
Optimization of Custom MOS Circuits by Transistor Sizing
Andrew R. Conn, Paula K. Coulman, Ruud A. Haring, Gregory L. Morrill, Chandu Visweswariah

IBM T. J. Watson Research Center and IBM Microelectronics Division
Yorktown Heights, NY, Austin, TX and Burlington, VT

Abstract
Optimization of a circuit by transistor sizing is often a slow, tedious
and iterative manual process which relies on designer intuition. Cir-
cuit simulation is carried out in the inner loop of this tuning proce-
dure. Automating the transistor sizing process is an important step
towards being able to rapidly design high-performance, custom cir-
cuits. JiffyTune is a new circuit optimization tool that automates the
tuning task. Delay, rise/fall time, area and power targets are accom-
modated. Each (weighted) target can be either a constraint or an
objective function. Minimax optimization is supported. Transistors
can be ratioed and similar structures grouped to ensure regular lay-
outs. Bounds on transistor widths are supported.

JiffyTune uses LANCELOT, a large-scale nonlinear optimization
package with an augmented Lagrangian formulation. Simple bounds
are handled explicitly and trust region methods are applied to mini-
mize a composite objective function. In the inner loop of the optimi-
zation, the fast circuit simulator SPECS is used to evaluate the
circuit. SPECS is unique in its ability to efficiently provide time-
domain sensitivities, thereby enabling gradient-based optimization.
Both the adjoint and direct methods of sensitivity computation have
been implemented in SPECS.

To assist the user, interfaces in the Cadence and SLED design
systems have been constructed. These interfaces automate the spec-
ification of the optimization task, the running of the optimizer and the
back-annotation of the results on to the circuit schematic.

JiffyTune has been used to tune over 100 circuits for a custom,
high-performance microprocessor that makes use of dynamic logic
circuits. Circuits with over 250 tunable transistors have been suc-
cessfully optimized. Automatic circuit tuning has been found to facil-
itate design re-use. The designers’ focus shifts from solving the
optimization problem to specifying it correctly and completely. This
paper describes the algorithms of JiffyTune, the environment in
which it is used and presents a case study of the application of Jiffy-
Tune to individual circuits of the microprocessor.

1. Introduction, motivation and previous work
Designers often spend a lot of time manually sizing their schematics
for area, delay and power, particularly in the context of custom
designs. The tuning process is iterative, slow, tedious and error-
prone, with circuit simulation in the inner loop. The updating of tran-
sistor widths from one iteration to the next relies on human intuition.
Automating the circuit optimization process is an important step
towards rapidly designing high performance, custom circuits. Auto-
matic circuit tuning has the additional benefit of facilitating design
adaptation and re-use. Hence an automatic tuning (and retuning)
capability is crucial to the productive design of custom circuits.

There have been many attempts to automate the transistor sizing
problem. The first class of methods [1, 2] is based on static timing
analysis [3] in which the circuit is assumed to consist of pre-charac-
terized library cells. The delay of each cell is available as an analytic
function of the sizes of the transistors in the cell. Total path delay is
expressed as a function of the individual transistor widths and opti-
mized. In particular, if the Elmore delay model [4,5] is used, this
overall delay is seen to be a posynomial function (a particular alge-

braic form) of the transistor widths. By a simple mapping of vari-
ables, the objective is converted to a convex function [1], and hence
any minimum of the latter is guaranteed to be a global minimum.
The advantages of static-timing-based methods include efficiency,
ability to handle large designs and freedom from requiring input pat-
terns to carry out the tuning. One of the problems with these methods
is that they are not applicable to full-custom circuit designs, since
static timing analyzers usually rely on pre-characterized library
cells. Second, the accuracy of static timing analysis is limited (to
about in our experience) making it unsuitable as a basis for
tuning high-performance custom circuits. Finally, static timing anal-
ysis is prone to thefalse path problem, so the optimizer may be
working hard to tune paths that are either irrelevant or can never be
sensitized. Recently, power optimization has been proposed in this
general framework [6]. Power is measured by probabilistic methods
[7] and then approximated by a posynomial function. Simultaneous
tuning of drivers and interconnect has been proposed in [8, 9].

Tuning based ondynamic simulation overcomes many of the
above limitations of static tuning. The accuracy is as good as the
simulator employed, false paths are not a problem and the method is
applicable to any custom circuitry that the simulator can analyze.
Appropriate input patterns must be provided by the user. These
methods [10, 11] typically run SPICE in the inner loop to optimize
such circuit performance functions as gain, area, delay and phase
margin. However, using SPICE iteratively is computationally expen-
sive and limits the size of the circuit that can be tuned. From an over-
all design perspective, we see static and dynamic methods
complementing each other at different stages of the methodology,
depending on the type of design.

In this paper, we present a method for tuning custom MOS cir-
cuits that uses dynamic simulation andgradient-based optimization.
Our ability to compute gradients efficiently is crucial to the success
of this approach. JiffyTune is a prototype implementation of our
method. An overview of JiffyTune is presented in Section 2. Jiffy-
Tune uses SPECS [12, 13], a fast circuit simulator, to evaluate the
circuit and provide function and gradient values. SPECS and the
computation of sensitivities are the topics of Section 3. The optimi-
zation engine used in JiffyTune is LANCELOT [14, 15, 16], a large-
scale nonlinear programming package that handles simple bounds
explicitly and accommodates general constraints with an augmented
Lagrangian formulation. LANCELOT has been customized to the
circuit tuning problem. The numerical methods involved in the non-
linear optimization are described in Section 4. To make the tuning
environment productive and intuitive, interfaces have been built in
two different design environments. Section 5 is devoted to the con-
cepts guiding these interfaces and their benefits. JiffyTune has been
used on many custom, dynamic-logic circuits of a high-performance
microprocessor. A case study of the application of JiffyTune to this
chip design, along with benchmarks, is presented in Section 6, fol-
lowed by a section containing conclusions and future work.

25%±

ICCAD ’96
1063-6757/96 $5.00 1996 ΙΕΕΕ

2. Overview of JiffyTune
This section provides an overview of the various high-level software
components of JiffyTune, as depicted in Figure 1. Subsequent sec-
tions contain detailed descriptions of the individual components.

The JiffyTune “engine” solves the following problem. Given a
circuit schematic, input signals, a list of tunable transistors with ini-
tial widths and a set of circuit performance requirements, determine
the optimal assignment of transistor widths to tunable transistors in
order to achieve the requirements. The user interface makes it conve-
nient for the user to specify the problem, and visualize and accept the
results of optimization.

2.1. JiffyTune
The JiffyTune block in Figure 1 performs the administrative portion
of the tuning task. A control file grammar has been defined for the
specification of circuit optimization problems. The control file con-
tains the following information.

Parameters: This section contains a list of tunable transistors,
their initial widths and bounds. Tunable transistors can be ratioed to
other tunable transistors. Further, the user interface allowsgrouping
of instances of similar structures so that they track each other during
tuning. Thus, for example, the cells of an -bit wide multiplexer can
be grouped to ensure that the cells stay identical through the tuning
process and thus lend themselves to a structured, regular layout.

Measurements and functions:A measurement is either a cross-
ing-time, power or area measurement. In the absence of layout infor-
mation, area is modeled by the sum of the tunable transistors’ widths.
Functions consist of any linear combination of measurements. Thus
delays and rise/fall times are typically the difference of two crossing
times. Each function has a weight, a target and a relation. A relation
of “less than” implies that this function should be less than the target
value. Similarly, relations of “greater than” and “equal to” are
allowed. Alternately, a function can be “minimized” which means
that the optimizer will try to decrease the value of this function as
much as possible. Weights can be used to explore various trade-offs
in tuning the circuit; they are especially required when functions of
different quantities (area, delay, power) are being combined into a
composite objective function.

Any number of functions can be grouped into aminimax function.
A minimax function implies that the largest of some number of func-
tions needs to be minimized or must meet a constraint. For example,
the statement of the problem might be to minimize the delay of the
worst of three paths through some combinational logic block.

Controls: This section provides administrative information like
the maximum number of iterations, the layout grid for rounding tran-

LANCELOT

JiffyTune

SPECS with time-
domain sensitivity

N
ew

T
ra

ns
is

to
r

w
id

th
sF

un
ct

io
n,

gr
ad

ie
nt

va
lu

es

C
irc

ui
t,

m
od

el
s,

op
tim

iz
at

io
n

cr
ite

ria

O
pt

im
iz

ed
 c

irc
ui

t

JiffyTune “Engine”
tr

an
si

st
or

w
id

th
s

U
se

r
in

te
rf

ac
e

P
ro

bl
em

 s
pe

ci
fic

at
io

n

U
se

r
in

te
rf

ac
e

B
ac

k-
an

no
ta

tio
n

Figure 1. High-level view of JiffyTune.

n

sistor widths at the end of optimization and the location of the device
model files.

JiffyTune reads the control file and internally represents the
problem in a format that is understood by LANCELOT. JiffyTune
also provides to LANCELOT a callable routine that will accept a set
of transistor widths, perform a SPECS simulation, and return func-
tion and gradient values in the form required by LANCELOT. Then
JiffyTune begins a LANCELOT optimization. At each iteration, Jif-
fyTune keeps track of the best results so far. One of the main func-
tions of the JiffyTune block is tochain rule and combine gradients
to provide to LANCELOT the gradients of various functions with
respect toindependent variables only. Typically, 25 to 30 iterations
are required for convergence. The default maximum number of iter-
ations in JiffyTune is 50. The recently implementedslack updating
method described in Section 4.2 has led to fewer iterations being
required in general.

2.2. SPECS
SPECS is a fast circuit simulator that uses simplified device models
and event-driven techniques. JiffyTune calls SPECS in the inner
loop to evaluate the circuit, and provide function and gradient val-
ues. SPECS and its sensitivity computation capabilities are
described in Section 3.

2.3. LANCELOT
LANCELOT is a large-scale nonlinear optimization package that
handles simple bounds and general constraints. JiffyTune provides
the problem description and initial transistor sizes to LANCELOT.
LANCELOT repeatedly calls SPECS with different transistor size
settings, and builds a model of the “performance surface” of the cir-
cuit. It uses sophisticated nonlinear programming techniques to min-
imize the objective function. Details regarding LANCELOT and its
application to the circuit tuning problem are provided in Section 4.

In addition to LANCELOT, the Levenberg-Marquardt [17] and
Minos [18] optimization packages have been integrated into Jiffy-
Tune. The optimization testing environment described in [19] was
used to integrate Minos into JiffyTune. The Levenberg-Marquardt
method is limited since it only performs unconstrained optimization
and is relatively unsophisticated. The Minos integration has been
used only for comparisons and “sanity checks.”

2.4. The user interface
JiffyTune requires a knowledgeable user to carefully specify the
optimization problem, and greedily takes advantage of any unspeci-
fied aspects. Further, the engine requires a control file that is difficult
to create manually, particularly for large circuits. The user interface
helps the user concentrate on the specification of the optimization
problem by providing an intuitive interface and eliminating the
tedium of dealing with a file-driven tool. It also provides facilities for
back-annotation of the results of tuning. Section 5 is devoted to a
discussion of the environment in which JiffyTune is used and the
description of the interface.

3. SPECS and time-domain sensitivity computation
SPECS (SimulationProgram forElectronicCircuits andSystems) is
a fast circuit simulation program. SPECS is on the average 70x faster
than AS/X, an internal traditional circuit analysis program [20] like
SPICE. SPECS uses simplified device models and event-driven
techniques to efficiently simulate MOSFET circuits in the time-
domain, and has been used in production mode in various integrated

circuit designs. JiffyTune uses SPECS to evaluate the circuit being
optimized. However, this paper will not describe SPECS in any
detail. The reader is referred to [12, 13, 21]. The device modeling
assumptions in SPECS restrict its relative timing accuracy to ,
and hence JiffyTune can only tune to within this accuracy limit.

3.1. Sensitivity computation
SPECS uses simplified device models that consist of piecewise con-
stant characteristics in multiple dimensions and grounded, lin-
ear capacitances. These simplifications allow efficient, incremental
time-domain sensitivity computation [22, 23, 24]. Both the adjoint
[25, 21] and direct [26] method have been implemented. In the direct
method, branch constitutive relations (device characteristics) are
directly differentiated with respect to the sensitivity parameter of
interest. The circuit reflecting these differentiated equations, called
the sensitivity circuit, has the same topology as the original circuit.
Since SPECS uses piecewise constant device models, the sensitivity
circuit consists ofdisconnected capacitances for large sub-intervals
of time, with occasionalimpulses of currentsflowing between these
capacitances at times corresponding to events in the nominal simula-
tion. Thus the solution of the sensitivity circuit is extremely efficient.
In the direct method, the sensitivities ofall functionswith respect to
one parameter are computed with a single solution of the sensitivity
circuit.

In the adjoint method, elements are replaced byadjoint equiva-
lents based on Tellegen’s theorem [25, 21]. Again, the circuit is very
simple and lends itself to efficient solution. In this case, however,
time is run backwards in the adjoint circuit, and the waveforms of the
adjoint circuit areconvolved with those of the original circuit to
obtain the required sensitivities. The gradients ofone function with
respect toall parameters are computed in a single solution of the
adjoint circuit. Hence, when there are sufficiently more parameters
than functions to justify the overhead of convolution, the adjoint
method is advantageous.

Once the approximation in the simplified device models is
accepted, the computation of gradients is exact. After the sensitivity
circuit is solved in either method, gradients are chain-ruled and com-
bined to obtain the sensitivity of each function with respect toall the
ramifications of variation of the tunable transistors’ widths. When
the width of a transistor varies, its source and drain diffusion capaci-
tance and all the intrinsic MOSFET parasitic capacitances change.
Each of these is submitted as an internal sensitivity parameter and
then all the gradients are postprocessed and combined appropriately.
The flavor of these computations is captured by the following simpli-
fied equation.

(1)

where is the sensitivity function of interest, is the transistor
width (sensitivity parameter), is the effective width and

, and are the total parasitic capacitance at
the gate, source and drain nodes, respectively. (1) is further expanded
in terms of the device model parameters.

Voltage crossing sensitivities are expressed in terms of the nom-
inal voltage waveform and transient sensitivity waveform of the
appropriate signal, both sampled at the time of the voltage crossing of

5%±

i v–

df
dW

∂f
∂Weff

dWeff

dW
-------------⋅ ∂f

∂CDtotal

dCDtotal

dW
----------------------⋅+=

∂f
∂CStotal

dCStotal

dW
--------------------⋅ ∂f

∂CGtotal

dCGtotal

dW
----------------------⋅+ +

f W
Weff

CGtotal CStotal CDtotal

interest. In the case of the adjoint method, the transient sensitivity
waveform is sampled by expressing the required value as a convolu-
tion integral and choosing to excite the adjoint circuit by an appro-
priate current source connected to that node.

3.2. Sensitivity benchmarks
The number of time-domain gradients computed during a typical Jif-
fyTune run may be in the millions! Hence gradient computation
must be extremely efficient to make this process feasible. A dynamic
logic “branch scan” circuit with 144 MOSFETs was chosen to dem-
onstrate the efficiency of gradient computation. The circuit was sim-
ulated in SPECS for a simulation interval of 27 ns. The CPU time for
simulation was 2.05 s on an IBM Risc/System 6000 model 590.
Then the same simulation run was carried out with 36 sensitivity
functions (crossing times) and 104 MOS transistor widths as sensi-
tivity parameters. Since there were 64 diffusion and other parasitic
capacitances dependent on these 104 transistor widths, the total
number of sensitivity parameters was 168. The number of gradients
computed in this benchmark was 6,048, since SPECS finds the gra-
dient of every sensitivity function with respect toeach sensitivity
parameter (our Jacobian matrix is dense). The number of sensitivi-
ties required was unusually large in this example, which was chosen
to showcase the efficiency of gradient computation. The run times of
SPECS with both the adjoint and direct method on this benchmark
circuit are shown in Table 1. From the table, we see that the total run
time for a JiffyTune iteration would be 24.94 s (assuming that the
direct method were used). For comparison, the AS/X [20] run time
on this circuit (with no gradient computation, of course) was 40.11
s. Hence, even on this modest example, JiffyTune can almost com-
plete two iterationswith gradient computation in the time it takes
AS/X to simulate the nominal circuit once.

As can be seen from the table, the overhead of computingone
gradient is a fraction of a percent of the original simulation time,
which works out to 5 ms or less of CPU time in this example! The
overhead ofone sensitivity circuit analysis is about 7% for the direct
method and about 40% for the adjoint method. Note that the number
of runs in the adjoint method is equal to the number of functions,
while it is equal to the number of sensitivity parameters in the direct
method. The higher overhead in the adjoint method is accounted for
by the convolution required between the waveforms of the original
circuit and the sensitivity circuit. SPECS inspects the number of
functions and the number of parameters and automatically makes a
judgment, based on a simple heuristic, as to which method will be
more efficient. The heuristic favors the adjoint method if the number
of parameters exceeds the number of functions by a factor of 5. This
heuristic appears to be effective in practice.

Table 1: Sensitivity computation run time.

Run time in CPU seconds
Adjoint
method

Direct
method

Total run time 32.38 24.94
Run time for sensitivity computation only 30.32 22.89
Run time per sensitivity circuit solution 0.84 0.14
Run time per sensitivity circuit solution as a
fraction of simulation time (2.05 s)

40.78% 6.65%

Run time per gradient computation 5.01e-3 3.78e-3
Run time per gradient evaluation as a fraction of
simulation time

0.24% 0.18%

4. Nonlinear optimization in JiffyTune
4.1. LANCELOT
The optimization engine of JiffyTune is based upon the large-scale
nonlinear programming package LANCELOT. The kernel algorithm
is an adaptation of a trust region method to the general nonlinear opti-
mization problem subject to simple bounds. The method is extended
to accommodate general constraints by using an augmented
Lagrangian formulation and the bounds are handled directly and
explicitly via projections that are easy to compute.

In the context ofunconstrained optimization, trust region meth-
ods, combining an intuitive framework with a powerful and elegant
theoretical foundation, have led to robust numerical implementa-
tions. An excellent reference is [27]. The basic idea of trust region
methods is to approximately minimize a model of the objective func-
tion in a local neighborhood (called thetrust region) centered at the
current point. The objective function is modeled about the current

point , where is the iteration count and is the -vector

of variables. To minimize the model in the trust region, a step is

taken at iteration to arrive at the point . The function is eval-
uated at this point to determine how well the model predicted the
actual change in the objective function. If good descent is obtained,
the approximate minimizer is accepted as the next iterate

 and the trust region is expanded. If moderate

descent is obtained, the trust region size remains unchanged, but the
step is accepted. Otherwise, no new point is accepted and the trust
region is contracted. The beauty of such an approach is that, when the
trust region is small enough and the problem smooth, the approxima-
tion is good, provided the gradients are sufficiently accurate. More-
over, assuming one does at least as well as the minimum along the
steepest descent direction of the model within the trust region (which
determines the so-called Cauchy point), one can ensure convergence
to a stationary point. In addition, the trust region is eventually
expanded so that it does not interfere with the subsequent iterates, and
thus, assuming that in this situation the underlying algorithm is suffi-
ciently sophisticated, one can ensure fast asymptotic convergence.

The extension of the above ideas toproblems with simple bounds
is relatively straightforward and is illustrated in Figure 2, for a qua-
dratic model function and an trust region. Essentially, one gener-
alizes the Cauchy point (in the figure) to the minimum along the
projected gradient path () within the trust region, where
the projection is with respect to the bounds (either those provided by
the user or implicit in the trust region). As in the previous case, global
convergence can be guaranteed, provided one does at least as well as
the generalized Cauchy point (). If a variable, as determined by the
generalized Cauchy point, is at a bound it is said to be anactivity.
Unbounded variables arefree. Activities are fixed temporarily, thus
reducing the dimensionality of the search space (from two to one in
the figure). Then, using only the free variables, the model of the
objective function is further minimized within the feasible region and
within the trust region (is optimal in Figure 2). Thus one obtains
better convergence, and ultimately, satisfactory asymptotic conver-
gence. Updating of the trust region size and current point is handled
in exactly the same way as it is in the unconstrained case.

It has been proved [14] that this method converges to a Kuhn-
Tucker point [29]. Moreover, the correct active simple bounds are

x
k ℜn∈ k x n

s
k

k x
k

s
k

+

x
k 1+

x
k

s
k

+←

l∞
v
x

k
u– w–

w

w

identified after a finite number of iterations assuming that strict com-
plementarity is satisfied and the activities determined by the gener-
alized Cauchy point are kept active during the rest of the iteration
when the model is further reduced. Details are given in [14].

The extension to handle equality constraints is carried out by
means of an augmented Lagrangian function

. (2)

 is minimized subject to the explicit bounds, using the earlier algo-
rithm. Here is the objective function, the variables of the opti-
mization, is an equality constraint with being the
corresponding Lagrangian multiplier and the penalty parameter
used to dynamically weight feasibility. Inequality constraints are
converted to equality constraints by first introducing slack or surplus
variables, if necessary, and then formulating the augmented
Lagrangian as before. This approach can be summarized as follows:
1. Test for convergence using the two following conditions.Suffi-

cient stationarity -- the projected gradient of the augmented
Lagrangian with respect to the simple bounds is sufficiently
small, andsufficient feasibility -- the norm of the constraint vio-
lations is sufficiently small.

2. Use the simple bounds algorithm to find an approximate station-
ary point (minimizer) of subject to simple bounds.

3. If sufficiently feasible, update the multipliers and decrease
the tolerances for stationarity and feasibility.

4. Otherwise, give more weight to feasibility (decrease) and
reset tolerances for stationarity and feasibility.

It is possible to show, under suitable conditions, that convergence to
a first-order stationary point for the nonlinear programming problem
is attained. Further, if there is asingle limit point, eventually the pen-
alty parameter is not reduced. Details of these and other theoreti-
cal properties are given in [15] and [28].

A significant cost in the optimization is solving a linear system
of equations. Typically these arise from the necessity to determine an
approximate stationary point for a quadratic function -- equivalently,
the necessity to solve a linear system whose coefficient matrix is
symmetric. If the system is large, there are two approaches. The first
is to use direct methods based on multifrontal techniques (see Chap-
ter 10 of [30]). Our experience to date, however, has been that an
iterative approach using preconditioned conjugate gradients is more
robust. All our reported numerical results with JiffyTune use this
method. The appeal of conjugate-gradient methods for large-scale
optimization is that they are particularly simple and only require that
we store a few vectors. Moreover, they can be significantly acceler-
ated by the use of preconditioners. Perhaps the best known conjugate

∇f–

x*

x
k

a

b

v

w

Trust region

Figure 2. Illustration of generalized Cauchy point.

min f x1 x2,()

0 x1 a≤ ≤

0 x2 b≤ ≤

x1

x2

u

Φ x λ µ, ,() f x() λi ci x()
i 1=

m

∑ 1
2µ
------ ci x() 2

i 1=

m

∑+ +=

Φ
f x

ci x() λi
µ

Φ
λi

µ

µ

basis for a convex quadratic form is the set of eigenvectors of the
Hessian. The essential result is that at each iteration, the conjugate
gradient methodminimizes the quadratic model in the space spanned
by the corresponding conjugate basis. If we can cluster eigenvalues
(i.e., approximately have multiple eigenvalues) we can reduce the
number of iterations for good approximations to minimizers from
close to to close to the number of clusters. The perfect way to do
this in the quadratic case is to precondition with the Hessian inverse
-- but then this is equivalent to carrying out Newton’s method. Sur-
prisingly, one can often do very well by using crude approximations
to the Hessian (diagonal matrices, for instance). A good description
of conjugate methods is given in [29], Sections 4.8.3 and 4.8.5. The
LANCELOT package offers several preconditioners, and the Schna-
bel-Eskow preconditioner [31] is used in JiffyTune. A detailed refer-
ence on the LANCELOT package, including all the available options,
is given in the book [16] that accompanies the original software.

4.2. Application of LANCELOT to JiffyTune
In the context of JiffyTune it was necessary to make certain modifi-
cations to LANCELOT to account for the fact that the function and
gradient values from SPECS, although accurate to within small per-
turbations, are noisy. The introduced errors are small but significantly
larger than machine precision. Because of the complexity of general
nonlinear optimization, many initializations (such as the choice of the
trust region radius or quadratic model) are based upon intelligent
guesses, which cannot, of course, be ideal in all circumstances. In the
worst case, for functions without noise, unfortunate choices can
result in inefficiencies, but in the noisy case they can be insurmount-
able. A trivial example is if movement of less than 0.001 microns in
transistor width is considered negligible, it may be disastrous if an
automatic choice of the initial trust region size produces a radius that
is much smaller. For similar reasons, we had to introduce looser tol-
erances for feasibility, line search discontinuities and bound activi-
ties, which are based upon machine precision in the original software.
Finally, in order to stop gracefully and predictably we needed to con-
sider step sizes beneath which further progress is unlikely and relate
stopping criteria to this step size in a robust and consistent manner.

Two other enhancements deserve special mention. Slack/surplus
variables corresponding to satisfied inequalities are updated at each
iteration so that the corresponding equality is satisfied exactly, when-
ever such an update is consistent with the convergence theory; the
result has been a reduction in the number of iterations to convergence.

Minimax optimization is handled by the introduction of an addi-
tional linear variable and reformulating the problem as a general non-
linear programming problem. For example, suppose one had the
problem

. (3)

This problem can be reformulated as

(4)

5. JiffyTune interface and environment
The JiffyTune engine as described above is driven by a textual control
file that describes the optimization problem. Manual preparation and
editing of such a file is tedious and error-prone. Also, the sophistica-

n

minimize
x ℜ

n
∈

maximum
i M 1 2 … m, , ,{ }≡∈

fi x()

minimize
z ℜ∈ x, ℜ

n
∈

z

subject to the inequality constraintsz fi x()– 0,≥ 1 i m.≤ ≤

tion of LANCELOT and the choices of algorithms and tolerances
thereof are not directly relevant to the end user. Thus, from the incep-
tion of the JiffyTune project, it was realized that a good human inter-
face and an intuitive abstraction of its use and behavior would be
crucial to acceptance of the tool by circuit designers. Interfaces were
built to run the tool from the Cadence [32] and SLED [33] schematic
design systems. The interface in the Cadence design environment
was evolved simultaneously with the JiffyTune engine. Integrating
the tool into such a framework capitalizes on the familiarity of the
user with the schematic design environment, and lends a visual and
interactive aspect to the tool. Many of the complexities are hidden
from the designer, although care was taken to allow full access to all
tool functions, if the designer so requires. The basic functions of the
interface are listed below.

Specification of tuning parameters: Tunable transistors are spec-
ified simply by selecting transistors or gates on a hierarchical sche-
matic. The tunable transistors/gates are visually marked by a flag to
indicate tunability. Facilities are provided to ratio transistors. Thus
the two NFETs in a NAND gate can be forced to have the same width
or adhere to a given tapering ratio. In addition, similar instances
(transistors, gates or higher-level functional blocks) can be
“grouped” together, to ensure that corresponding transistors in those
blocks track during tuning.

Specification of measurements and functions: Presently, the
interface supports delay, transition time (slew), area and power func-
tions. For delay and transition times, net selection is done directly on
the schematic. Power functions are specified by selecting the
required voltage source, again directly on the schematic. In all cases,
the user is prompted to provide a relation and target value as
described in Section 2.1. In the schematic environment, with no
knowledge of layout, area targets are approximated by the sum of the
widths of the tunable transistors. The appropriate linear combination
of measurements is written to the control file in each case. Minimax
functions can be defined over any set of existing measurements.

Specification of controls: Administrative information such as the
maximum number of iterations, file location of device models and
layout grid for rounding transistor widths at the end of optimization
can be specified in a form that is pre-filled with project-specific
defaults.

Execution of JiffyTune: After specifying parameters, functions
and controls, the designer can ask for all this information to be writ-
ten to a control file, which can be inspected or edited if required.
Then the designer can launch the JiffyTune engine, whereupon the
progress of the optimization is displayed.

Back-annotation of the results: The results of a JiffyTune run are
back-annotated onto the schematic assuggested transistor widths
next to the transistors (or as new parameters next to gates). The
designer can then accept these new widths/parameters, selectively or
as a whole. Further, a facility is provided to back-annotate final
waveform characteristics, such as delay through a gate or rise time
of a net, directly onto the schematics, relieving the designer of the
need to browse through simulation data using a waveform viewer.

Utilities: As a courtesy to the designer, the JiffyTune menu also
includes facilities replicated from other areas of the schematic
design environment, such as schematic checking, netlisting and
automatically adjusting the number of fingers on each transistor, to
create a single integrated tuning environment. Portability to various
different sites and projects has been achieved by carefully separating

the main code of the user interface from configurable site- and
project-specific code.

Circuit requirements must be specified with care, since the opti-
mizer will take advantage of any unspecified aspects. For example,
area minimization will shrink to its minimum size a transistor that
does not contribute materially to any measured transition. Thus, the
tool enforces clear expression of circuit requirements that otherwise
are often tacit. Since these circuit requirements and attributes logi-
cally belong with the circuit (they are indeed part of the intellectual
effort of designing the circuit), the tuning parameters and functions
are stored in the design database, either as instance properties (tun-
ability, upper and lower bounds on transistor widths) or as schematic
properties (grouping, functions). This practice also encourages the
reuse of circuits; if a circuit has been adequately specified, it can eas-
ily be retuned.

6. Case study of JiffyTune use
JiffyTune was applied to tune custom circuits in the critical paths of
a high-performance, dynamic-logic microprocessor. The circuits con-
sisted of a mix of transistors and continuously parameterized gates.
Jiffytune made it possible to refine the transistor sizes of circuits more
quickly and thus rapidly respond to design changes late in the chip
design cycle. Thus more flexibility was preserved in changing the
specifications of circuits. The Cadence graphical user interface made
it possible for designers to use the tool with little or no training.

JiffyTune was used by 41 designers during about 1,200 interac-
tive sessions to tune 168 unique circuits. Over 2,200 successful Jiffy-
Tune runs were carried out, showing that some circuits were re-tuned
multiple times. The results of tuning on one particular benchmark cir-
cuit are presented below.

Table 2 lists the results of running JiffyTune on a 12-way priority
decode circuit under four different conditions. The circuit contains 70
MOSFETs and the simulation was run for 35 ns. The tuning runs all
had 64 tunable transistors, of which 16 were independent and 48
dependent. The 17 functions to be optimized included the rising delay
through four critical paths, the falling delay through those paths, the
rise/fall times on each of the above 8 transitions and an area con-
straint. For confidentiality purposes, the delay requirement on the
worst of the critical paths has been normalized to 500 time units in
our report on this benchmark. The table lists the rising and falling
delay of the four paths being tunedas predicted by AS/X on the final
design (the worst of the 8 delays for each run is shown in bold), the
total tunable transistor area of the circuit and the CPU time required
to run JiffyTune on an IBM Risc/System 6000 model 590. The first
JiffyTune run (HOT) started from a circuit that had previously been
manually tuned (Manual). The worst delay through the circuit
improved by 7.5% and the area decreased by 5.0%. The second Jiffy-
Tune run (COLD) started from an untuned circuit in which initial
transistor sizes were set to the same default value as they would be
for a “new design.” Comparing the results of (HOT) and (COLD)
shows that the poor start point did not change the final results, but the
optimizer had to work harder. The next JiffyTune run (DELAY) was
set up to cause JiffyTune to reach the timing goal of 500 time units at
all cost. JiffyTune was configured as in run (HOT), only with a
weight on the area constraint that was a tenth of the previous value.
The table shows that the goal was reached but at a high cost in tran-
sistor area. In general, we have found that it is important to impose an
area constraint. Without an area constraint, JiffyTune converges to

one of many equally fast circuits depending on the start point, with
some solutions more efficient in area than others. The final run used
the same start point and weights as HOT, but formulated the problem
as a minimax optimization. A solution with a slightly higher delay
but lower area was obtained in this case.

JiffyTune in its present form is not directly applicable to designs
in which gates are chosen from a fixed library of cells with a finite
set of discrete power levels. JiffyTune performs well on hierarchical
schematics with leaf cells containing any mix of transistors and con-
tinuously parameterized gates. In practice, JiffyTune handles circuits
containing pass transistors well, in contrast to optimizers based on
static timing analysis, since SPECS yields electrically true sensitiv-
ities taking into account details of the device model such as body
effect. As new custom circuits are designed, JiffyTune will make it
possible to speed up the design process, make more refined designs
and provide better information about performance trade-offs.

7. Conclusions and future work
In this paper we described JiffyTune, a program that optimizes cir-
cuits by adjusting transistor sizes. JiffyTune makes use of fast simu-
lation and time-domain gradient computation in the circuit simulator
SPECS, and advanced nonlinear numerical techniques in the optimi-
zation package LANCELOT. Delay, rise/fall time, area and power
optimization have been implemented. The optimization system is
flexible and allows ratioing of transistors and grouping of identical
instances. An intuitive interface including back-annotation of opti-
mization results on to the schematic has been developed.

The environment in which a circuit will be used and the required
performance are estimated long before the chip is built. By the time
the circuit is integrated onto the chip, it may no longer be optimally
tuned, much to the frustration of the design engineer. Changes in
loading, changes in the specifications, changes in parasitics after
extraction, changes in technology device models and remapping to a
new technology are common occurrences during the course of a
project. In such situations, retuning at the push of a button without
tedious re-specification is extremely useful.

JiffyTune has been successfully used to tune a number of circuits
on the critical paths of a high-performance microprocessor chip
which makes liberal use of dynamic logic. It has been particularly
useful in tuning tricky pass-gate circuits and has been found to
enhance design re-use. Further, since the optimization process has
been made easy and automatic for the designer, a paradigm shift has
been observed; the issue becomes how to correctly specify the opti-

Table 2: JiffyTune results for 12-way priority decode circuit;
all delays are normalized to a requirement of 500 time units.

Manual HOT COLD DELAY MINI-
MAX

Path #1, falling delay 555 494 488 483 497
Path #1, rising delay 471 475 473 469 510
Path #2, falling delay 535 495 495 483 506
Path #2, rising delay 494 488 488 472 524
Path #3, falling delay561 519 517 497 544
Path #3, rising delay 497 519 519 497 527
Path #4, falling delay 497 494 491 484 516
Path #4, rising delay 462 497 496 485 476
Area 893 844 849 1148 800
JiffyTune iterations -- 9 26 16 41
Run time (CPU s) -- 172 465 289 716

mization problem rather than solving the optimization problem itself.
There are a number of avenues for future work. “Event-driven

convolution” is expected to speed up the computation of gradients by
the adjoint method in SPECS. Repeated solution runs of the sensitiv-
ity or adjoint circuit are independent and therefore amenable to par-
allel processing. Occasionally, we encounter “non-working circuits”
in the course of the optimization, when a transition to be measured
does not occur; recovery from such situations is an interesting prob-
lem. Extension to semi-infinite constraints [10] would allow optimi-
zation of circuits while taking into account environment variations
such as temperature and power supply voltage. Reformulating the
problem to take advantage ofgroup partial separability in LANCE-
LOT [16, 34] would speed up the optimization. If the optimization
could be formulated as a mixed integer/continuous problem, transis-
tor ordering could be part of the optimization procedure. In addition,
applications to IC manufacturability are being considered.

8. Acknowledgments
The authors would like to thank I. Elfadel, E. Chiprout, D. Brand and
S. Nassif for their suggestions and careful reading of the manuscript.

9. Bibliography
[1] J. P. Fishburn and A. E. Dunlop, “A posynomial programming approach to
transistor sizing,” IEEE International Conference on Computer-Aided
Design,pp. 326-328, November 1985.
[2] D. Marple, “Transistor size optimization in the Tailor layout system,” In
Proceedings of theACM/IEEE Design Automation Conference, pp. 43-48,
June 1989.
[3] R. B. Hitchcock, Sr., G. L. Smith and D. D. Cheng, “Timing analysis of
computer hardware,”IBM Journal of Research and Development,pp. 100-
105, January 1982.
[4] W. C. Elmore, “The transient analysis of damped linear networks with par-
ticular regard to wideband amplifiers,”Journal of Applied Physics, volume
19, number 1, 1948.
[5] P. Penfield and J. Rubinstein, “Signal delay in RC tree networks,”Proceed-
ings of the 2nd Caltech VLSI Conference, pp. 269-283, March 1981.
[6] S. S. Sapatnekar and W. Chuang, “Power vs. delay in gate sizing: conflict-
ing objectives?,”IEEE International Conference on Computer-Aided Design,
pp. 463-466, November 1995.
[7] F. Najm, “Probabilistic simulation for reliability analysis of CMOS VLSI
circuits,” IEEE Transactions on Computer-Aided Design of ICs and Systems,
pp. 439-450, volume CAD-9, April 1990.
[8] J. J. Cong and C.-K. Koh, “Simultaneous driver and wire sizing for perfor-
mance and power optimization,”IEEE Transactions on VLSI Systems,pp.
408-425, volume 2, number 4, December 1994.
[9] N. Menezes, R. Baldick and L. T. Pileggi, “A sequential quadratic pro-
gramming approach to concurrent gate and wire sizing,”IEEE International
Conference on Computer-Aided Design,pp. 144-151, November 1995.
[10] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli and A. L.Tits,
“DELIGHT.SPICE: An optimization-based system for the design of inte-
grated circuits,”IEEE Transactions on CAD of ICs and Systems,pp. 501-519,
volume CAD-7, number 4, April 1986.
[11] J.-M. Shyu and A. Sangiovanni-Vincentelli, “ECSTASY: a new environ-
ment for IC design optimization,”IEEE International Conference on Com-
puter-Aided Design, pp. 484-487, November 1988.
[12] C. Visweswariah and R. A. Rohrer, “Piecewise approximate circuit sim-
ulation,” in Proceedings of theIEEE International Conference on Computer-
Aided Design, November 1989.
[13] C. Visweswariah and R. A. Rohrer, “Piecewise approximate circuit sim-
ulation,” IEEE Transactions on CAD of ICs and Systems, pp. 861-870, July
1991.
[14] A. R. Conn, N. I. M. Gould and Ph. L. Toint, “Global convergence of a
class of trust region algorithms for optimization with simple bounds,”SIAM

Journal on Numerical Analysis, pp. 433-460, volume 25, 1988. See also same
journal, pp. 764-767, volume 26, 1989.
[15] A. R. Conn, N. I. M. Gould and Ph. L. Toint, “A globally convergent
augmented Lagrangian algorithm for optimization with general constraints
and simple bounds,”SIAM Journal on Numerical Analysis, pp. 545-572, vol-
ume 28, number 2, 1991.
[16] A. R. Conn, N. I. M. Gould and Ph. L. Toint,LANCELOT: a Fortran
package for large-scale nonlinear optimization (Release A), volume 17 of
Springer Series in Computational Mathematics, Springer Verlag, 1992.
[17] J. J. Moré, “The Levenberg-Marquardt algorithm, implementation and
theory,” in Numerical Analysis, G. A. Watson, Editor,Lecture Notes in math-
ematics 630, Springer-Verlag, 1977.
[18] B. A. Murtagh and M.A. Saunders,MINOS 5.1 User’s Guide, Technical
Report SOL 83-20R, Systems Optimization Laboratory, Department of Oper-
ations Research, Stanford University, Stanford, CA 94305, December 1983,
revised January 1987.
[19] I. Bongartz, A. R. Conn, N. Gould and Ph. L. Toint, “CUTE: constrained
and unconstrained testing environment,”ACM Transactions on Mathemati-
cal Software, pp. 123-160, volume 21, number 1, March 1995.
[20] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Quassemza-
deh and T. R. Scott, “Algorithms for ASTAP - a network analysis program,”
IEEE Transactions on Circuit Theory,pp. 628-634, volume CT-20, Novem-
ber 1973.
[21] L. T. Pillage, R. A. Rohrer and C. Visweswariah,Electronic circuit and
system simulation methods, McGraw Hill, 1995.
[22] T. V. Nguyen, P. Feldmann, S. W. Director and R. A. Rohrer, “SPECS
simulation validation with efficient transient sensitivity computation,” in
Proceedings of theIEEE International Conference on Computer-Aided
Design, pp. 252-255, November 1989.
[23] P. Feldmann, T. V. Nguyen, S. W. Director and R. A. Rohrer, “Sensitivity
computation in piecewise approximate circuit simulation,”IEEE Transac-
tions on CAD of ICs and Systems, pp. 171-183, February 1991.
[24] T. V. Nguyen, Transient sensitivity computation and applications,
Research Report Number CMUCAD-91-40, Carnegie Mellon University,
Pittsburgh, 1991.
[25] S. W. Director and R. A. Rohrer, “The generalized adjoint network and
network sensitivities,”IEEE Transactions on Circuit Theory,pp. 318-323,
volume CT-16, number 3, August 1969.
[26] D. A. Hocevar, P. Yang, T. N. Trick and B. D. Epler, “Transient sensitiv-
ity computation for MOSFET circuits,”IEEE Transactions on CAD of ICs
and Systems,pp. 609-620, volume CAD-4, number 4, October 1985.
[27] J. J. Moré, “Recent developments in algorithms and software for trust
region methods,” in A. Bachem, M. Grötschel and B. Korte, editors,Mathe-
matical Programming: The State of the Art, pp. 258-287, Springer Verlag,
Berlin 1983.
[28] A. R. Conn, N. I. M. Gould and Ph. L. Toint, “On the number of inner
iterations per outer iteration of a globally convergent algorithm for optimiza-
tion with general nonlinear equality constraints and simple bounds,” in D. F.
Griffiths and G. A. Watson, editors,Proceedings of the 14th Biennial Numer-
ical Analysis Conference, Dundee, pp. 49-68, Longmans, 1992.
[29] P. E. Gill, W. Murray and M. H. Wright,Practical Optimization,Aca-
demic Press, 1981.
[30] I. S. Duff, A. M. Erisman and J. K. Reid,Direct methods for sparse
matrices, Clarendon Press, Oxford, U.K., 1986.
[31] R. B. Schnabel and E. Eskow, “A new modified Cholesky factorization,”
SIAM Journal on Scientific and Statistical Computing, pp. 1136-1158, vol-
ume 11, 1991.
[32] Design Entry: Composer Users’ Guide 4.3, Cadence Design Systems
Inc., San Jose, CA, 1994.
[33] M. Rubin,View: A user tailorable interface for circuit design graphics,
IBM Technical Report, TR-19.90629, August 1990.
[34] M. D. Matson, L. A. Glasser, “Macromodeling and optimization of dig-
ital MOS VLSI circuits,”IEEE Transactions on CAD of ICs and Systems,pp.
659-678, volume CAD-5, number 4, October 1986.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

