
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Serial Fault Emulation

Luc Burgun, Frédéric Reblewski, Gérard Fenelon,
Jean Barbier and Olivier Lepape

META SYSTEMS�

4, Rue René Razel, 91400 Saclay France

ABSTRACT - A hardware emulator based approach has been
developed to perform test evaluation on large sequential circuits
(at least tens of thousands of gates). This approach relies both
on the flexibility and on the reconfigurability of hardware emula-
tors based on dedicated reprogrammable circuits. A Serial Fault
Emulation (SFE) method in which each faulty circuit is emulated
separately has been applied to gate-level circuits for Single Stuck
Faults (SSFs).

This approach has been implemented on the Meta Systems’s
hardware emulator which is capable of emulating circuits of
1,000,000 gates at rates varying from 500KHz to several MHz.
Experimental results are provided to demonstrate the efficiency of
SFE. They indicate that SFE should be two orders of magnitude
faster than software approaches for designs containing more than
100.000 gates.

1 INTRODUCTION

Test evaluation consists in determining the effectiveness of a
set of test patterns by computing the ratio between the number of
faults detected by this set and the total number of possible faults
with respect to a given fault model. The traditional approach to
test evaluation relies on software programs simulating the effects
of the faults on the behavior of the circuit. The simplest method,
called serial fault simulation simulates the faulty circuits, one at
a time. This method does not require a dedicated fault simula-
tor (any logic simulator can be easily adapted). Therefore this
method a priori can handle any type of fault [1]. However, due to
the performances of software logic simulators, this type of fault
simulation is completely impractical if a large number of faults
has to be considered [1, 14].

In the last decades, more sophisticated general purpose meth-
ods have been proposed such as parallel [14], concurrent [15] or
differential fault simulation [5]. These techniques differ from se-
rial fault simulation because they aim at minimizing the number of
simulation passes by simultaneously processing faults. The con-
current method is implemented in most commercial tools because
of its generality and its efficiency [6].

Today, the fault simulation approach is becoming unrealistic
for many designs not only because the theoretical complexity for
simulating one pattern appears to be between linear and quadratic
with the number of gates [8], but also because the complexity of
the circuits increases faster than the computing speed [2].

Recently, a new approach based on reprogrammable hardware
has been proposed [9, 17, 4] to verify circuits before committing
them to silicon. This approach called logic or hardware emula-
tion [4, 11] decreases the design time by allowing a "real-time"
verification 10,000 to 1,000,000 times faster than software logic
simulation [11].

In this paper, we propose a methodology to extend the uti-
lization of hardware emulators for test evaluation by using a
brute-force method, called serial fault emulation, in which the
fault-free circuit and the faulty circuits are considered separately.

�META SYSTEMS is now part of MENTOR GRAPHICS CORPORATION

Unlike hardware accelerators dedicated to logic simulation [16],
a significant speed-up can be achieved in comparison with the
state-of-the-art software fault simulation methods because of the
performances of hardware emulators. The main advantage of SFE
is that the run time is quasi-proportional to the number of faults so
that test evaluation can be performed for very large circuits with
large test sets.

A fast Computer-Aided Prototyping (CAP) software package
combining netlist translation, synthesis, multi-chip partitioning
and routing automatically produces a hardware prototype of the
fault-free circuit. A partial reconfiguration of the hardware emu-
lator is then computed for each fault of interest. The configuration
file related to the hardware prototype is downloaded into the hard-
ware emulator and a first emulation pass allows the verification or
the calculation of the expected values of the test set. The faults are
then emulated one at a time by partially modifying the fault-free
hardware prototype so that it models each faulty circuit.

This paper deals with sequential circuits described at the gate
level (gate netlist). As mentioned for serial fault simulation [1],
SFE may be used for other types of faults such as multiple fault
or bridging fault, but we will concentrate on the SSF model.

This paper is organized as follows. Section 2 briefly describes
the CAP software of the Meta Systems’s hardware emulator. Sec-
tion 3 presents our approach for fault emulation and shows particu-
larly how to compute each faulty circuit from the fault-free circuit
and the fault to be inserted. Section 4 deals with the problem
of minimizing the run time for SFE and explains the techniques
for limiting the software tasks. Section 5 presents experimental
results and Section 6 concludes this paper.

2 CAP FOR LOGIC EMULATION

This chapter briefly describes the CAP software used for im-
plementing circuits on the Meta Systems’s hardware emulator.
As shown on the right part of Figure 1, the first step consists in
translating the design netlist into the Meta Systems internal for-
mat, namely ANF. This format supports hierarchical descriptions
and allows the use of any 4-input function cell. Each cell of the
design library is mapped onto the Meta Systems library (called
metalib). The resulting library (the conversion library) is used for
each design to express the ANF gate netlist in terms of cells of
the metalib.

The netlist is then flattened, optimized and targeted to the
architecture of the reprogrammable circuits used in the hardware
emulator, namely the Metas. The architecture of the Meta consists
of a column of logic blocks and a global interconnexion matrix
(crossbar) which connects the I/Os and the logic blocks (BLPs).
The crossbar improves the inter-chip communication by remov-
ing the constraints related to I/O placement (each BLP may be
connected to any I/O without decreasing the percentage of BLP
utilization). Each BLP consists of a 4-input Sram and a repro-
grammable sequential device which can emulate either a flip-flop
or a latch.

As the Tabula Rasa chip [9], the Meta is targeted specifically
for logic emulation. In contrast with the Xilinx LCA architec-

Optimization & Mapping

FPGA
Configuration

Flattening

Fault
List

Specification
Fault

FPGA

List
Reconfiguration

Metalib

ANF Gate
Netlist

Conversion
Library

Flattened
BLP netlist

Netlist
Input Gate

Library
Cell

EDIF, VERILOG
Initial Design

Partitioning & Routing

Translation Modelization

Generation

Generation
Fault

Fault Reconfiguration

Fig. 1: Flowchart of the Meta Systems’s CAP software and
the FPGA reconfiguration generation software (denoted by the
dashed box)

ture [10], each BLP may be observed without adding routing
constraints which may cause congested areas and consequently
lead to routing failures. This important feature avoids the need
to re-compile the design netlist when the user wishes to observe
different signals from those initially declared as probes.

After targeting the netlist to our reprogrammable hardware
architecture, the netlist is partitioned into two levels of hierarchy,
namely Metas and boards. The partitioner implements efficient
techniques such as logic replication for reducing the pin count
and the partition size. Unlike Quickturn’s RPM system [17], the
partitioner does not make use of the designer’s hierarchy.

Finally, the system achieves the routing at three level of inter-
connections corresponding to Metas, boards and backplane board.
Each logic board consists of 3 processing columns separated by 2
routing columns. Each processing column contains 8 processing
elements, each one consisting of a Meta, a 32K byte memory and
a Video VRAM in which the values of all BLPs in the Meta for
the last 7,200 emulation cycles are stored. The backplane board
connects 23 logic boards and an interface board managing the
communications between the hardware emulator and the work-
station host. Several backplane boards (up to 6) may be linked to
emulate very large designs.

The routing step produces a configuration file which is down-
loaded into the hardware emulator before operating the hardware
prototype. The operating environment consists of a user-friendly
interface in Motif and a C interpreter which allows the description
of emulation experiences. An emulation experience defines the
conditions in which the hardware prototype operates :

� Maximum number of cycles
� Maximum speed of operating
� Initial values for sequential devices (registers and memories)
� Stopping conditions

A stopping condition is defined by arming a hardware trigger
which tests when the emulation brings one or more registers into
a predefined state. Unlike the Quickturn’s system [7], not only
the triggers can be changed without re-compiling the prototype,
but also every register can be used in a stopping condition.

3 OVERVIEW OF THE FAULT EMULATION SYSTEM

Fault emulation involves calculating a reconfiguration of the
hardware emulator for each fault of interest (for the sake of sim-
plicity, we will use the term FPGA1 reconfiguration).

For this purpose, we have developed specific tools which op-
erate in parallel with the CAP software.

3.1 Calculation of FPGA Reconfigurations
The left side of Figure 1 indicates how the FPGA reconfigu-

rations are computed with respect to the CAP software. A fault
generator constructs the collapsed fault list from the ANF gate
netlist and from a fault specification file. This file specifies the
blocks of the hierarchy in which the faults will be inserted and the
faults excluded from fault emulation.

A second step consists in calculating the FPGA reconfigura-
tion associated with each fault of interest so that the modified
hardware prototype behaves like the faulty circuit. To minimize
the total run time for fault emulation, each FPGA reconfiguration
has to affect as few BLPs as possible. Hence, in contrast with
logic emulation, the CAP software has to be restricted so that it
does not result in large modifications to the original netlist. This
restriction excludes the use of re-synthesis techniques relying on
logic level optimization techniques such as extraction or substi-
tution [3]. Hence, the optimization and mapping phase consists
only in collapsing the single fanout gates into nodes which satisfy
the 4-input constraint. In these conditions, if a gate has a multiple
fanout, the gate cannot be collapsed so that its output signal is
kept in the BLP netlist. This comes down to separately map each
fanout free region.

An FPGA reconfiguration corresponds to a list of BLPs to
be reprogrammed in order to generate the faulty circuit from the
fault-free circuit and vice versa. The cases where it is necessary
to reconfigure more than one BLP are as follows :

� A primary input pin of the circuit has a multiple fanout
�An input pin of a gate of the design library has a multiple

fanout in the equivalent cell of the conversion library
� A BLP is replicated during the partioning phase

In the two first cases, the pin stuck fault results in stucking all
the input pins of the gates of the multiple fanout so that SSF has
to be emulated by a multiple stuck-at fault.

Each BLP of the reconfiguration is associated with a logical
address in the emulator and two words encoding the functionality
of the BLP for the fault-free circuit and the faulty circuit. The
logical address is a 3-uple denoting the board number in the ma-
chine, the Meta number in the board and the BLP number in the
Meta.

3.2 Fault Insertion for Combinational Circuits
The FPGA reconfiguration for SSF on a combinational gate

affects only the 4-input function of the BLP.
Consider the circuit in Figure 2 and suppose that the gates

G0, G1 and G2 are gathered into the BLP (0; 0; 0) (denoting the
board 0, Meta 0 and BLP 0) and the gate G3 corresponds to
the BLP (0; 0; 1). The 4-input function of the BLP (0; 0; 0) is
F = A:B + C:D. If the signal X is stuck at zero, this BLP has
to be reconfigured so that it implements the function F = C:D.

1The term FPGA is used to refer to all types of field programmable
logic, both LCAs such as Xilinx and also those more commonly refered
to as PALs and PLDs

G0

G2

G1

Fault C.D
Free A.B + C.D
@ (0,0,0)

A
B

C
D

-> 0

E

G3

X

Y

Z

S

a) initial circuit b) BLP circuit

c) BLP reconfiguration for X stuck at 0

BLP
A
B

C

D
@ (0,0,0)

A.B + C.D

S
Z

E

@ (0,0,1)

BLP

Z.E

Fig. 2: An example of FPGA Reconfiguration

Note that partial fault collapsing may be easily achieved by
identifying the faults which produce identical FPGA reconfigura-
tions. In the example, the signals A;B;X stuck-at-0 produce the
same FPGA reconfiguration so that only one emulation run will
be necessary to test these three faults.

3.3 Fault Insertion for Sequential Circuits
As mentioned in Section 2, each BLP consists of a 4-input

Sram and a sequential device. This later may be configured as
either an edge-triggered flip-flop or a latch and it may have ad-
ditional features such as load enable, asynchronous reset and set
lines. The sequential devices are synchronized by a complex
clock system ensuring that there are no hold time violations due
to short-pathes between registers.

The FPGA reconfiguration for SSF on a sequential gate affects
both the combinational section and the sequential section of the
BLP. Table 1 shows how a BLP emulating a flip-flop with reset,
set and enable lines is reconfigured according to the stuck faults
on its pins (assume active high on all signals).

Fault Type F RST SET EN CLK
none Seq D + + + +

D Sat0 Seq 0 + + + +
D Sat1 Seq 1 + + + +
Q Sat0 Comb 0 - - - -
Q Sat1 Comb 1 - - - -

RST Sat0 Seq D - + + +
RST Sat1 Comb 0 - - - -
SET Sat0 Seq D + - + +
SET Sat1 Comb RST - - -
EN Sat0 Seq - + + - -
EN Sat1 Seq D + + - +

Table 1: FPGA reconfiguration for SSF on a register

For each SSF of a register, this table shows whether the BLP
remains a sequential device (Seq) or becomes a combinational
gate (Comb), the new function F , and whether the reset, set,
enable and clock lines are used (+) or not (�). For example
when reset is stuck at 1, the BLP becomes combinational and it
implements the function F = 0.

3.4 Fault Emulation
Once both the basic configuration of the prototype and the

fault reconfigurations have been generated, fault emulation can be
performed. There are three emulation modes.

� Fault-free Circuit Emulation
� Faulty Circuit Emulation
� Serial Fault Emulation

The first mode is used to debug the fault-free circuit before
running fault emulation. In certain cases, this mode may also be
used to compute the expected values for the observed outputs.

Faulty circuit emulation allows the effects of a SFF to be ob-
served. The high observability of the Meta makes it possible
to know where an undetected fault is blocked for a given pat-
tern. This feature is useful for test coverage improvements or for
analyzing undetectable faults.

Serial fault emulation is the most important mode because it
allows the calculation of the fault coverage and the construction of
the fault dictionary. This mode runs through all faulty circuit em-
ulations as fast as possible. A faulty circuit is processed following
the five basic steps :

1. Fault insertion by reconfiguring the emulator
2. Register initialization
3. Trigger setting for the fault dropping
4. Faulty circuit emulation
5. Fault deletion by reconfiguring the emulator

During step 4, if an output value differs from the expected
value, the trigger (set in step 3) is turned on and it activates the
fault dropping. If that does not happen, the faulty circuit emulation
continues until the test is finished.

In order to minimize the overhead for each fault processing,
the FPGA reconfiguration has to be downloaded quickly. The
problem of improving the fault emulation speed is addressed in
the following section.

4 IMPROVING THE FAULT EMULATION SPEED

The fault emulation speed is defined as the maximal number
of faults processed per seconds. This speed basically depends on
four factors :

� The average emulation runtime for processing a fault
� The time required to reconfigure the emulator
� The time required to initialize the sequential devices
� The time required to perform fault detection

Obviously, as the test set becomes larger, the emulation run-
time becomes more significant. Conversely the three last factors
are crucial when the test set is not very large or when most of faults
are detected during the first cycles of the emulation. We will see in
Section 4.4 and 4.5 that register initialization and fault detection
may be performed by hardware so that the fault emulation speed
depends only on the first two factors.

4.1 Emulation Runtime
The emulation runtime depends both on the number of cycles

to be executed and on the maximal operating frequency of the
prototype, namely the maximum clock speed (MCS). This fre-
quency is computed by a worst-case static timing analyzer from
the fault-free circuit. The static analysis ensures that each faulty
circuit runs properly even if an inserted fault causes new dynamic
pathes to occur.

Assume that P is the average number of patterns necessary
to detect the faults. If we neglect the overhead for each fault
processing, the serial fault emulation speed (SSFE) is expressed
as follows :

SSFE =
MCS

P

Depending on the design, MCS typically varies from 500
KHz to 5 MHz. Assuming that a given circuit operates at 1MHz
and that the faults are detected in average at P = 10,000, then the
emulator will be able to process 100 faults per second.

4.2 Fast Reconfiguration
Let Treconf be the time required to reconfigure the hardware

prototype, the SFE speed is now defined as follows :

SSFE =
MCS

P + Treconf :MCS

Treconf depends mainly on the time needed to reconfigure
BLPs. Unlike Xilinx, the Meta architecture provides the ability to
read or modify only a portion of the chip at a time. This feature
allows the reconfiguration time to be significantly reduced. A BLP
can be reconfigured in 0.2 millisecond regardless of its location.

On average, Treconf is equal to 0.8 millisecond (4 BLPs to
be reconfigured) and consequently 1,200 faults can be processed
every second if P is close to 0 (all the faults are detected in the
first cycles). Assuming that a circuit operates at 1 Mhz, then the
time required to reconfigure the prototype will be greater than the
emulation runtime if P < 800. Conversely the reconfiguration
time will be negligible as soon as P > 10,000.

4.3 Theoretical Complexity
It is clear that SSFE depends on the size of the circuits and

that the run time cannot be considered as linear with the number
of gates. On the other hand, there exists no explicit relation
between the number of gates and the maximum clock frequency.
Furthermore experimental results show that some large circuits
can operate at higher speed than small circuits. Hence, SFE can
be considered as quasi-linear with the number of gates of the
circuit.

4.4 Register Initialization
Test evaluation generally requires the capability of bringing

the circuits in a given state without applying any initialization
sequence. This may be used when the test sets are so large that
they have to be cut in several test sequences.

This may also be used in the following case. When hardware
reset is not available on the registers, the test set consists of an
initialization sequence which brings the circuit in a given state
followed by an actual test sequence. In this case, register initial-
ization may also be used to separately observe the effects of faults
for the initializing sequence and the actual test sequence.

In logic emulation, the time required to initialize the registers
is not significant in comparison with the emulation runtime. As
indicated in Section 2, the registers (and more generally the se-
quential devices) may be initialized by writing a C program in
which specified values (0 or 1) are assigned to them. When the
program is interpreted, the BLP corresponding to each register is
forced to the specified value. Note that the registers which are not
forced by the program remain in an unpredictable state (either 0
or 1). The main drawback of this "software" initialization tech-
nique is that the time required to force the BLPs can significantly
increase the overhead between each fault processing.

set
D1

R1

Q1

Ck Ck

rst
D2

R2

Q2
S3

D3

R3

Q3
set

Ck

Design Registers

rst

Additional
Register

1 0

Fig. 3: Hardware initialization of Registers

We propose a hardware technique for initializing the registers
into a given state. This technique takes advantage of the capability

of forcing the value of the sequential device of each BLP with the
asynchronous set and reset lines. In Figure 3, the register R1 and
R3 have to be forced to 1 whereas the register R2 has to be forced
to 0. An additional register is connected to the set or reset pins
of the registers to be initialized. If a pin is already connected to
another gate, a 2-input OR gate is added to the design for ORing
the initial signal and the forcing line (R3 for example). In this
case, the set or reset pin stuck faults are inserted on the input pins
of the OR gate. At the beginning of the faulty circuit emulation,
the additional register is forced to 1 by the software initialization
described above so that it brings the circuit in the given state.

Note that if the user wants to bring the circuit in another initial
state, the hardware prototype has to be re-compiled by the CAP
software.

Unlike software initialization, hardware initialization avoids
spending time between each fault pass. Furthermore, this tech-
nique has a negligible impact on the initial netlist and consequently
on MCS.

4.5 Fault Detection
The Meta Systems hardware emulator provides two techniques

for injecting stimuli. The first consists in using the 24 hard-
ware memories available on each logic board in a generator
mode. In this mode, each memory is directly addressed by a
non-reconfigurable hardware counter which has to be reset at the
beginning of each emulation. The user can load up to 32K pat-
terns regardless of the number of bits. It is possible to extend the
number of patterns capacity by successively loading 32K pattern
pages. However this last possibility is not well-suited for fault
emulation because of the loading time.

The second technique consists in replacing one or more logic
boards by specialized memory boards. Each memory board can
also operate in a generator mode and it can be loaded with up to
256K patterns of 384 bits. Memory boards may be combined to
provide a very large memory.

To improve the fault detection speed, both the controlled input
values and the expected output values are considered as stimuli.
Hence, it is possible to perform a hardware comparison between
the output values calculated by emulation and the expected values.

=

Input
Stimuli

Test Patterns

Outputs
Expected

Faulty
Circuit

Trigger

Memory Boards Logic Boards

Fault
Counter

Fig. 4: Hardware Fault Detection

As shown in Figure 4, an equality comparator is inserted into
the initial design so that only one signal has to be tested to verify
whether the output values are different from the expected values
or not. The trigger defined in Section 3.4 is set on this signal.

A counter may also be inserted into the design in order to
calculate the number of times a fault is detected. In this mode, the
trigger is turned off to prevent the emulation of the faulty circuit
from being stopped before the end of the test.

The comparator may have an impact on MCS since an ob-
served signal can be located on the critical path (calculated by
the static timing analyzer). In this case, the propagation time
through the comparator is added to the critical path so thatMCS
decreases. Each observed signal is propagated within the com-
parator through a 2-input NXOR and a N-input AND (whereN is

the number of observed signals). If a balanced technique is used
for the mapping of the N-input AND, there are 1+ log4(N) BLPs
between each observed signal and the output of the comparator
on which the trigger condition is set. Furthermore the comparator
induces a partitioning and routing constraint since the observed
signals have to be connected to the comparator through one or
several Metas and/or boards.

5

4

3

2

1

6

7

M
CS

 (M
hz

)

with comparison

without comparison

mul4 mul8 mul16 mul32 mul64

Fig. 5: Impact of the hardware comparison on MCS

Figure 5 shows the impact of the hardware comparison on
MCS. We have selected several Booth’s multipliers varying
from 4 to 64 inputs. Each multiplier is generated with the CAP
software and MCS is calculated with the hardware comparator
(denoted by the dashed line) and without the hardware comparator
(denoted by the solid line). It can be seen that the propagation time
through the comparator is added to the critical path of each multi-
plier since those circuits are combinational and all the outputs are
observed (and compared). The two curves show that as the circuit
size increases, the effect of the comparator decreases. Since our
approach is targeted for large circuits, the effects of the hardware
comparison can be disregarded. Note that for smaller circuits, the
impact can nevertheless be minimized by using a pipeline archi-
tecture in which registers are inserted after the observed signals.

5 EXPERIMENTAL RESULTS
In order to measure the efficiency of SFE, we have conducted

two sets of experiments.

5.1 Evolution of performances for a fixed architecture
First, we have conducted experiments to demonstrate the range

of performance according to the size of a fixed architecture,
namely for several Booth’s multipliers made up of 2-input gates.
We have generated a 1K random test patterns (this size is suffi-
cient to obtain a 95% coverage). Each I/O pin of the gates of the
circuits are stuck at 0 and 1, but fault collapsing is performed to
minimize the number of faulty circuit runs. Table 2 indicates the
number of gates (#G), the time required to compile the fault-free
hardware prototype and to compute the FPGA reconfigurations
(TCAP) on a Sun workstation (Sparc 10 - 64 MBytes RAM), the
number of faults (#F), the number of runs needed to test all the
faults (#R) and the runtime for fault emulation (TSFE).

Most of the faults (90%) are detected in the first ten patterns
so that fault emulation runs at the maximal reconfiguration speed
(around 1,200 runs per second). It is obvious that in these condi-
tions TSFE is linear with the number of gates #G.

The time required to CAP is considerably greater than the
runtime for fault emulation (this is especially true when the circuits
are large). However it is not necessary to re-compile the circuits
for other test sets or other fault sets.

5.2 SFE on ISCAS’89 Benchmarks
In the second experiment, we have performed test evaluation

with 50K random test patterns on the largest sequential circuits

CAP SFE
Circuit #G TCAP #F #R TSFE

[sec.] [sec.]

mul4x4 179 1.9 1000 424 0.3
mul8x8 699 4.6 3876 1628 1.3

mul16x16 2561 14.2 14620 6100 5.1
mul32x32 10203 137.3 57320 23300 19.6
mul64x64 39899 1950.2 218860 88962 77.4

Table 2: Fault emulation of multipliers

from the standard set of the ISCAS’89 benchmarks. We have con-
sidered the SSF model for all the gate outputs without collapsing
the faults. A full scan path has been inserted into the original
design so that the random test can bring the circuit into many dis-
tinct states to obtain a good fault coverage (obviously, our method
does not intrinsically require full scanned circuits). Furthermore,
all the flip-flops are set to 0 at the beginning of each faulty circuit
emulation by using the technique explained in Section 4.4.

Description CAP
Circuit #G #FF #I # O TCAP MCS

[sec.] [MHz]

s9234 5725 228 19 22 48.5 1.3
s13207 8620 669 31 121 91.1 1.2
s15850 10369 597 14 87 88.7 1.3
s35932 17793 1728 35 320 279.2 2.1
s38584 19705 1452 12 278 385.3 1.1
s38417 23715 1636 28 106 356.2 1.5

Table 3: CAP for ISCAS’89 benchmarks

Table 3 gives the description of these circuits in terms of the
number of gates (G), the number of flip-flops (FF), the number
of inputs (I) and the number of outputs (O). The CAP results are
reported in terms of the time required to compile the fault-free
hardware prototype and to compute the FPGA reconfigurations
(TCAP) on a Sun workstation (Sparc 10 - 64 MBytes RAM) and
the maximum clock speed (MCS).

Table 4 reports the results obtained by SFE in terms of the
number of faults (#F), the fault coverage (C) obtained with the
random test set, the average number of patterns needed to detect
a fault (T), the runtime for fault emulation (TSFE) and the fault
emulation speed (SSFE).

SFE
Circuit #F C T TSFE SSFE

[sec.] [f./sec.]

s9234 13020 81.1 15432 148.1 87.9
s13207 21256 82.7 11501 196.4 108.2
s15850 24322 82.6 12611 231.3 105.1
s35932 45956 91.6 9781 169.7 270.8
s38584 50124 92.7 4946 225.9 221.8
s38417 57448 95.1 4531 170.5 336.9

Table 4: Results for 50K Pattern Fault Emulation

MCS does not decrease with the complexity of the circuits
so that SFE is linear in time with the number of gates. SSFE
increases as the average number of patterns needed to detect a
fault decreases.

We have compared our results with those obtained by HOPE
(version 1.1) [12] [13] , a state-of-the-art fault simulator com-
bining efficient techniques such as single fault propagation and

parallel fault processing. HOPE has been tested under similar
conditions using the same fault model and the same test set. Fur-
thermore, the performance of HOPE is measured on the same
machine (Sparc 10). To compare the evolution of performance
with the number of gates, we have to normalize the run time ac-
cording to the average number of patterns required to detect a
fault. So we have normalized the results according to the first
circuit (s9234).

15k 20k10k 25k5k

2
10

3
10

10
4

Number of gates

N
or

m
al

iz
ed

 p
ro

ce
ss

in
g

tim
e

(s
ec

.)

x8

x20

HOPE

SFE

Fig. 6: Normalized Performance Comparison

Figure 6 shows the processing time for SFE and HOPE. The
speedup of SFE over HOPE varies from 8 to 20. It is clear that
SFE is especially advantageous for large circuits. For 100 K gate
circuits, we can hope to reach a speedup of two orders of mag-
nitude with respect to commercial tools. In contrast with HOPE,
these tools are less efficient because they have to implement mech-
anisms to take into account user’s libraries, memories or complex
synchronization schemes.

6 CONCLUSIONS

An approach to evaluate test sets for large sequential circuits
has been presented. This approach relies on the utilization of
a hardware emulator to observe the effects of the faults on the
circuits. Serial fault emulation takes advantage not only of the
reconfigurability of Sram-based reprogrammable circuits but also
of the reconfiguration speed of the Meta Systems’s hardware em-
ulators.

The main advantage of serial fault emulation is that in contrast
with software fault simulation the computing time is quasi-linear
with the number of gates. So for large designs our approach can
drastically reduce the time taken in the analysis of fault coverage,
aliasing probability and detectability.

After logic verification and fast prototyping, test evaluation
is a new application of hardware emulators that will encourage
designer teams to adopt hardware emulator based methodology.

7 ACKNOWLEDGMENTS

The authors would like to thank Dong S. Ha of the University of
Virginia for providing them with HOPE and B. Bailey of Mentor
Graphics for its help in the preparation of this paper. They also
thank E. Legai, J-S. Weil, F. Touzard and G. Morisset for their
assistance with the Meta Systems’s CAP software.

References

[1] M. Abramovici, M. A. Breuer and A. D. Friedman “Digital Sys-
tems Testing and Testable Design”, New York, W.H. Freeman and
Company, 1990, p. 134

[2] P. S. Bottorff “Test Generation and Fault Simulation”, VLSI Testing,
North Holland Ed., 1985, pp. 29-64

[3] R.K. Brayton, G.D. Hatchel and A.L. Sangiovanni-Vincentelli
“Multilevel Logic Synthesis”, Proc. of the IEEE, Vol. 78, No 2,
Feb. 1990, pp. 264-300

[4] M. Butts, J. Bacheler and J. Varghese “An Efficient Logic Emulation
System”, Proc. ICCD, 1992, pp. 138-141

[5] W. T. Cheng and M.L. Yu “Differential Fault Simulation - A Fast
Method Using Minimal Memory”, Proc. 26th DAC, 1989, pp. 424-
428

[6] S. Gai and P. L. Montessoro “Creator : New Advanced Concepts in
Concurrent Simulation”, IEEE Trans. on CAD, Vol 13, No 6, June
1994, pp. 786-795

[7] J. Gateley et al. “UltraSPARC-IEmulation”, Proc. 32nd DAC, 1995,
pp. 535-540

[8] D. Harel and B. Krishnamurthy “Is There Hope for Linear Time
Fault Simulation ?”, Fault Tolerant Computing Symposium, July
1987, pp.28-33

[9] D.D. Hill and D.R. Cassiday “Preliminary Description of Tab-
ula Rasa, an Electrically Reconfigurable Hardware Engine”, Proc.
ICCD, Sept. 1990, pp. 391-395

[10] H-C. Hsieh et al. “A Second Generation User-Programmable Gate
Array”, Proc. Custom Integrated Circuit Conference, 1987, pp. 515-
521

[11] U. R. Khan, H.L. Owen and J. L. A. Hughes “FPGA Architectures
for ASIC Hardware Emulator”, Proc. 6th IEEE ASIC Conference,
1993, pp. 336-340

[12] H.K. Lee and D.S. Ha “HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuits”, Proc. 29th DAC, 1992 pp.
336-340

[13] H.K. Lee and D.S. Ha “New Techniques for Improving Parallel
Fault Simulation in Synchronous Sequential Circuits”, Proc. IC-
CAD, 1993 pp. 10-17

[14] E. W. Thomson and S. A. Szygenda “Parallel Fault Simulation”,
Computer, Vol. 8, No 3, March. 1975, pp. 177-188

[15] E. G. Ulrich and T. Baker “Concurrent Simulation of nearly Identical
Digital Networks”, Computer, Vol. 7, April 1974, pp. 204-209

[16] N. Van Brunt “The Zycad Logic Evaluator and its Application to
Modern System Design”, Proc. ICCD, 1983, pp. 232-233

[17] S. Walters “Computer-aided Prototyping for ASIC-based Systems”,
IEEE Design and Test, June 1991, pp. 4-10

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

