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Abstract

A novel constraint-graph algorithm for the optimization of
yield is presented. This algorithm improves the yield of a
layout by carefully spacing objects to reduce the probability
of faults due to spot defects. White space between objects
is removed and spacing in tightly packed areas of the layout
is increased. The computationally expensive problem of op-
timizing yield is transformed into a network ow problem,
which can be solved via known e�cient algorithms. Yield
can be improved either without changing the layout area, or
if necessary by increasing the layout area to maximize the
number of good chips per wafer. Our method can in theory
provide the best possible yield achievable without modifying
the layout topology. The method is able to handle a general
class of convex objective functions, and can therefore opti-
mize not only yield, but other circuit performance functions
such as wire-length, cross-talk and power.

1 Introduction

One of the main sources of electrical failure in VLSI inte-
grated circuits is the presence of spot defects [1], which can
cause either extra material, or missing material at the place
where the spot defect occurs. Modeling of the spot defect
size distribution is used in the calculation of minimum design
rules. The choice of the minimum design rules results from
a trade o� between area and yield considerations. Yield can
be increased by using bigger feature sizes and wider spacings
than the minimum required by the design rules. Therefore to
improve yield it is bene�cial to use non-minimum spacings
whenever this does not introduce signi�cant area penalty.
Due to the very high costs associated with the manufactur-
ing of sub-micron integrated circuits, even a modest yield
improvement can be extremely signi�cant. For instance in
a modern deep-sub-micron foundry a 1% yield improvement
can be worth over $10M per year [2].
At the layout design level, methods for improving yield

due to spot defect failures fall into two broad complemen-
tary categories. In the �rst category the layout topology
is changed to improve yield. This generally involves chang-
ing the routing of the components in the layout. In [3], [4]
and [5], channel routing is modi�ed to minimize the critical
areas between wire segments, so that bridging defects are
minimized. In [6], several types of faults due to spot de-
fects are considered. Their distributions are used to build
a cost function for a weight-driven area routing approach.
Although yield optimization during routing has proved ef-
fective, routing is a constructive procedure, whose results
are sensitive to net schedule.
In the second category of methods for yield improvement

the layout topology is �xed. Components and routing are
spaced to minimize the probability of faults due to spot de-
fects. Such a spacing-based approach is described in [7],

where a heuristic algorithm increases the spacing of layout
objects through a series of spacing iterations. By changing
the positions of only objects o� the critical path, layout area
is maintained at its minimum size. This heuristic however
does not guarantee optimum yield. Also many industrial
cases require simultaneous optimization of multiple objec-
tives such as yield, wire-length and crosstalk. It is di�cult
to extend this approach to handle such simultaneous objec-
tives, and to allow the chip area to increase if necessary to
maximize the number of good chips per wafer.

In this work a new algorithm (Enhanced Network Flow
Algorithm) for the optimization of yield via spacing is pre-
sented. The network ow algorithm is extended to allow
fast optimization of a large class of convex functions such
as yield, wire-length minimization and crosstalk. Because
of the additive properties of convex functions, multiple ob-
jectives can be handled simultaneously. This paper focuses
primarily on applying our algorithm to the optimization of
yield via spacing. It can be used to optimize yield while
maintaining �xed (i.e. minimal) area, or if necessary in-
creasing chip area to maximize the number of good chips
per wafer.

Our algorithm leverages o� the data structures and meth-
ods commonly used in layout compaction. The problem of
yield optimization via spacing is transformed into a network
ow problem which is then solved using a fast wire-length
minimization algorithm [8].

The fault probability between two adjacent objects in the
layout is expressed as a convex decreasing function of their
distance. The problem of yield optimization is then to min-
imize the sum of the fault probabilities for all pairs of adja-
cent objects in the layout. A constraint graph for the layout
is maintained, where each object in the layout corresponds
to a vertex, and an edge links the vertices of adjacent layout
objects. The cost of each graph edge is the fault proba-
bility due to a spot defect between the two corresponding
objects and can be expressed as a function of edge length.
Such a function can be e�ectively approximated by a convex
piece-wise linear cost function. The graph is �rst modi�ed
so that the network ow algorithm can be applied to it. The
graph is modi�ed by replacing each edge by a small equiva-
lent sub-graph with as many vertices as there are segments in
the piece-wise linear approximation. The cost on the edges
in each sub-graph are linear functions of their length and
consequently all edges in the modi�ed graph have this prop-
erty. Vertex positions of the modi�ed graph which minimize
the sum of the new edge costs can therefore be found using
the network ow algorithm. In this work it is proved that
after this operation, the position of the original vertices in
the modi�ed graph also minimizes the cost of the original
graph. Hence a solution for the yield optimization problem
is obtained.

The paper is organized as follows. First a rigorous expla-
nation of the Enhanced Network Flow Algorithm is presented
in Section 2 without any reference to its application to yield
optimization. In Section 3 the yield model is introduced.
In Section 3 the algorithm developed in Section 2 is applied
to the model described in Section 3 to optimize yield for
�xed and variable area. Experimental results are reported
in Section 4.



2 The Enhanced Network Flow
Algorithm

In this section, a method called Enhanced Network Flow Al-
gorithm is presented. It extends the well known network
ow algorithm [9, Ch. 27] to handle a more general class of
problems. Throughout this paper a 1-D constraint graph
is considered. Without loss of generality it is assumed that
spacing is performed in the horizontal dimension.
Let G(E; V ) be the constraint graph, where E is the edge

set, and V is the vertex set. A directed edge from vertex a to
vertex b in G is denoted (a! b). Its length is the di�erence
between the location of vertex b and that of vertex a and
is denoted l(a ! b). Each edge (a ! b) in the graph has a
minimum length denoted by lmin(a ! b). The cost of edge
(a ! b), denoted c(a ! b), is a function which depends on
the edge length. The cost of the graph is the sum of all
the edge costs. If the edge cost c(a ! b) is proportional to
the edge length, the slope of the cost function is a constant
called weight of edge (a! b), denoted by w(a! b) = c(a!
b)=l(a ! b). The location of vertex v is denoted l(v). The
constraint graph is assumed to have a single source vL and
a single sink vR.
The size of the layout in the horizontal dimension (the

dimension of spacing) is denoted by Lc, and its size in the
opposite direction (its height) is denoted by Hc. The area
of the layout is Ac = (Lc �Hc). The notation w; lmin near
an edge as shown in Figure 1, indicates that the weight of
the edge is w, and its minimum length (constraint) is lmin.
In [8], an e�cient network ow heuristic algorithm is pre-

sented to solve the wire-length minimization (wlm) prob-
lem. This algorithm �nds the minimum cost con�guration
of the graph provided all edge costs are proportional to the
edge lengths. In this paper the network ow algorithm is
extended to a more general case, where the edge cost is a
piece-wise linear (pwl) convex function of the edge length.

Piece-wise linear convex cost function

For each edge (a ! b), let � = l(a ! b) be its length. On
a �nite set of Ns coordinates x1; x2; : : : ; xNs

, the values of
a pwl cost function of edge (a ! b) are known, and indi-
cated as F1; F2; : : : ; FNs

respectively. The slope of function
F between xi and xi+1 is constant and �nite, and is denoted
by Si. Function F is continuous and convex. Because of
convexity its slope is non-decreasing:

S1 < S2 < : : : < SNs
(1)

Function F (�) is not de�ned for (� < x1), while for (� >
xNs

) it has a �nite constant slope equal to SNs
. Function F

is shown in Figure 2 for Ns = 4.

Sub-graph substitution

In order to apply the network ow algorithm, the original
graph must be transformed into a graph where the cost of
each edge is proportional to edge length and hence a con-
stant weight can be de�ned for each edge. This is achieved
by substituting each edge which has a pwl cost function
with a sub-graph. All edges in this sub-graph have cost pro-
portional to length, (i.e. they have a well de�ned weight).

a b

w, lmin

Figure 1: The notation w; lmin indicates that the weight
of the edge is w, and its constraint is lmin.
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Figure 2: Piece-wise linear cost function for edge (a!
b), with Ns = 4.
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Figure 3: Equivalent sub-graph for edge (a ! b), with
Ns = 4.

Every edge (a! b) whose cost function is an Ns-segment
pwl function is substituted by a sub-graph G(a! b) made
of (Ns � 1) vertices v1; : : : ; vNs�1, and 2Ns � 1 edges as
shown in Figure 3 for the pwl cost function of Figure 2.
The fanout and fanin vertices a and b of edge (a ! b) are
renamed respectively vNs

, and v0. Vertices v1; : : : ; vNs�1 are
called implicit vertices of sub-graph G(a ! b). Sub-graph
G(a! b) has the following properties:

� for each i = 1; : : : ;Ns, there is a directed edge (vi !
vi�1) (called forward edge) with weight Si, and con-
straint:

lmin(vi ! vi�1) =
n

0; if i > 1
x1 if i = 1

� for each i = 1; : : : ;Ns � 1, there is a directed edge
(vi�1 ! vi), (called backward edge), with weight 0,
and constraint:

lmin(vi�1 ! vi) =
n
�xi+1 � xi; if i > 1
�x2; if i = 1

Sub-graph con�guration

The length of edge (vi ! vi�1) in the sub-graph is de-
noted by di = l(vi ! vi�1). The array of all forward edge

lengths d = [d1 d2 : : : dNs
]T is called con�guration of the

sub-graph. Note that by construction, the substitution of
sub-graph G(a! b) for edge (a! b) introduces no positive
cycles in the constraint graph. Also, the minimum distance
between vertices a and b imposed by sub-graph G(a! b) re-
mains the same as that imposed by the original edge (a! b).
The cost of the sub-graph is denoted by FG and can be ex-
pressed in terms of its con�guration d:

FG(d) =

NsX
i=1

Si � di



If the locations of vertices a and b are not changed, the sum
of the forward edge lengths must be equal to the length of
the original edge:

NsX
i=1

di = l(a! b): (2)

For every forward edge (vi ! vi�1), its length di has one of
the following three possible states:

min extension: if di is equal to the edge constraint:

di = lmin(vi ! vi�1)

max extension: if di is equal to the module of the con-
straint on the backward edge between the same ver-
tices:

di = jlmin(vi�1 ! vi)j

active state: if di is between the two constraints:

lmin(vi ! vi�1) < di < jlmin(vi�1 ! vi)j:

Notice that edge (vNs
! vNs�1) can never reach maximum

extension because there is no backward edge between ver-
tices vNs�1 and vNs

. Therefore it can be stretched inde�-
nitely.

De�nition 1 Given an edge (a ! b), its sub-graph

G(a ! b) has minimum con�guration, denoted d(0) =

[d1 : : : dNs
]T , if 8i 2 [1; : : : ;Ns � 1]:

� If di does not have maximum extension then di+1 has min-
imum extension.

� If di+1 does not have minimum extension then di has max-
imum extension.

For example, for the sub-graph G(a ! b) of Figure 3 if � =

l(a ! b) and x2 < � � x3 then d(0) = [x2 (�� x2) 0 0]T .
In a minimum con�guration there is always an integer k such
that for all i < k (i � 1), di has maximum extension and for
all j > k (j � Ns), dj has minimum extension.
Figures 4.a and 4.c show the graph G(a! b) of Figure 3

in its minimum con�guration for two di�erent values of � =
l(a ! b). The cost function of the original edge (a ! b)
is shown in Figure 4.b. As the original edge (a ! b) is
compressed the forward edges of G(a ! b) starting from
the left hand side of the graph are compressed and reach
minimum extension. Only after an edge (vi+1 ! vi) reaches
minimum extension does the next edge (vi ! vi�1) (which
necessarily has lesser weight) begin to get compressed from
its maximum extension. It can be easily shown that for
any value of � = l(a ! b) the minimum con�guration of
G(a! b) is the con�guration which has the lowest cost.
In Figure 4.a the leftmost segment has reached minimum

extension and the second leftmost segment (with weight S3)
is in its active state. All other segments have maximal ex-
tension. The original edge length � = l(a! b) is necessarily
between x3 and x4. Further compression while maintain-
ing G(a ! b) in its minimum con�guration will reduce the
length of the second segment. Hence the change in the cost
of the graph is 4CG(a!b) = S34�. This is equal to the
change of the cost function of Figure 4.b corresponding to
a length variation 4� between x3 and x4 (in that region
the slope of the cost function is S3). Similarly in Figure 4.c
the two leftmost segments have reached minimum extension
and the third leftmost segment (with weight S2) is in its
active state. The change in cost for a length variation 4�
is 4CG(a!b) = S24� which tracks the slope of the cost
function of Figure 4.b between x2 and x3.
It can be shown that for any length � = l(a ! b) the

cost of graph G(a ! b) in its minimum con�guration and
the original edge cost c(a ! b) di�er by the constant K =
F1 � S1x1. The proof involves some algebra and is omitted
here for readability and lack of space.
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Figure 4: Cost function c(a ! b) and corresponding
minimum graph G(a! b) con�gurations.

Claim 1 The set of locations of non-implicit vertices which
minimize the cost of the modi�ed graph G0, also minimizes
the cost of G.

Proof 1 If G0 has minimum cost all the substitution sub-
graphs of G0 are in their minimum con�guration because the
lowest cost for each substitution sub-graph occurs in the min-
imum con�guration. Also the cost of G0 and G (with the same
vertex locations as the non implicit vertices of G0) di�er by
a constant. Therefore the minimum for G and G0 occur for
the same locations of the non implicit vertices and hence G
has minimum cost.

Enhanced network ow algorithm

The enhanced network ow algorithm is based on the result
of Claim 1 and involves the following steps.

1. In the constraint graph G, every edge is substituted
by the corresponding sub-graph structure shown in
Figure 3 yielding a new graph G0.

2. The network ow algorithm (in our implementation
the wlm algorithm of [8] is used) is applied to G0.

3. The locations of the non-implicit vertices in G
0 are

used as the solution to the original problem.

Example: WLM with Jog Swapping

This section illustrates the use of the enfa algorithm on an
interesting special case. Consider the wire shown in Fig-
ure 5.a. The two vertical wire segments A and B are as-
sociated with two vertices in the constraint graph, linked
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Figure 5: (a) Wire jog and (b) its cost function.
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Figure 6: (a) The equivalent sub-graph; (b) Weight S1
is moved to another edge; (c) Useless edge is removed
and S1 = �S2; (d) The �nal sub-graph.

by an edge with constraint �1 (no constraint). The cost
of the edge is proportional to the length of the horizon-
tal wire segment connecting A and B, and is a function
of the relative position of B with respect to A shown in
Figure 5.b. The ordinary network ow algorithm is not
able to handle this case and most wire length minimization
algorithms treat this as a special condition. However the
cost function of Figure 5.b is piece-wise linear, convex, with
Ns = 2; x1 = �1; x2 = 0; S1 = �S2, and hence can be dealt
with by the enfa algorithm.
The edge linking A and B is substituted by the sub-graph

shown in Figure 6.a. This sub-graph is equivalent to the one
in Figure 6.b where weight S1 on edge (v ! B) is trans-
formed into a weight �S1 = S2 on edge (B ! v). Edge
(v ! B) then has zero weight and no constraints. Therefore
it can be removed from the sub-graph as shown in Figure 6.c.
The �nal equivalent sub-graph is as shown in Figure 6.d. Its
cost is:

FG = S2 � (d1 + d2)

Because S2 > 0 from Figure 6.d it is clear that the cost of
the sub-graph is minimized by minimizing the location l(v)
of v. This corresponds to the minimum con�guration of the
sub-graph. The minimum location lmin(v) for v is lmin(v) =
max(l(A); l(B)) where l(A) and l(B) are the locations of
vertices A and B. Therefore if l(A) � l(B), in the minimum
con�guration l(v) = l(A). Hence the cost of the sub-graph is
S2 �d1, where d1 = l(A)� l(B) is the length of the horizontal
wire segment. Similarly if l(A) � l(B) the cost of the sub-
graph is S2 �d2, where d2 = l(B)� l(A) is again the length of
the horizontal wire segment. The cost of the minimum sub-
graph con�guration is thus the cost function of Figure 5.b.
Finding values for l(A); l(B) and l(v) that minimize the cost
of the sub-graph does indeed minimize the length of the
horizontal wire segment.
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Figure 7: Bridging fault of type OE between parallel
wires spaced by D.
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3 Yield optimization

Yield model

The distribution of spot defects that occur in a manufac-
turing process is a function of the defect size x and is often
modeled using the following expression [10]:

D(x) =
X0

x3

where X0 is a process-dependent constant.
Using the notation introduced in [6], a fault due to a spot

defect bridging two parallel wire segments on the same layer
(see Figure 7) is called fault of type OE (One-layer Extra-
material defect). The probability of a fault of type OE be-
tween two parallel wire segments at a distance D from each
other is [6]:

P = POEX0 �

�
1

D
�

1

2D +W

�
(3)

where W is the average width of the two segments. The
constant POE is proportional to the length L of the par-
allel portion of the two segments [11]. A plot of the fault
probability function P of equation (3) is shown in Figure 8.

From expression (3), it is clear that yield bene�ts from in-
creasing the distance between any pair of parallel wire seg-
ments in the circuit. Every edge (a ! b), between nodes
representing two parallel wire segments on the same layer at
distance D, has a cost equal to the probability of a fault of
type OE. The cost function is:

C(a! b) = POEX0 �

�
1

D
�

1

2D +W

�
(4)
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Figure 9: Piece-wise linear function approximating the
cost function accounting for the probability of faults due
to spot defects, with Ns = 4.

Cost function (4) is expressed in terms of the length � of
edge (a! b), which is equal to D plus some constant o�set.
Function (4) is a convex function of �, therefore a reason-
able approximation satisfying property (1) can be found.
The edge cost function is approximated by a piece-wise lin-
ear (PWL) function Fy(�) with Ns points x1; : : : ; xNs

. The
number Ns of points, their coordinates and the values of
Fy(�) at those points are chosen to maintain the di�erence
between the slopes of the fault probability function (4) and
the yield cost function Fy(�) within an arbitrarily small pre-
determined value. For most practical cases good approxima-
tions are obtained with three to four segments in the approx-
imation. The PWL approximation Fy(�) of the original cost
function is shown in Figure 9 with Ns = 4. The minimiza-
tion of the PWL cost function is equivalent to optimizing
the contribution to yield due to spot defect faults of type
OE.

Yield optimization with minimum area

Yield can be optimized while maintaining minimum area.
Let Lc be the minimum layout size (in the spacing direc-
tion) achieved with one-dimensional compaction on the orig-

inal constraint graph. Lc is the longest path from vL to vR
and can be computed using the Bellman Ford Algorithm [9,
Ch.25.3]. In the constraint graph, a directed edge is inserted

from vR to vL with weight 0 and constraint �Lc, as shown
in Figure 10 (edge 1 is present, but edge 2 is not). The en-
hanced network ow algorithm is applied to the new graph
thus obtained. Since the new edge keeps source and sink at
their minimum distance, yield is optimized at no area cost
by correctly spacing only objects o� the critical path. The
underlying network ow problem can be solved using the
fast wlm algorithm in [8].

Yield optimization with variable area

If area is allowed to increase, the constraint on the maximum
distance between graph source and sink is removed. Instead
of optimizing yield with minimum area now the optimization
objective is to maximize the number of good chips per wafer,
which is approximately proportional to Y=Ac, where Y is
the yield and Ac is the chip area. This problem is more

v v
L Rconstraint−graph

with yield−optimization
cost function

0,−L c
edge 1

edge 2

c  Y/L ,0

Figure 10: Constraint graph for maximum yield. For
minimum area source and sink are constrained to lay at

their minimum distance Lc determined by the compactor
(edge 1). Otherwise a directed edge is added between

source and sink, with weight Y =Lc (edge 2).

complicated than in the minimum area case because now the
overall cost of increasing an edge length l(a ! b) depends
not only on the edge costs but also whether the edge is on
the critical path or not. Increasing the length of edges not
on the critical path a�ects only Y . Increasing the length
of edges on the critical path a�ects not only Y but also Ac
because the area of the layout increases.
Let Y and Ac be respectively the nominal values of yield

and the chip area. These values can be for example the
minimum area and the best yield for the minimum area case.
During optimization both area and yield change with respect
to their nominal values:

Y = Y +�Y ; Ac = Ac +�Ac:

The cost of the chip can be expressed as

Cost =
Ac

Y
=
Ac +�Ac

Y +�Y

since it is assumed that �Y � Y and �Ac � Ac. And since
�Y = ��Fy (where Fy is the cost of the original graph),

Ac

Y
�
Ac

Y

�
1 +

�Ac

Ac
+

�Fy

Y

�
(5)

Hence since Ac = Lc �Hc, the cost function (5) changes by

�
Ac

Y
=
Ac

Y
2

�
Y

Lc
�x+�Fy

�

Therefore function (5) can be minimized by solving a mod-
i�ed graph, obtained from the original constraint graph by
adding an edge between the source vL and the sink vR, with
weight w(vL ! vR) = Y =Lc, as shown in Figure 10 (edge 2
is present, but edge 1 is not). The cost of this new graph is

Fy+(Y =Lc) �x, where x is the length of the additional edge.

Algorithm for yield/area optimization

The yield optimization algorithm is as follows:

1. Add a directed edge to the graph, between source and

sink, with weight Y =Lc and lmin = 0.

2. Solve this modi�ed graph with the enhanced network
ow algorithm described in Section 2.

The computational cost of this algorithm is practically
the same as running the algorithm for the �xed area case,
because the number of edges is the same, and only one edge
di�ers in terms of its direction, weight and constraint.



Fault CPUy (sec.)
name des. style size reduct. yld opt. total
lev4 custom 10K 12.4% 4 11
bpr10 macro-cell 20K 12.7% 13 30
bpr12 macro-cell 6K 8.2% 1 3
bpr14 std. cell 1K 18.2% < 1 < 1
bpr21 macro-cell 6.5K 17.9% 1 7
bpr22 macro-cell 6K 8.6% 1 6
bpr23 macro-cell 25K 13.7% 48 55
bpr24 macro-cell 5K 14.7% 4 7
y on a Sparcstation-5

Table 1: Relative Reduction of Spot Defects using Yield
Optimization with Fixed Area. Total run times include
compaction, simultaneous wlm and yield optimization,
and IO.

Simultaneous Yield and Wire-Length
Optimization

Often yield must be optimized while simultaneously consid-
ering other constraints such as wire-length. For wire-length
minimization the cost of each edge is linear in the edge
length. Hence the wire-length cost is also a convex function.
Since the sum of convex functions is convex, yield and wire-
length can be simultaneously optimized. The yield cost on
an edge usually dominates for small values of � = l(a ! b)
and the wire-length cost dominates for large values of �.
Hence yield and wire-length cost interact minimally with
each other and simultaneous optimization of yield and wire-
length produces near optimal results for both yield and wire-
length.

4 Experimental results

The algorithm described in this paper has been implemented
in the C language and integrated in a high-performance
1-dimensional graph-based compaction system called acp

which is integrated into the Cadence dfii environment. The
algorithm was tried out on several large industrial macro-cell
and standard-cell style layouts, as well as on a few custom-
style layouts, all implemented with sub-micron cmos pro-
cesses. Experimental data for the defect size distributions is
used to evaluate the spot defect decrease after optimization.
This experimental data was derived from actual industrial
test cases.
Yield was optimized simultaneously with wire-length by

adding a wire-length cost function to the yield cost func-
tion. Experiments using only wlm and no yield, and yield
optimization with no wlm were also performed. Our re-
sults show that the wire-length is not signi�cantly a�ected
by simultaneously optimizing yield and wire-length. Also
no signi�cant bene�ts were observed for the yield when only
wlm was performed.
Table 1 shows the result of applying the yield optimiza-

tion algorithm with minimum area on a few industrial test
cases. For each test case compaction is �rst performed and
the probability of faults due to spot defects is computed
before and after yield optimization using distribution (3).
The fault reduction column in Table 1 shows the computed
percentage of reduction in the number of faults due to spot
defects. The size of the layout is the number of constraint
graph vertices which is approximately the number of objects
in the layout. The number of segments used in the piece-
wise linear approximation is about four. All our test cases
show a signi�cant improvement in yield even though area
was maintained at its minimum size and the layouts were
quite tight.

5 Conclusions

A novel compaction-based method for the optimization of
yield is presented. By carefully spacing objects in the lay-
out the probability of bridging faults due to spot defects is
minimized. The problem of optimizing yield is reduced to
a network ow problem, which is solved using e�cient algo-
rithms. Yield can be optimized with minimum area using
the longest-path algorithm followed by the enhanced net-
work ow algorithm. By increasing layout area if necessary,
the algorithm described in section 3 can be used to maximize
the number of good chips per wafer. Our method can, in the-
ory, provide the largest possible reduction in the probability
of bridging faults that can be achieved without changing the
layout topology.
Preliminary results indicate that run-times are on the or-

der of other compaction algorithms such as graph-building,
Bellman-Ford and wlm. Hence the performance overhead
for yield optimization is quite acceptable. Results run on
industrial test cases simultaneously optimizing for yield and
wlm with minimum area show a considerable reduction in
the number of faults. Given the high economic impact of
yield improvement in today's deep sub-micron fabs, these
results show that our method can play a signi�cant role in
the reduction of manufacturing costs.
Test cases using the variable area approach are being eval-

uated. Other optimization objectives can be considered, as
long as they can be e�ectively approximated with convex
pwl functions of the constraint graph edge lengths. Wire
capacitance has this property, and therefore objectives such
as power, crosstalk noise and delay can be optimized using
our method. Our current research is directed to the simul-
taneous optimization of several such objectives, using graph
manipulation algorithms.
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