Lemma 4
QED.

For example, in FIGURE 1b, observability MAs for e-
>m are {e=1, h=1}. Suppose we remove e->g. The observ-
ability MA is {h=1}. The observability MA ate is different.
Therefore, after removing e->g, the wire e->m is no longer
redundant. As we mentioned in the definition, we consider
the computation of MAs from either direct implication or
recursive learning.

Theorem 6: Suppose observability MAs are computed for a
redundant wirewr. A wire in (C∪wr) is not redundant if the
wire is not visited during the process of computation of
observability MAs forwr,

Proof. Removing those wires will not change the
observability MA atns since without those wires we can still
have the same observability MA at ns. QED

Example 1: in FIGURE 1(b), let us consider to add a
redundant wiree->m (m is a highlighted AND gate). When
computing observability MAs fore->m, we first seth=1 to
propagate a fault D fromm to any output. Sinceh=1, either
nodeg=1 or nodef=1. If g=1, {c=1, e=1}. If f=1, {a=1, b=0,
e=1}. As a result, we conclude thate=1 ande->m is a redun-
dant wire. During the computation, the wiresd->z andm->z
are never visited. Therefore, we also conclude that adding
any redundant wire to nodem, the wiresd->z, andm->z will
not be redundant.

In this example, we need to apply recursive learning to
obtain e=1 from h=1. Since h=1, we try g=1 or f=1. All the
wires {g->h, f->h, a->f, b->f, c->g, e->g, b->e, a->e} that are
traversed from either of the choices {g=1, f=1}. Our theo-
rems in the followings are applied for each choice separately
and the results are accumulated to obtain information on all
possible redundant wires. For example, when g=1, we
traverse {g->h, c->g, e->g}. when f=1, we traverse {f->h, a-
>f, a->e, b->f, b->e}

Theorem 7: All the direct input wires of an AND {OR}
gate are not redundant in (C∪wr) if the AND {OR} gate has
anobservability and forced MA=0 {1} for w r in C.

Proof. Without loss of generality, let us consider a two-
input AND gate which has a forced MA=0. See Figure 4b.
There are three possibility of MAs at the inputs of an AND
gate. Those are (m, n) = (1, 0), (0, 0), (X, X). We discuss
them separately and prove that removing either one of the
input wires on the AND gate will not change the observabil-
ity MA at ns.

Case 1: (m, n) = (0, 0). Removing either m->z or n->z
will not change any MAs in the circuit so m->z and n->z are
not redundant after adding wr.

Case 2: (m, n) = (1, 0). m->z is not redundant because of
the same as case 1. Consider computing the observability
MAs for wr after removing n->z. There will be a conflict
sincez has a forced MA 0 andm has a value of 1. Therefore,
after removing n->z, wr is still redundant. This violates our
original irredundancy assumption.

Case 3: (m, n) = (x, x). The MA z=0 implies (m, n) = (0,
x) or (x, 0). Assuming (m, n) = (0, x) or (x, 0) will not
change other MAs in the circuits. Therefore, removing m->z
or n->z will not change observability MAs. The wires m->z
and n->z are not redundant. QED.

Let us return to Example 1. Since theh has observability
forced MA=1, the wires g->h and f->h are not redundant.
The possible redundant wires are {a->f, b->f, c->g, e->g, b-
>e, a->e}

Theorem 8: A wire w=(nx, nz) is not redundant in (C∪ wr)
if nz is AND {OR} gate and nx has an observability MA of 1
{0} for w r.

Proof. The proof is similar to the above theorem because
observability MAs will not change after removing the wire.
QED.

Again, let us look at Example 1. When considering f=1,
we have a=1 and b=0. According to the above theorem, we
know that b->e cannot be redundant. The possible redundant
wires are {a->f, b->f, c->g, e->g, a->e}.

Theorem 9: Let node nz be an AND {OR} gate and one of
its input wires is (nx, nz). If nx has an observability MA of 0
{1} for w r, all other input wires of nz are not redundant in
(C∪wr).

Proof. It is the same as the above. QED

Theorem 10: During recursive learning, if a wire does not
contribute to any MA, the wire cannot be redundant.

In Example 1, since b->f and c->g do not cause that e=1.
Therefore they cannot be redundant. As a result, the possible
redundant wires are {a->f, e->g, a->e}.

MA=0
FIGURE 5  Find single alternative
wire for w t
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In summary, in FIGURE 1b, consider to add the redun-
dant wire e->m: 1. From theorem 6, the wires {d->z, m->z}
cannot be redundant. 2. From theorem 7, the wires {g->h, f-
>h} cannot be redundant. 3. From theorem 8, the wires {b-
>e} cannot be redundant. 4. From theorem 10, the wires {b-
>f, c->g} cannot be redundant.

6   Single alternative wire

Single alternative wire is a concept proposed in [3]. A
singlealternative of a target wire is a redundant wire whose
addition can make the target wire redundant. For example, in
FIGURE 2, if we add the wire g5->g9, then, the wire g1->g4
becomes redundant. In this case, we say the g5->g9 is a sin-
gle alternative wire for g1->g4. In this section, we first review
the procedure that finds single-alternative wires for a wire.
Then, we show the necessary and sufficient condition for a
redundant wire to be a single-alternative wire for the target
wire. In addition, we also propose an improved version of
the procedure. This new procedure improves the quality as
well as the run time of finding single-alternative wires.

Let us consider removing a target wire wt by adding a
redundant wire wr to the circuit. The way of removing the
target wire wt is to make wt stuck-at fault test to become
untestable [3]. For example, in Fig. 5, suppose we would like
to remove wt and wr=ns-> nd is not present in the circuit now.
Let us consider wt stuck-at fault test.  ns is a node that has a
MA=0, and nd is a dominator of wt. If the wire wr is present
in the circuit, the value of 0 will force MA=0 on nd. The
MA=0 on nd blocks the fault propagation and makes the wt
stuck-at fault untestable and redundant. Therefore if wr is
present in the circuit, wt is redundant. However, adding wr
may change circuit’s function so we need to make sure that
wr is a redundant wire. In summary, the procedure of finding
alternative wires for wt is as follows. First, we compute the
MAs for the wt stuck-at fault test. Secondly, collect a set of
candidate connections that can block the fault propagation.
Finally, check if a candidate connection is redundant.

For example, in Figure 6, to remove c->g2, we first com-
pute the stuck-at-1 fault for c->g2. We have {c=0, b=1, a=1,
d=0, g1=0, e=1, g4=1}. Then, we find that g1->g5 is a candi-

date connection to block the fault propagation. Finally, we
check the redundancy of g1->g5. Since it is redundant, we
say g1->g5 is an alternative wire for c->g2.

The above procedure shows a way to find an alternative
wire for the target wire wt. There is no information about
whether we are finding all possible alternative wires for a
wire or not. Note that our goal is to make the target wire
untestable. Blocking the fault propagation is not the only
way of achieving this. Here, we show a necessary and suffi-
cient condition (Theorem 13) for a redudant wire to be an
alternative wire for the target wire wt.

Theorem 11: If wr=ns-> nd is an alternative wire for wt, ns
must have a mandatory assignment 0 {1} for the stuck-at
fault test of wt and nd is an AND {OR} gate.

Proof. Suppose ns does not have a MA. Some test vec-
tors for wt stuck-at fault will generate a 0 and other test vec-
tors generate a 1 at the ns. Suppose nd is an AND {OR} gate.
After adding wt, a test vector that generates 1 {0} at the ns is
still a test vector for wt after adding wr. As a result if ns does
not have an MA, then after adding wr, wt is still not redun-
dant. Therefore, wr is not an alternative wire for wt. Using
the same argument, we can also show that nd must be an OR
gate when ns=1 and AND gate when ns=0. QED

Theorem 12: If wr= ns-> nd is an alternative wire for wt, an
AND {OR} gate nd must have a forced mandatory assign-
ment 1 or D {0 orD} for the stuck-at fault test of wt in C.

Proof. According to Theorem 11, ns must have a MA=0
{1} when nd is an AND {OR} gate. Since wt is redundant in
(C ∪ wr), the MAs of wt stuck-at fault is inconsistent.
Therefore, nd must have a MA. According to the definition
of forced MA, this MA must be forced. QED.

Theorem 13: A redundant wire wr=ns-> nd is an alternative
wire for wt, if and only if an AND {OR} gate nd has a forced
MA=1 or D {0 orD} and nshas a MA=0 {1} for the stuck-at
fault test of wt.

Proof. The if part can be proved by the definition of a
forced MA. The only if part follows directly from the previ-
ous two theorems. QED

For example in Fig.6. since g1->g5 is an alternative wire
for c->g2. c->g2 must also be an alternative wire for g1->g5.
We now consider the circuit in Fig.6(b) and try to remove g1-
>g5 by adding c->g2. After computing g1->g5 s-a-1 test, we
have MA={g1=0, c=0, d=0, g3=1, e=1, o3=1, g2=1, a=1,
b=1}. Since g2=1 is a forced MA, we can try to add a wire to
violate the MA. Then, in the second step, we find that c->g2
is a candidate connection to remove g1->g5. Since c->g2 is
redundant, c->g2 is an alternative wire for g1->g5.

The above procedure improves the quality of the origi-
nal finding single alternative wires procedure [3]. In the fol-
lowing, we show a way to improve the efficiency. Note that

e

g2

g3 g5o2

o1

a
b
c
d

g1

f o3g4
e

g2

g3 g5o2

o1

a
b
c
d

g1

f o3g4
(b)(a)

FIGURE 6  Another example of single-alternative
wire. c->g2 is a single alternative wire for g1->g5.



in [3] there are several theorems related to efficiency
improvement. The discussion here is quite different from
those in [3]. According to Theorem 8, a source node ns of
wr=ns -> nd must have a MA. In the following, we show the
observability MAs are not useful. Note that observability
MAs are subset of the MAs.

Theorem 14: If ns has an observability MA for wt stuck-at
fault test, wr=ns -> nd cannot be an alternative wire for wt
=nx -> ny.

Proof. Prove by contradiction. Without losing general-
ity, let us assume that nd is an AND gate in FIGURE 7a.
Suppose wr is an alternative wire for wt and ns has an observ-
ability MA. Since observability MAs are independent to the
activating value, adding wr, we can replace wt with a con-
stant 1 or 0 because of s-a-1 and s-a-0 are untestable.

Let us consider adding wr and replace wt with a constant
1. According to Lemma 4, wr becomes an irredundant wire
after replacing wt with a constant 1 in (C∪ wr\wt) in FIG-
URE 7. In addition, in (C∪wr\wt), wt is an alternative wire
for wr. Let us consider adding wt to remove wr. According to
Theorem 11, nx has a MA=0 and ny has a forced MA 1 or D.
Now if we insert a “0” to the input of nd, the stuck-at fault
test for wr will become redudant because nd has a forced MA
1 or D. On the other hand, since wr is an alternative wire for
replacing wt by a constant 0, wr becomes irredundant after
the replacement. This conflicts with the previous argument.
Therefore, ns should not have an observability MA. QED.

For example in FIGURE 6, to find single alternative for
c->g2, the MAs for c->g2 stuck-at-1 test are {a=1, b=1, d=0,
g3=1, e=1, g4=1, c=0, g1=0}. Among the MAs, {a=1, b=1,
d=0, g3=1, e=1, g4=1} are the observability MAs. Therefore,
to find single alternative wire that fanins to g5, we only need
to consider the candidate connection of {c->g5, g1->g5}.

7   Implementation

The implementation of our algorithm is based on the
algorithm derived in [4]. This algorithm does Boolean opti-
mization based on alternative wires. We used our theorems
to further speed up this algorithm. See FIGURE 8 for
pseudo-code of our algorithm.

Our algorithm traverses all nodes of the network. Each
node is considered as a destination node nd of a newly added
redundant wire wr. Our goal is to find a source node ns such
that the wire wr = ns->nd can remove a set of wires wt of
maximum cost. See [4] for details on this optimization. The
goal of this paper is to make the search for ns more efficient.

The algorithm starts with calculating the observability
MAs for nd. Note that this can be done, even if ns is not yet
known. From these observability MAs we can determine that
some wires cannot possibly be redudant, using Theorem 7,
Theorem 8, Theorem 9, and Theorem 10. Subsequently we
calculate the MAs for all wt which pass this test. Now, using
Theorem 12 we check if nd is suitable to make wt redundant.

To find all possible source nodes ns for the alternative
wire ns->nd to replace wt, here is a simple procedure. After
computing the wt stuck-at fault MA’s, we put a node which
has an MA into source_array. We can then use Theorem 14
to check whether a candidate wire is an alternative wire by
checking whether it is redundant, and whether the MA’s are
conflicting. Since the proofs does not make an assumption
that all implications should be found, all theorems hold even
partial implications are used. The actual implementation
only uses those implications which are easy to compute.

8   Experimental Results

Table 1 compares the optimization of SIS1.1, HANNI-
BAL and ours (termed rewire) for some benchmark circuits.
Since our circuits are in the form of AND and OR gate, we
post-process those circuits with “el; sweep; el; simplify”

FIGURE 7  Observability MA is not useful to find
single alternative wires.
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foreach node nd in the circuit {
     find the observability MA of nd;

/* the observability MA don’t depend on the source*/
for each wire wt in the fanin and fanout cone of ni {
  Use Theorem 7, 8, 9, and 10 and to skip wires wt

which
cannot possibly become redundant;

    Calculate the MA of wt
Use Theorem 12 to check if a wire can be added to nd

           to make wt redundant
    Fill source_array with nodes which have an MA
           using Theorem 11
    Use Theorem 14 to prune source_array
         optimize the circuit as in [4]

FIGURE 8  The algorithm



(which are commands in SIS) and compare the factored lit-
eral count with SIS and HANNIBAL. Column 2 shows the
run time for Hannibal and column 3 shows the run time for
our implementation. Column 4, 5 and 6 shows the results of
SIS, HANNIBAL and ours in terms of literal count. Among
those circuits in the table, our algorithm is 126 times faster
than the algorithm of HANNIBAL. The literal counts are
about the same between ours and Hannibal’s. The first sec-
tion of the table lists and compares the circuits reported in
[11]. The remainder of the table lists some additional cir-
cuits.

9   Conclusions

As demonstrated in the table, our implementation is
much faster then the optimization algorithm of [11], with
competitive results. Further speed improvements are possi-
ble, because our implementation did not use Theorem 6.
From the results on some very large circuits, such as s38417,
we can see that our approach scales well. The above theo-
rems are applicable to other ATPG based optimizations as
well. It seems likely that the algorithms of [2] [3] [5] [11]
[15] [17] can take advantage of our theorems to speed up run
time.
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TABLE 1

Circuits
Hannibal
cpu (sec)

Rewire
cpu (sec)

SIS
boolean
(lits)

Hannibal
(lits)

Rewire
(lits)

C3540 6815 85.6 1299 1154 1127

C432 95 2.0 240 161 171

C2670 1782 31.7 759 718 697

C880 269 3.2 427 417 415

C5315 15611 65.9 1815 1697 1687

C1355 555 17.5 554 544 552

C6288 13704 89.0 3550 3240 3251

C1908 935 16.0 552 517 512

C499 543 8.4 554 544 550

subtotal 40309 319.3 9750 8113 8107
 relative 126.24 1 1.19 1.001 1
s13207 541.7 2957 2719

s38417 1746.6 12301 10434

s5378 77.8 1490 1351

s9234 126.1 1944 1724

 alu2 50.3 446 324

alu4 152.1 800 623

term1 5.0 237 145

too_large 31.9 437 301

ttt2 5.2 223 179

z4ml 0.5 48 36

f51m 4.8 135 105

frg2 85.1 933 761

total 3146.4 31701 27704
relative 1.14 1
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