
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Partial Scan Design Based on Circuit State Information

Dong Xiang Srikanth Venkataraman W. Kent Fuchs Janak H. Patel
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract
State information of a sequential circuit can be used to eval-
uate the complexity of test generation. The ratio of valid
states to all the states of the circuit is an important indi-
cator of test generation complexity. Using valid states ob-
tained via logic simulation, a testability measure based on
the density of encoding is proposed for scan flip flop selec-
tion. A second testability measure based on the test gener-
ation state information is also presented and used to select
scan flip flops. Cycles are broken selectively on the basis of
the circuit state information. Good fault coverage and test
efficiency are obtained when fewer scan flip flops than the
minimum cut set are selected. Experimental results are pre-
sented to demonstrate the effectiveness of the method.

1 Introduction

The complexity of sequential circuit ATPG is prohibitive
for large or highly sequential circuits. A variety of
partial scan design methods have been developed to re-
duce the complexity of the problem. They are usually
classified into the following three categories: structure-
based [4,5,7,8], testability-measure-based [6,7,9], and test-
generation-based methods. Additional methods include
layout-driven, timing-driven and retiming-driven methods.
In order to reduce test application time, techniques have
been developed for ordering scan flip flops or test sequences
after scan elements have been selected. Recent work has
also shown that state information and partial scan design

Supported in part by the National Science Foundation of China, in part
by ARPA under grant DABT63-95-C-0069, in part by the Semiconductor
Research Corporation under contract SRC 95-DP-109, and in part by the
Joint Services Electronic Program under grant N00014-96-1-0129.

can be used for fault diagnosis [13].

The structure-based approaches to scan selection utilize the
fact that test generation complexity is exponential in the
size and the number of the cycles. Typically, a circuit has
significantly fewer valid states than all the possible states.
For a cycle with size n, if 2n states are valid states, no
backtracking is needed in test generation because of the cy-
cle. If only a few states of the cycle are valid, then many
backtracks may be caused by the cycle during test gener-
ation. An effective test generator may traverse only a few
invalid states that cause backtracks. Therefore, the typical
approach of cutting all the cycles may not be the best ap-
proach to the partial scan design problem, since some of the
cycles do not have a significant influence on test generation
complexity.

Marchok et al. presented a series of experimental results [1]
to evaluate the complexity of test generation for sequential
circuits. Their experimental conclusion is that the density
of encoding (ED for short) is the key indicator of sequential
circuit ATPG complexity for a circuit,

ED =
V

2n
(1)

where V is the number of valid states, and n is the number
of flip flops in the circuit. However, for most large circuits,
the density of encoding is far less than 1. We utilize a testa-
bility measure based on the valid states and on separate cy-
cles.

This paper introduces three separate schemes for choos-
ing scan flip flops according to state information. The first
scheme derives the valid states via logic simulation or from
the state transition table. The logic simulation obtains al-
most all the valid states for some circuits. However, when
the number of flip flops in the circuit or the number of valid
states is very large, the method only obtains a subset of all
the valid states. However, the partial valid state set still pro-
vides enough information for effective scan flip flop selec-
tion. The second scheme uses a sequential circuit test gen-
erator to create tests for a subset of the faults in the circuit.
The invalid states traversed by the test generator in the ini-

tial stage are recorded. These states indicate unsatisfiable
signal requirements. Finally, tests of the fully scanned cir-
cuit are generated. The pseudo primary input (PPI) portions
of the tests indicate signal requirements of the flip flops dur-
ing test generation. These tests are used to guide scan flip
flop choices.

2 Background

Definition 1 A state is an assignment of boolean values
f0; 1g to the outputs of the flip flops. The reset state is a
state that can be reached from any state of the circuit.

Definition 2 A state is a valid state if it is reachable from
the reset state; a state is an invalid state if it is not reach-
able from the reset state. A valid state can be justified to the
primary inputs, while an invalid state will cause backtracks
in the process of test generation.

Definition 3 Assume a state is an n-tuple (v1; v2; : : : ; vn),
where n is the number of flip flops in the circuit, a
partial state (vi1 ; vi2 ; : : : ; vik), where i1, i2, : : :, ik 2

f1; 2; : : : ; ng and k < n. A partial state is called a par-
tial valid state if the corresponding state is valid; it is called
a partial invalid state if the corresponding state is invalid.
State mapping maps a state to all the cycles in the circuit,
where each cycle contains a flip flop subset.

Definition 4 The vertices of the s-graph of a sequential cir-
cuit are the flip flops of the circuit. There is an edge between
two vertices if there is one path between them and no other
flip flop in the path.

Definition 5 Density of encoding [1] of a circuit is defined
as V

2n
, where n is the number of flip flops in the circuit, and

V is the number of valid states of the circuit.

The number of valid states V for a circuit with n flip flops
is usually much less than 2n. When V

2n
is much less than 1,

the test generator may frequently justify invalid states. An
invalid state causes backtracks during test generation.

We present three separate schemes for choosing scan flip
flops. The first scheme selects scan flip flops based on the
valid states. The second scheme selects scan flip flops based
on the states the test generator traversed during the initial
stage. The third scheme chooses scan flip flops based on
the PPI test portion of the fully scanned circuit.

Table 1: Simulation Results for the 89ISCAS Circuits
circuits PIs FFs states vectors

s27 4 3 5 10000
s208 11 8 254 10000
s298 3 14 90 10000
s344 9 15 1284 10000
s349 9 15 805 10000
s382 3 21 33 10000
s386 7 6 17 10000
s400 3 21 30 10000
s420 19 16 1543 10000
s444 3 21 25 10000
s510 3 6 1 10000
s526 3 21 35 10000

s526n 3 21 37 10000
s641 35 19 77 10000
s713 35 19 876 10000
s820 18 5 23 10000
s832 18 5 21 10000
s838 34 32 3957 10000

s838.1 34 32 3957 10000
s953 16 29 882 10000

s1196 14 18 4157 10000
s1238 14 18 4657 10000
s1423 17 74 4905 10000
s1488 8 6 64 10000
s1494 8 6 64 10000
s5378 35 179 8207 10000
s9234 36 211 4843 5000

s13207 62 638 3073 5000
s13207.1 62 638 3161 5000
s15850 77 534 363 5000
s35932 35 1728 344 1000
s38417 28 1636 56 5000
s38584 38 1452 61 5000

3 Valid States for Flip Flop Selection

We use logic simulation to obtain as many valid states as
possible. Logic simulation can be finished in linear time for
each vector. If the synchronizing sequence or the reset state
is given, we can start logic simulation from the reset state.
Otherwise, we start logic simulation with all the flip flops
unspecified. Some circuits are not so easily to initialize. We
can randomly set the sequential circuit into a specific state
although it may be an invalid state. If a circuit is effectively
designed, after a few vectors have been applied, the state of
the circuit is typically transformed to a valid state.

During logic simulation, when a new state still cannot be
reached after enough patterns have been applied, a previ-
ous recorded state which occurs the least number of times
is chosen to continue logic simulation. In Algorithm 1, T

is the number of vectors that have been simulated. L is the
number of consecutive vectors that generate no new state.
S is the valid state set. nQ is the number of times the state
Q occurs during logic simulation. f(Qi; ti) is the number
of times the 2�tuple (Qi; ti) occurs, where Qi is a state,
and ti is a vector. limit1, limit2, limit3 are chosen to give
bounds for the number of occurences for a (state,test) tuple,
the number of vectors applied, and the number of accept-
able consecutive vectors that generate no new state. Values
of the three limits used by us are 10, 10000 and 50 respec-
tively.

Algorithm 1 (valid state set via logic simulation)

1. Assume R is the reset state of the circuit, Qi R, go
to step 3; otherwise, if the synchronizing sequence is
given, perform logic simulation for each pattern on the
circuit, the final state is the reset state; go to step 3;

2. If no reset state or synchronizing sequence of the cir-
cuit is available, randomly set the circuit to a state, do

(a) generate a random vector;

(b) perform logic simulation using the vector on the
circuit;

(c) repeat (a), (b) until a specified number of vectors
have been simulated.

3. S fQig, whereQi is the current state of the circuit;

4. Generate a random vector ti,

(a) if f(Qi; ti) > limit1, then go to step 5;

(b) perform logic simulation on the circuit using ti
to generate the next state Qi+1. f(Qi; ti)
f(Qi; ti) + 1;

(c) if Qi+1 is not in S, then L 0, S S [

fQi+1g, nQi+1
 1, Qi Qi+1, go to step

4;

(d) if the state Qi+1 2 S, L L + 1, nQi+1

nQi+1
+ 1;

(e) T T + 1;

5. If T > limit2, end the procedure;

else if L < limit3, then Qi Qi+1, go to 4;

if L > limit3, choose a state Qi from S, where Qi

occurs the fewest times. When more than one of these
states exists, choose the first state Qi. Go to step 4.

Table 1 presents logic simulation results for ISCAS89 cir-
cuits. Some of the circuits have too few valid states. The
others generate enough states. All the logic simulation
results are obtained in no more than one minute using a
SPARC-20.

Table 2: Valid States of S400
000111100000000000000 000111100000000000001
110111100000000000000 000111100000000010000
110111100000000000001 100111100000000000000
100111100000000010011 010111100000000000001
010111100000000000011 100111100000000000001
010111100000000000000 110111100000000010001
010111100000000010000 010111100000000010011
110111100000000010000 010111100000000100001
010111100000000100000 110111100000000010011
010111100000000010010 010111100000000010001
100111100000000000011 110111100000000000010
010111100000000000010 000111100000000010001
100111100000000010000 000111100000000000010

4 Partial Scan Flip Flop Selection via
Valid States

Our analysis shows that testability of a circuit is worse if
there are more flip flops with unchanging values, or if there
are a couple of cycles with single or few states. The state in-
formation obtained is used to direct scan flip flop choices.
Table 2 presents the 30 valid states of s400 after 10000 vec-
tors have been simulated. Most of the flip flops have un-
changed values for all the states. 7 of the 21 flip flops have
changed values. That evidence suggests that we should not
simply break all of the cycles, but that we should break them
selectively.

According to the cycle identification algorithm, there are 18
cycles in s400. According to the valid state set, 7 cycles
assume single state and 1 cycle has all the possible states.
These results are used as shown below to guide scan flip flop
selection.

Each state is mapped to the cycles. The testability measure
for each flip flop n is evaluated as,

T (n) =
X
ci

T (n; ci) (2)

where ci represents all the cycles containing flip flop n.

T (n; ci) =

(
2ki

f(ci)
if ki � 15

ki �
215

f(ci)
if ki > 15

(3)

where ci represents all the cycles through the flip flop, and
f(ci) is the number of different states according to the state
set obtained above. ki is the size of the cycle ci. 15 is an
empirical constant.

The testability measure reflects the possibility of entering
invalid states in the process of test generation. The testa-

bility improvement potentiality (TIP) measure for each flip
flop is used to evaluate potential testability improvement of
the flip flop if it is chosen to be a scan flip flop. The TIP
measure for each flip flop n is given in equation 4.

TIP (n) =
X
ci

(T (n; ci) � ki) (4)

The flip flop with the largest TIP measure is chosen each
time as a scan flip flop. After a scan flip flop is selected,
testability measures and TIP measures of the remaining flip
flops are updated.

Algorithm 2 (scan flip flop selection using valid states)

1. For each cycle ci, f(ci) 0;

2. For each state Qi in the state set, do

(a) state Qi maps a partial valid state
(v1; v2; : : : ; vk) for each cycle ci;

(b) if (v1; v2; : : : ; vk) is a new partial valid state for
cycle ci, f(ci) f(ci) + 1;

3. For each flip flop, calculate the testability measure and
the TIP measure using equations 2� 4.

4. Choose the flip flopnwith the largest TIP as a scan flip
flop. For each cycle ci, and each other flip flop n1 in
the cycle ci, the testability measure forn1 is decreased
by T (n; ci) and the TIP measure is decreased by ki �

T (n; ci).

5. If no more scan flip flops are needed, end the algo-
rithm. Otherwise, go to step 4.

Example 1: Assume the s-graph of a finite state ma-
chine is shown in figure 1(a). The valid state set is
f100; 101; 110; 111g. Figure 1(a) is the s-graph and figure
1(b) shows its cycles. We want to choose a scan flip flop
from the 3 flip flops. According to the 4-state valid state
set, the states for cycles f1; 2; 3g, f1; 3; 2g, f1; 2g, f2; 3g
and f1; 3g are 4, 4, 2, 4 and 2 respectively. Testability mea-
sures for flip flops 1, 2 and 3 are 8, 7 and 7. TIP measures for
flip flops 1, 2 and 3 are 20, 18 and 18 respectively. There-
fore, flip flop 1 is selected as the scan flip flop.

5 Scan Flip Flop Selection Based on
Test Generation State Information

We shall introduce techniques for scan flip flop selection us-
ing state information obtained by test generation. We uti-
lize two schemes to generate circuit state information. The

2

1

3

(a) S-graph

2
3

1

3

1

2

1

2

2

3 3

1

(b) cycles

Figure 1: S-graph and scan flip flop selection

first scheme utilizes state information of a test generator in
the initial stage. The second scheme generates tests for the
fully scanned circuit. Algorithm 3 chooses scan flip flops
according to the states traversed by the deterministic test
generator.

In Algorithm 3, S is the state set. f(ci) is the number of
partial invalid states of cycle ci corresponding to the state
set the test generator traverses. A new testability measure is
proposed based on the invalid states. Scan flip flop selection
is to meet the unsatisfiable signal requirements.

T (n) =
X
ci

f(ci) (5)

The TIP measure of each flip flop n is,

TIP (n) =
X
ci

f(ci) � ki (6)

where ki is the size of cycle ci, ci represents all the cycles
containing flip flop n.

Algorithm 3 (scan flip flop selection based on the states the
test generator traverses)

1. For each cycle ci, f(ci) 0;

2. Record the states in S of the test generator traversed
during the initial stage;

3. For each state Qi in S, map state Qi to the cycles;
if there is a new partial valid state for each cycle ci,
f(ci) f(ci) + 1;

4. Assign a testability measure to each flip flop using
equation (5); assign a TIP measure to each flip flop us-
ing equation (6).

5. Choose the flip flop n with the greatest TIP measure
as the scan flip flop. For each cycle ci, ci contains n;
the testability measure of each other flip flop n1 in ci is
decreased by f(ci), and the TIP measure is decreased
by f(ci) � ki.

6. If no more scan flip flops are needed, end the algo-
rithm; otherwise, go to step 5.

Tests are generated for the fully scanned circuit. State in-
formation is obtained from the pseudo-primary inputs cor-
responding to the test set of the fully scanned circuit. These
states indicate signal requirements of the circuit to the flip
flops.

Algorithm 4 (states from the tests for the combinational
logic)

1. For each cycle ci in the original circuit, f(ci) 0;
generate tests for the fully scanned circuit;

2. Obtain state set S from the PPI part of each test vector.
Map each state obtained above to each cycle ci. If ci
gets a new partial state, f(ci) f(ci) + 1;

3. Estimate the testability measure of each flip flop us-
ing equation (5). Estimate the TIP measure of each flip
flop using equation (6);

4. Choose the flip flopnwith the largest TIP measure as a
scan flip flop. Set the testability measure and the TIP
measure of n as 0. For each cycle ci, ci contains n,
decrease the testability measure of n by f(ci), and de-
crease the TIP measures of n by ki � f(ci);

5. If no more scan flip flops are required, end the algo-
rithm; otherwise, go to 4.

6 Experimental Results

For simplicity, we shall call the valid state-based algorithm
scan1, the test generation states-based algorithm scan2 and
the fully scanned circuit test-based algorithm scan3 respec-
tively. Table 3 presents the HITEC test generation results
for the three partial scan designs. In the table, scan repre-
sents the number of scan flip flops. cov.i, TEi, cpui (i 2
f1; 2; 3g) represent fault coverage, test efficiency and CPU
time of the three algorithms respectively. In comparison
with the three algorithms, scan1 demonstrates the best per-
formance, scan2 the second best, and scan3 the worst.

Table 3 shows the number of scan flip flops (mfvs) selected
by pscan [5]. pscan [5] selects the minimum number of scan

Table 4: Comparison with Opus

Cir. scan FC TE
s298 1/1 0.948/0.948 1.00/1.00
s344 5/5 0.990/0.994 1.00/1.00
s349 5/5 0.986/0.983 1.00/0.997
s382 9/9 0.987/0.987 1.00/1.00
s386 5/5 1.00/1.00 1.00/1.00
s400 9/9 0.974/0.971 1.00/1.00
s444 9/9 0.964/0.960 1.00/1.00
s510 5/5 1.00/1.00 1.00/1.00
s526 3/3 0.755/0.755 0.77/0.77
s641 7/7 0.974/0.946 1.00/1.00
s713 7/7 0.912/0.885 1.00/1.00
s820 2/4 0.998/0.998 0.998/0.998
s832 2/4 0.984/0.984 1.00/1.00
s953 3/5 1.00/1.00 1.00/1.00

s1488 2/5 1.00/1.00 1.00/1.00
s1494 3/5 0.992/0.992 1.00/1.00
s5378 30/30 0.936/0.936 0.962/0.962

s35932 150/306 0.898/0.898 1.00/1.00

flip flops needed to break all the cycles. Fewer scan flip
flops are selected for almost all the listed circuits than by
pscan [5].

Table 4 compares the experimental results with Opus [7].
In item a=b, a and b indicate the parameters of scan1 and
Opus respectively. scan1 obtains better results than Opus
for almost all the circuits.

7 Conclusions

We found it is unnecessary to break all the cycles as in the
conventional structure-based partial scan design methods.
The circuit state information is obtained via logic simula-
tion, which is used to guide scan flip flop selection. De-
pending on the obtained state information, some cycles in
the circuit assume only a few valid states, while for others
most partial states are valid. The cycles with few states are
typically the cause of test generation complexity. A mea-
sure based on the density of encoding was used to direct par-
tial scan flip flop selection. States traversed by the test gen-
erator in the initial stage were used to select scan flip flops.
Finally, circuit state information was also obtained by gen-
erating tests for the fully scanned circuit. This circuit state
information provides the signal requirements of the circuit
for the flip flops. Scan flip flops were selected to meet these
signal requirements. Experimental results demonstrate all
three schemes are effective.

Table 3: Comparison of the Three Schemes

Circuits FFs SFF mvfv scan1 scan2 scan3
cov.1 TE1 cpu1 cov.2 TE2 cpu2 cov.3 TE3 cpu3

s298 14 1 1 0.948 1.00 14.0 0.948 1.00 13.9 0.948 1.00 13.8
s344 15 4 5 0.988 1.00 26.0 0.988 1.00 3.0 0.988 1.00 25.2
s349 15 4 5 0.983 1.00 1.9 0.983 1.00 1.7 0.983 1.00 2.00
s382 21 6 9 0.982 1.00 4.5 0.98 1.00 6.8 0.98 1.00 6.7
s386 6 3 5 0.979 1.00 6.2 0.948 1.00 3.0 0.974 1.00 1.9
s400 21 5 9 0.958 1.00 10.4 0.972 1.00 7.7 0.942 1.00 10.6
s444 21 5 9 0.949 1.00 20.0 0.949 1.00 11.5 0.945 1.00 11.6
s526 21 3 3 0.755 0.77 316.4 0.755 0.77 316 0.755 0.77 316
s641 21 6 7 0.946 1.00 4.6 0.946 1.00 4.6 0.942 1.00 5.7
s713 19 6 7 0.881 1.00 11.8 0.881 1.00 12.0 0.881 1.00 12.0
s820 5 2 4 1.00 1.00 6.00 1.00 1.00 6.0 1.00 1.00 12.3
s832 5 2 4 0.984 1.00 5.0 0.984 1.00 4.8 0.984 1.00 8.7
s953 29 3 5 1.00 1.00 3.7 1.00 1.00 3.7 1.00 1.00 9.6

s1423 74 20 21 0.831 0.84 597 0.86 0.87 468 0.81 0.82 673
s1488 6 3 5 1.00 1.00 12.6 1.00 1.00 21.6 1.00 1.00 22.1
s1494 6 4 5 0.992 1.00 8.9 0.992 1.00 35.8 0.992 1.00 40.1
s5378 179 30 30 0.936 0.962 597 0.936 0.962 439 0.936 0.962 446.9

s35932 1728 150 306 0.898 1.00 4110 NA NA NA 0.898 1.00 4272

References

[1] T. E. Marchok, A. E. Maleh, W. Maly, and J. Rajski,
“Complexity of Sequential ATPG,” in the Proc. of Eu-
ropean Design & Test Conf., pp. 252-261, 1995.

[2] H. Fujiwara, Logic Testing and Design for Testability,
The MIT Press, 1985.

[3] T. M. Niermann and J. H. Patel, “HITEC: A Test Gen-
eration Package for Sequential Circuits,” in the Proc.
of European Conf. on Design Automation, pp. 214-
218, 1991.

[4] K. T. Cheng and V. D. Agrawal, “A Partial Scan
Method for Sequential Circuits with Feedback,” IEEE
Trans. Comput., Vol. 39, No. 4, pp. 544-548, 1990.

[5] S. T. Chakradhar, A. Balakrishnan, and V. D. Agrawal,
“An Exact Algorithm for Selecting Partial Scan Flip
Flops,” in the Proc. of ACM/IEEE Design Automation
Conf., pp. 81-86, 1994.

[6] T. H. Chen and M. A. Breuer, “Automatic Design
for Testability via Testability Measures,” IEEE Trans.
CAD, vol. CAD-4, pp. 3-11, 1985.

[7] V. Chickermane and J. H. Patel, “An Optimization
Based Approach to The Partial Scan Design Prob-
lem,” in the Proc. of IEEE Int. Test Conf., pp. 377-386,
1990.

[8] D. H. Lee and S. M. Reddy, “On Determining Scan
Flip Flops in Partial Scan Designs,” in the Proc. of
IEEE Int. Conf. Computer-Aided Design, pp. 322-
325, 1990.

[9] P. S. Parikh and M. Abramovici, “A Cost Based Ap-
proach to Partial Scan,” in the Proc. of ACM/IEEE De-
sign Automation Conference, pp. 255-259, 1993.

[10] I. Pomeranz and S. M. Reddy, “LOCSTEP: A Logic
Simulation Based Test Generation Procedure,” in the
Proc. of IEEE Fault-Tolerant Computing Symposium,
pp. 110-118, 1995.

[11] A. Lioy, P. L. Montessoro, and S. Gai, “A Complex-
ity Analysis of Sequential ATPG,” in the Proc. of Int.
Symposium on Circuits and Systems, pp. 1946-1949,
1989.

[12] N. Jiang, R. M. Chou, and K. K. Saluja, “Synthesizing
Finite State Machines for Minimum Length Synchro-
nizing Sequence Using Partial Scan,” in the Proc. of
IEEE Fault-Tolerant Computing Symposium, pp. 41-
49, 1995.

[13] V. Boppana, I. Hartanto, and W. Kent Fuchs, “Fault
Diagnosis Using State Information,” to appear in the
Proc. of IEEE Fault-Tolerant Computing Symposium,
1996.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

