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This paper presents a very efficient Boolean logic optimiene redundant wire and then removes redundant wires caused
zation method. The boolean optimization is achieved by addby the previous change. Area optimization can be achieved by
ing and removing redundant wires in a circuit. Our algorithmadding one and removing many wires in a circuit. Another
applies the reasoning of Automatic Test Pattern GeneratioATPG based algorithm [3] targets some particular wire. The
(ATPG) which can detect redundancy efficiently. During thelgorithm tries to remove a target wire by adding to the circuit
ATPG process, mandatory assignments are assignmerdsother set of wires. Removing some critical wire can be very
which must be satisfied. Our algorithm analyzes differentiseful for many applications. For example, one may remove a
characteristics of mandatory assignments during the ATP@®vire in the critical paths to improve delay. [6] removes a wire
process. New theoretical results based on the analysis ate improve partitioning. In FPGA, [3] removes unroutable
presented which lead to significant performance improvewires after routing. It adds routable wires to correct an
ments. The fast run time and the excellent scaling to largenroutable FPGA circuit.
problems make our Boolean optimization method practical The motivation of this paper is to establish a theoretical
for industrial applications. Experiments show that the optimi-background for the single wire addition and removal
zation results are comparable to those of [11] while the rur[3][4][5]. We investigate some necessary conditions for a
time is two orders of magnitude faster (average 126x speesiire to be redundant. Using these conditions, we are able to
up). Furthermore, we report optimization results for severaimprove the results and speed up the run time of many ATPG
large examples, which were previously thought to be too largeased algorithms. Two essential issues are addressed in this

to be handled by Boolean optimization methods. paper:
1. Which wires can be removed after adding a new redun-
1 Introduction dant wire?

2. Which new redundant wire, when added, will make the
Logic synthesis is a step that realizes a set of logic existing target wire redundant?
expressions using cells from a technology library. Usually, the  We study the characteristics of mandatory assignments
objectives in logic synthesis are to optimize area, delayi], which must be satisfied for every test vector. We discuss
power and testability. Among logic optimization algorithms,two very important concepts, “forced” and “observability”
Automatic Test Pattern Generation (ATPG) based optimizamandatory assignments, which are used to distinguish among
tions [2] [3] [4] [5] [11] [15] [16] [17] are becoming very mandatory assignments. These two attributes of mandatory
popular because of the following advantages. First of allassignments can be computed along with the calculation of
ATPG based algorithms require little memory to process largmandatory assignments. Very little computational overhead is
circuits. Although the running time of a ATPG algorithm mayrequired to determine these two additional attributes. Based
be exponential, the memory requirement is linear in the sizen these, we derive theorems that improve the results of
of the circuit. The amount of effort spent in running fault testATPG based optimizations.
can be accurately controlled. ATPG based algorithms have
good failure characteristics; when the algorithm aborts, thig  An example
does not imply that the entire algorithm needs to be aborted,
as is the case with most BDD based algorithms. In addition, In this section, we illustrate some basic concepts while
ATPG optimizations can implicitly use circuit observability walking through an example from [11]. This paper first iden-
and controllability don't cares without the need to explicitlytifies that there is a redundant wee>m (dotted in the FIG-
calculate them. URE 1b) which can be added to the circuit. Adding this wire
One of ATPG’s strengths is the ability to detect effi-e->m causes two originally irredundant wires>g and a->f
ciently redundant wires in a circuit. As a result, most ATP@dotted) to become redundant. To detect the redundaray of
based algorithms achieve optimization by adding and remowf and e->g, [11] applies redundancy removal to the entire
ing redundant connections in circuits. For example, [11] addsircuit. The drawbacks of this technique are two fold. First,
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running the redundancy removal on the entire circuit requires
enormous CPU time for big circuits. In addition, there is no
hint of which wire should be added since no information is
available. 2:@
In this paper, our first set of theorems provide necessary
conditions for wires to be redundant after adding anothere
wire. For example, in FIGURE 1b, suppose we consider toc
add a redundant wire e->m. With proper analysis of mandaq
tory assignments when detecting the redundancy of e->ma
we can quickly determine that {h->z, d->z, g->h, f->h, c->g, b
b->e, b->f} cannot be redundant. This leaves only {a->f, a-f
>e, e->g} as possible candidates for redundancy checking if
e->m is added. Finally, we need only to perform the redun-
dancy test on these three wires. The redundancy informatigTamely “forced” MAs and “observability” MAs. Section 5
derives some necessary conditions for redundancy of a wire.
X Section 6 gives necessary and sufficient conditions for a wire
to be an alternative wire. Section 7 describes an efficient
implementation of the algorithm of [4], using the theorems
y of the previous two sections. Finally results and conclusions
are presented.

FIGURE 2 An example for single alternative wire.

3 Background and Definitions

In the following, we review some standard logic synthe-
sis terminology and ATPG related concepts which will be
used throughout the paper. Here we only consider circuits
consisting of AND, OR and INV gates. Complex gates can
be handled by decomposing them into AND, OR and INV
gates.

A Boolean network is a directed acyclic graph where
each node is associated with a Boolean funckioand a
Boolean variablgy;. There is awire directed from a nodes;
to a noden; if the functionf; depends on the variabye The
dominators[10] of a wireW is a set of gate& such that alll
about these wires not only can reduce the run time but algmths fromw to any primary output have to pass through all
can direct the optimization to choose a good redundant cagates inG. The value of an input to a gate is said tacbe-
didate for adding. trolling if it determines the value of the gate’s output regard-

Another contribution of this paper is to speed up andess of the values of the other inputs; the controlling value is
improve the results of finding “alternative wires” [3][4]. A 1 for an OR or a NOR gate, and 0 for an AND or a NAND
single alternative wire of a target wire is a wire whose addigate. The inverse of the controlling value is calledrthe-
tion can make the target wire redundant. For example, in thebntrolling value orsensitizingvalue.

FIGURE 1 Redundant wires caused by adding anothe

FIGURE 2, after adding the wire;g gg and removing the Consider the dominators of a wié Theside inputsof
wire g;->g,, the circuit’s function remains the samg=>@y  a dominator are its inputs not in the transitive fanout of the
is a single-alternative wire for¢>g,. wire W. To generate a test for a stuck-at fault at Wifeall

In this paper, we will develop methods that allow us byside inputs of the wiraV's dominators must be assigned
performing the stuck-at fault test of-gg, to conclude that their sensitizing values. For a wire stuck-at-1 {0} fault test, a
any among wires, C-3g C->0, C->0y, Gp->0s, 3->0g, O~  test vector must generate a 0 {1} at the source node of the
>0, O7->0a, 97->09, f->g4 and f->g, cannot possibly be an wire. We refer the 0 {1} at the source node of the wire as an
alternative for g->g,. Therefore, we can skip the redun- activatingvalue for the test.
dancy test for those wires. This will substantially reduce the  Letw, be a wire being tested for a stuck-at 0 {1} fault; a
cpu run time in comparison to the algorithms in [4]. faulty circuit is the circuit in whiclw, is replaced by a con-

This paper is organized as follows: Section 3 reviewstant 0 {1}. An input combinatiom is atest vectoiif an out-
some concepts in testing that we will be using in this papeput of the good circuit and faulty circuit are different when
Section 4 introduces two attributes of mandatory assignment,



applyingv. If no such a test vector exists, then the wire undeWe build the new circuiC’(n) as follows. If the MA is 1 or
stuck-at faultest is redundant. D, disconnech from its fanouts and connect those fanouts to

The mandatory assignmen{®A) are the value assign- a constant 0. If the MA is 0 @, we connect those fanouts to
ments to nodes required for a test to exist and must be sat&sconstant 1. See FIGURE 3. (The reason why DCaade
fied by any test vector. The process of computing thesaserting different value can be found in [3].)

mandatory assignments and checking their consistency is
referred to agmplication[1]. Definition 2: Suppose a nodehas a MA after performing a

The process of implication is as follows. The MAs onstuck-at fault testin C. We say tireltas aorcedMA in C if
the side inputs of a dominator are set to sensitizing valuééhen we perform the same stuck-at fault test'ifm), the
and the MA on the source node of the target wire is set to tiault becomes untestable.
activating value. These MAs can then be propagated by
using some simple rules such as if the output of AND {OR}
gate is 1 {0}, the inputs are 1 {0}. If all the inputs of an AND
{OR} gate are 1 {0}, the output is 1 {0} etc. [1]. This pro-
cess is calledirect implication More MAs can be found by
more complicated approaches such as recursive learnin
[12].

If the mandatory assignments of a stuck-at fault test can-
not be consistent, the fault is untestable and therefore, the
wire is redundant. A wire to be removed is referred to as the a
target wire The corresponding stuck-at fault is called the
target fault

FIGURE 3 (a).w is the wire on which the stuck-
at fault test is performed on. (b) shows C'(n) ih

. has an MA=1 or d. (c) shows C’(n) if the node has
4 Forced mandatory assignments and an MA=0 or d.

observability mandatory assignments

Forced MAs can be seen as MAs which are required for
In this section, we discuss two very important conceptshe fault to be testable. Modifying the circuit structure to
“observability” mandatory assignments and “forced” manda€hange a forced MA will cause a conflict and will make the
tory assignments. These two concepts are used to form tfeult untestable. Non-forced MAs are due to an incidental
backbone of our theorems. As mentioned in section 3, a M&onsequence of the test, but changing the circuit structure to
of a stuck-at fault can be derived from MAs that activate thehange a non-forced MA will not make the original fault
fault or sensitize a fault propagating path to one primary outintestable.
put. For example in FIGURE 2(a), consider tlgg->g,
stuck-at-1 test. We have MAg{=0, c=1, g,=0, g5=0, g;=0,
Definition 1: During a stuck-at fault test for,w n->ny, we  f=1}. c=1 is a forced MA because disconnecting ¢ with g
define a MA to be aobservabilityMA if the MA must be  and inserting a 0 at an inputgy will make the stuck-at fault
set to sensitize a fault propagating path to one primary outmtestable. The MAs=0 is non-forced. It is so because after
put. disconnectinggs and q and connecting oto 1, g->g, is

The observability MAs are mandatory assignmentstill testable. o
which are necessary to make the fault observable at a pri- According to the definition of forced MA, the MAs on
mary output. The observability MA is derived from MAs the dominators are a_II forced. This is because putting a con-
that sensitize the dominators but excluding the effect of thgtant value at a dominator makes the target fault untestable.
activating MA. The observability MAs are a subset of all the Nis definition suggests a precise way of finding forced man-
MAs. Note that since the activating value does not play §atory assignments in a stuck-at fault test. However, in real-

role, the observability MAs do not depend on the sourc#Y, computing whether a MA is forced applying the
node r of w; definition directly is very time-consuming. In the following,

For example, in the Fig 2(a), the observability MAs forWe discuss how these forced MAs can be calculated in prac-
01->94 are {c=1, g,=0, g/=0, f=1}. Note that MAs §,=0, tce. o
gs=0} are not observability MAs because they need to be During the process of direct implication, if the output of
derived from the activating MA. an AND {OR} gate is 1 {0}, all the inputs must be 1 {0}. We
Now we define the “forced” MA. Lat be a node in the refer to this process as backward implication.

circuit C. Suppose after a stuck-at fault teshas a MA. In | emma 1: The MAs obtained by setting side inputs of dom-
the case of five-valued logic [1], the MA can be O, 1, Dor jnators to non-controlling values and the activating MA on



the source node of the target fault are forced. In addition, tHe
MAs obtained by backward propagation are also forced.

Proof. This theorem follows directly from the definition 7
of a forced MA. QED _
Lemma 1 suggests that whether a MA is forced can be MA=0
determined while performing direct implication. Therefore, Wy Ng
no additional test is required to decide whether a MA is m O n

forced or not. For example, in FIGURE 2(a), let us consider, O

01->0, Stuck-at-1. We have {c=1;g0, f=1} as forced MAs 5 (@) (b)

because they are the side inputs of dominators, ageD{g

05=0} as not forced MAs because they are obtained from

forward propagating other MAs. _F|GURE 4 Addlng a redundant wire W inan
MAs can be also derived from recursive learning which irredundant circuit.

applies direct implication recursively. If a MA is obtained gant circurt Cn FIGURE Z(a). Since, W6 redundant, com-

from recursive learning, one can also use the notion of bacbuting the MA of the ws-a-1 test is inconsistent. Because of
ward implication to decide whether it is a forced MA. In thisthis inconsistency, the MAs in the circuit are meaningless.
paper, we do not discuss finding forced MAs in recursiverhe following theorems and lemmas show which wires can-

Iearning.._ _ ~not become redundant after adding a redundant wire.
Intuitively, a forced MA is the MA that must be main-

tained for the fault to be testable. If a forced MA is changed,‘
the fault becomes untestable. For example in FIGURE 2(b)(‘,’r
0o (a dominator) has a forced MA in the-®g, s-a-1 test. If Proof. Let iy be an AND {OR} gate. Suppose the
a redundant wiregg>gg is added to the circuit, the MA o§g observability MAs are inconsistent. Any new connection
is changed to 0. As a result-5g, is redundant after adding which does not exist in C that fanins tg is a redundant
O5->0o. wire. Therefore, a constant 0 {1} that fanins tgis also
redundant. We can then conclude thatan be replaced by
5 Wires cannot possibly be redundant after constant 0 {1} which contradicts our irredundancy assump-

adding one redundant wire tion. QED.
Lemma 3 Letny be an AND {OR} gate. The wires,=ns->
A redundant wire is a wire that we can add/remove frorrmd is redundant, if and only ifyhas arobservability MA=1
the circuit without changing the circuit's behavior. Adding a{0} for w , stuck-at fault test. (A similar theorem is shown in
redundant wire to a circuit may result in redundancy of othef11].)
wires. In the following, we explain how to use the concepts Proof. Let us compute observability MAs fak first,

f f MA ility MA to i i heth - .
of forced and observability to identify whether a ased on Lemma 2, these observability MAs are consistent.

articular wire can be redundant after adding another redug: . S . :
Sant connection g hen, assign 0 {1}, the activating value, at tQeSincew, is

Two assumptions are made in this paper: First, the Ci(_edundant, the MAs are inconsistent. Therefore, when com-

cuit under consideration is irredundant, that is, no wire in th&Utlrlg observability MAs, gmust have had an observability

circuit is redundant. This assumption of irredundancy is ver Azl\}o{tz}.ttgtzc?bser ability MAs don't depend on the source
important in our proofs. We will be using these theorems as vability P u

filters to screen out wires that are not possible to be reduzlc the t?jrgeifalilt. ll(n 'tzlthURtE L thle ﬁ?serégbmty E/IlAS for
dant. As a result, when the circuit in consideration contain ar:]‘stg FEE rl;rjal;](; -?r(; Fi? a?’nrgfr{rer'e _a]r}ﬁ |(Ienc'§ EI_GLJeR-E 5
some redundant wires, applying these theorems may fail Q! u wire. xample, | '

screen out some wires, causing unnecessary work to be pgp_ppose we know tha->gg is a redundant wire. - When

formed. The second assumption is that we only considecromputlng observability MAs fo(any node)->g, since

adding a redundant wire and checking whether another wile>>'9ning g=0 will cause conflict (g>gg is redundant), g
must have a 1.

can be removed individually. We do not consider a possibil- o . .

ity of finding “two simultane)(/)usly redundant wires [4]p." Two Let (CO wy) Qenpte a cireuit C with an added wire w

wires are simultaneously redundant if we can add one an{%lﬁId (Cw) be a circuit C. I the Winey et

remove the other simultaneously but we cannot add Orremoved. Suppose_an irredundant vylrpuwC becomes

remove either of them individually. redundant after adding a redundant wige=mg-> ng.
Without losing generality, let us consider adding aLemma 4 w, becomes irredundant after removing iw

redundant wiraw, = ns-> ng to an AND gate in an irredun- (COw,\wy).

emma 2 The observability MAs for the redudant wire
=ng>ny must be consistent in the circuit C.



Proof. If w; is still redundant after removing;ww; is Case 1: (m, n) = (0, 0). Removing either m->z or n->z
redundant without addingwr his conflicts with our original  will not change any MAs in the circuit so m->z and n->z are
assumption that C is irredundant. QED. not redundant after adding.w

Case 2: (m, n) = (1, 0). m->z is not redundant because of
the same as case 1. Consider computing the observability
MAs for w, after removing n->z. There will be a conflict

Proof. If the g has the same observability MA, &  sincez has a forced MA 0 anah has a value of 1. Therefore,
still redundant after removingwThis contradicts Lemma 4 after removing n->z, wis still redundant. This violates our
QED. original irredundancy assumption.

For example, in FIGURE 1b, observability MAs for e- Case 3: (m, n) = (x, X). The MA z=0 implies (m, n) = (0,
>m are £=1, h=1}. Suppose we remove e->g. The observ-x) or (x, 0). Assuming (m, n) = (0, x) or (x, 0) will not
ability MA is {h=1}. The observability MA ae is different.  change other MAs in the circuits. Therefore, removing m->z
Therefore, after removing e->g, the wire e->m is no longepr n->z will not change observability MAs. The wires m->z
redundant. As we mentioned in the definition, we considegnd n->z are not redundant. QED.
the computation of MAs from either direct implication or Let us return to Example 1. Since thkas observability
recursive learning. forced MA=1, the wires g->h and f->h are not redundant.

Theorem 6: Suppose observability MAs are computed for a| Ne possible redundant wires are {a->f, b->f, ¢->g, e->g, b-

redundant wirav,. A wire in (CLlw,) is not redundant if the >e, a->e}
wire is not visited during the process of computation offheorem 8: A wire w=(n,, n,) is not redundant in (El w,)
observability MAs fomw, if n, is AND {OR} gate and phas an observability MA of 1

Proof. Removing those wires will not change the{0}forw,.

observability MA aing since without those wires we can still Proof. The proof is similar to the above theorem because
have the same observability MA at QED observability MAs will not change after removing the wire.
Example 1 in FIGURE 1(b), let us consider to add a QED.
redundant wiree->m (m is a highlighted AND gate). When Again, let us look at Example 1. When considering f=1,
computing observability MAs foe->m, we first seh=1t0  we have a=1 and b=0. According to the above theorem, we
propagate a fault D from to any output. Sinck=1, either  know that b->e cannot be redundant. The possible redundant
nodeg=1 or nodef=1. If g=1, {c=1, e=1}. If f=1, {a=1,b=0,  wires are {a->f, b->f, c->g, e->g, a->e}.
e=1}. As a result, we conclude thetl ande->mis a redun-
dant wire. During the computation, the witksz andm->z ~ Theorem 9: Let node pbe an AND {OR} gate and one of
are never visited. Therefore, we also conclude that addinés input wires is (g n,). If n, has an observability MA of 0
any redundant wire to nodie the wiresd->z, andm->zwill {1} for w,, all other input wires of piare not redundant in
not be redundant. (ClUw,).
In this example, we need to apply recursive learning to  proof. It is the same as the above. QED
obtain e=1 from h=1. Since h=1, we try g=1 or f=1. All the
wires {g->h, f->h, a->f, b->f, c->g, e->g, b->e, a->e} that areTheorem 10: During recursive learning, if a wire does not
traversed from either of the choices {g=1, f=1}. Our theo-contribute to any MA, the wire cannot be redundant.
rems in the followings are applied for each choice separately
and the results are accumulated to obtain information on all
possible redundant wires. For example, when g=1, we
traverse {g->h, c->g, e->g}. when f=1, we traverse {f->h, a-
>f, a->e, b->f, b->e} Wi

Lemma 5 For the w stuck-at fault test, the observability
MA at ngin C is different from (Clw,\w;).

oo oo D
Theorem 7: All the direct input wires of an AND {OR}

gate are not redundant in[(&w,) if the AND {OR} gate has Wr\nd

anobservability and forced MA=0 {1} for w, in C. @91 a=0

Proof. Without loss of generality, let us consider a two- : ; :
. . . FIGURE 5 Find single alternative
input AND gate which has a forced MA=0. See Figure 4b. wire for w, nd sing WV
There are three possibility of MAs at the inputs of an AND In E le 1 si b->f and c->q d ; that e=1
gate. Those are (m, n) = (1, 0), (0, 0), (X, X). We discus n Example 1, since b->f and c->g do not cause that e=1.

them separately and prove that removing either one of th herefore they cannot be redundant. As a result, the possible

input wires on the AND gate will not change the observabjiyedundant wires are {a->f, e->g, a->e}.

ity MA at ng,




In summary, in FIGURE 1b, consider to add the redundate connection to block the fault propagation. Finally, we
dant wire e->m: 1. From theorem 6, the wires {d->z, m->z}check the redundancy of-ggs. Since it is redundant, we
cannot be redundant. 2. From theorem 7, the wires {g->h, Bay g->g5 is an alternative wire for c->g
>h} cannot be redundant. 3. From theorem 8, the wires {b- The above procedure shows a way to find an alternative
>e} cannot be redundant. 4. From theorem 10, the wires {bwire for the target wire y There is no information about

>f, c->g} cannot be redundant. whether we are finding all possible alternative wires for a
wire or not. Note that our goal is to make the target wire
6 Single alternative wire untestable. Blocking the fault propagation is not the only

way of achieving this. Here, we show a necessary and suffi-
Single alternative wire is a concept proposed in [3]. Acient condition (Theorem 13) for a redudant wire to be an
singlealternativeof a target wire is a redundant wire whosealternative wire for the target wirg.w
addition can make the target wire redundant. For example, in ) ) )
FIGURE 2, if we add the wiresg>go, then, the wire g>g, Theorem 11: If w,=ng> ny is an alternative wire for yng
becomes redundant. In this case, we say ¢heggis a sin-  Must have a mandz_;ltory assignment 0 {1} for the stuck-at
gle alternative wire for g>g;. In this section, we first review fault test of wand ryis an AND {OR} gate.

the procedure that finds single-alternative wires for a wire.  pProof. Supposegdoes not have a MA. Some test vec-
Then, we show the necessary and sufficient condition for @rs for w stuck-at fault will generate a 0 and other test vec-
redundant wire to be a single-alternative wire for the targefors generate a 1 at the Buppose gis an AND {OR} gate.
wire. In addition, we also propose an improved version offter adding w, a test vector that generates 1 {0} at thésn
the procedure. This new procedure improves the quality asill a test vector for yafter adding w As a result if gdoes
well as the run time of finding single-alternative wires. not have an MA, then after adding, wy; is still not redun-
Let us consider removing a target wirg by adding a  dant. Therefore, wis not an alternative wire forwUsing
redundant wire wto the circuit. The way of removing the the same argument, we can also show thatust be an OR

target wire w is to make wstuck-at fault test to become gate when &1 and AND gate wheng0. QED
untestable [3]. For example, in Fig. 5, suppose we would like

to remove wand w=ng> ny is not present in the circuit now. Theorem 12: If w;= n-> ny is an alternative wire for yvan
Let us consider pstuck-at fault test. dis a node that has a AND {OR} gate ny must have a forced mandatory assign-
MA=0, and ry is a dominator of w If the wire w is present ment 1 or D {0 oD} for the stuck-at fault test of yin C.

in the circuit, the value of 0 will force MA=0 orynThe Proof. According to Theorem 11, must have a MA=0
MA=0 on ry blocks the fault propagation and makes .tlge W{1} when ny is an AND {OR} gate. Since yis redundant in
stuck-at _fault un_tes'FabIga and redundant. Therefore.r ifsw (C ] w,), the MAs of w stuck-at fault is inconsistent.
present in the circuit, wis redundant. However, adding W Therefore, g must have a MA. According to the definition
may change circuit’s function so we need to make sure thaf forced MA, this MA must be forced. QED.

w, is a redundant wire. In summary, the procedure of finding

alternative wires for yis as follows. First, we compute the Theorem 13: A redundant wire w=ngs-> ny is an alternative
MAs for the w stuck-at fault test. Secondly, collect a set ofwire for w, if and only if an AND {OR} gate phas a forced
candidate connections that can block the fault propagatioMA=1 or D {0 or D} and n;has a MA=0 {1} for the stuck-at
Finally, check if a candidate connection is redundant. fault test of w

Proof. The if part can be proved by the definition of a
forced MA. The only if part follows directly from the previ-
ous two theorems. QED

For example in Fig.6. since-¢gs is an alternative wire
for c->g,. c->g must also be an alternative wire fqreps.

We now consider the circuit in Fig.6(b) and try to remoye g
>g5 by adding c->g After computing g->gs s-a-1 test, we
have MA={g,=0, ¢=0, d=0, g1, e=1, 03=1, &1, a=1,
b=1}. Since g=1 is a forced MA, we can try to add a wire to
violate the MA. Then, in the second step, we find thatc->g
FIGURE 6 Another example of single-alternative is a candidate connection to remove>gis. Since c->g is
wire. c->@, is a single alternative wire for g->gs. redundant, c->gis an alternative wire for;g>gs.

The above procedure improves the quality of the origi-
For example, in Figure 6, to remove cy>ge first com-  nal finding single alternative wires procedure [3]. In the fol-

pute the stuck-at-1 fault for c-3gWe have {c=0, b=1, a=1, |owing, we show a way to improve the efficiency. Note that
d=0, g1=0, e=1, g/1}. Then, we find that g>g5 is a candi-




7 Implementation

The implementation of our algorithm is based on the
algorithm derived in [4]. This algorithm does Boolean opti-
mization based on alternative wires. We used our theorems
to further speed up this algorithm. See FIGURE 8 for
pseudo-code of our algorithm.

Our algorithm traverses all nodes of the network. Each
node is considered as a destination nggef @ newly added
redundant wire w Our goal is to find a source nodgsuch
that the wire w= n->nq can remove a set of wires wf
maximum cost. See [4] for details on this optimization. The
goal of this paper is to make the search fanore efficient.
FIGURE 7 Observability MA is not useful to find foreach node fin the circuit {
single alternative wires. find the observability MA of
/* the observability MA don't depend on the source*/
for each wire win the fanin and fanout cone qgffn

Use Theorem 7, 8, 9, and 10 and to skip wirgs w

In [3] there are several theorems related to efficiency
improvement. The discussion here is quite different from
those in [3]. According to Theorem 8, a source nogefn
W,=ng -> ny must have a MA. In the following, we show the cannot possibly become redundant;
observability MAs are not useful. Note that observability Calculate the MA of w

MAs are subset of the MAs.

which

Use Theorem 12 to check if a wire can be addeg to n
to make yredundant

Fill source_array with nodes which have an MA
using Theorem 11

Theorem 14: If ng has an observability MA for ystuck-at
fault test, w=ng -> ny cannot be an alternative wire forw

=y o i ) Use Theorem 14 to prune source_array
Proof. Prove by contradiction. Without losing general- optimize the circuit as in [4]
ity, let us assume thaiyns an AND gate in FIGURE 7a.
Suppose wis an alternative wire for yand g has an observ- FIGURE 8 The algorithm
ability MA. Since observability MAs are independent to the
activating value, adding ywwe can replace pwith a con- The algorithm starts with calculating the observability
stant 1 or O because of s-a-1 and s-a-0 are untestable. MAs for ny. Note that this can be done, evendisinot yet

Let us consider adding,\and replace ywith a constant known. From these observability MAs we can determine that
1. According to Lemma 4, wbecomes an irredundant wire some wires cannot possibly be redudant, using Theorem 7,
after replacing wwith a constant 1 in (& w\wy) in FIG-  Theorem 8, Theorem 9, and Theorem 10. Subsequently we
URE 7. In addition, in (Elw,\w,), w, is an alternative wire ~calculate the MAs for all ywhich pass this test. Now, using
for w,. Let us consider adding;wo remove w Accordingto  Theorem 12 we check ifynis suitable to make wvedundant.
Theorem 11, phas a MA=0 and,nphas a forced MA 1 or D. To find all possible source nodegfor the alternative
Now if we insert a “0” to the input ofgnthe stuck-at fault wire ng->ng to replace y here is a simple procedure. After
test for w will become redudant becausghas a forced MA  computing the wstuck-at fault MA's, we put a node which
1 or D. On the other hand, sincei& an alternative wire for has an MA into source_array. We can then use Theorem 14
replacing w by a constant 0, wbecomes irredundant after to check whether a candidate wire is an alternative wire by
the replacement. This conflicts with the previous argumenthecking whether it is redundant, and whether the MAs are
Therefore, gshould not have an observability MA. QED.  conflicting. Since the proofs does not make an assumption

For example in FIGURE 6, to find single alternative forthat all implications should be found, all theorems hold even
c->g,, the MAs for c->g stuck-at-1 test are {a=1, b=1, d=0, partial implications are used. The actual implementation
05=1, e=1, g=1, c=0, g=0}. Among the MAs, {a=1, b=1, only uses those implications which are easy to compute.
d=0, =1, e=1, g=1} are the observability MAs. Therefore,
to find single alternative wire that fanins tg e only need 8 Experimental Results

to consider the candidate connection of {&>@->0s}.
Table 1 compares the optimization of SIS1.1, HANNI-

BAL and ours (termed rewire) for some benchmark circuits.
Since our circuits are in the form of AND and OR gate, we
post-process those circuits with “el; sweep; el; simplify”



(which are commands in SIS) and compare the factored litF11] W. Kunz and D.K. Pradhan, “Multi-Level Logic Optimization
eral count with SIS and HANNIBAL. Column 2 shows the ng'”&pgcat_iO” A“glﬁjs’;\lﬁigiztg'zt- Conf. on Computer

H ; : ae esignpp. 6-1s, Nov. .
run Flme for Han_mbal and column 3 shows the run time forPZ] W. Kunz ar?d%). K. Pradhan, “Recursive Learning: An Attrac-
our implementation. Column 4, 5 and 6 shows the results of “yje Alternative to the Decision Tree for Test Generation for
SIS, HANNIBAL and ours in terms of literal count. Among Digital Circuits”, inProc. Int. Test Confpp.816-825, Oct.
those circuits in the table, our algorithm is 126 times faster 1992.
than the algorithm of HANNIBAL. The literal counts are [13] S. Muroga et al, “The Transduction Method-Design of Logic

T . Networks Based on Permissible Functions,” IEEE Transac-
about the same between ours and Hannibal's. The first sec- .~ " " Computer C38(10). pp. 1404-1423 Oct. 1989,

tion of the table lists and compares the circuits reported iy 4 M. Schulz and E. Auth, “Advanced Automatic Test Pattern
[11]. The remainder of the table lists some additional cir-  Generation and Redundancy Identification Techniquresg.
cuits. Fault Tolerant Computing Symgp. 30-34, June 1988.
[15] B. Rohfleisch, B. Wurth, K. Antreich “Logic Clause Analysis
: for Delay Optimization”, Proc. DAC, 1995, pp. 668-672.
9 Conclusions [16] M. R. C. M. Berkelaar, L. P. P. P. van Ginneken: “Efficient

. . . . Orthonormality Testing for Synthesis with Pass-Transistor
AS demonstrated N the table, our |mp|ementat|on IS Se|ectors"Digest Int. Conf. on Computer Aided Des|gp

much faster then the optimization algorithm of [11], with 256-263, Nov. 1995.
competitive results. Further speed improvements are possi17] M. Yuguchi, Y. Nakamura, K. Wakabayashi, T. Fujita “Multi-
ble, because our implementation did not use Theorem 6. Level Minimization based on Multi-Signal Implications”,
From the results on some very large circuits, such as s38417, proc. DAC, 1995, pp. 658-662.
we can see that our approach scales well. The above theo-

. N TABLE 1
rems are applicable to other ATPG based optimizations gg

well. It seems likely that the algorithms of [2] [3] [5] [11] SIS
[15] [17] can take advantage of our theorems to speed up rjin Hannibal |Rewire |boolean|Hannibal |Rewire
time. Circuits  Jcpu (sec) |cpu (sec)|(lits) (lits) (lits)
[C3540 6815 856 1299 1164 147
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