
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

A Boolean Approach to Performance-Directed
Technology Mapping for LUT-Based FPGA Designs

Christian Legl� Bernd Wurth�� Klaus Eckl�
�Institute of Electronic Design Automation, Technical University of Munich, 80290 Munich, Germany

��Synopsys, Inc., 700 E. Middlefield Rd., Mountain View, CA 94043

Abstract — This paper presents a novel, Boolean approach to LUT-
based FPGA technology mapping targeting high performance. As the
core of the approach, we have developed a powerful functional decom-
position algorithm. The impact of decomposition is enhanced by a pre-
ceding collapsing step. To decompose functions for small depth and area,
we present an iterative, BDD-based variable partitioning procedure. The
procedure optimizes the variable partition for each bound set size by it-
eratively exchanging variables between bound set and free set, and finally
selects a good bound set size. Our decomposition algorithm extracts com-
mon subfunctions of multiple-output functions, and thus further reduces
area and the maximum interconnect lengths. Experimental results show
that our new algorithm produces circuits with significantly smaller depths
than other performance-oriented mappers. This advantage also holds for
the actual delays after placement and routing.

1 INTRODUCTION
An important class of FPGAs is based on the lookup-table (LUT)

as the basic programmable logic block. Ak-LUT implements any
Boolean function of up tok variables. The LUTs are wired by vari-
ous kinds of programmable interconnects [1]. Minimizing the delay
of LUT-based FPGA designs is an important task because the pro-
grammable interconnects introduce extra delay compared with con-
ventional gate array or standard cell technologies. The performance
of an FPGA design is determined by the number of LUTs and the
interconnect delays on the critical path.

Performance-driven technology mapping for LUT-based FPGAs
is to transform a Boolean network, which has been produced in the
technology independent logic optimization phase, into a functionally
equivalent LUT network with minimum circuit delay. Technology
mapping of a Boolean network is usually performed in two steps: The
first step is the decomposition ofnodes with more thank inputs into
smaller nodes withk or less inputs. The resulting network is calledk-
bounded. A subsequentcovering step finds a circuit of LUTs covering
thek-bounded network.

A variety of technology mapping algorithms tackle performance
optimization by minimizing the depth ofk-bounded networks.
Chortle-d, which is based on tree decomposition and bin-packing, is
depth-optimal for trees [2]. DAG-Map heuristically minimizes the
depth of a generalk-bounded network [3]. The FlowMap algorithm is
a significant advance since it guarantees a depth-optimal covering for
generalk-bounded networks [4].

However, minimizing the network depth does not consider the in-
terconnect delays. Since the maximum interconnect length on the
chip is correlated with the circuit area, minimizing the area also con-
tributes to delay minimization. This is considered in the FlowMap-r
[5] algorithm, which achieves depth-optimal mappings as FlowMap
but reduces the number of LUTs. Recent algorithms improve on the
FlowMap algorithm by modeling interconnect delay more accurately.
This is done by assigning different delays to different nets (nominal
delay model[6]) or even to the different interconnections of the same
net [7]. The combination of the technology mapping and layout syn-
thesis phases has been proposed to achieve small interconnect delays
and improve routability [8, 9].

Another class of performance-directed algorithms performs
Boolean operations during the covering step. Collapsing of criti-

cal nodes and re-decomposition are employed in MIS-pga(delay) [8],
TechMap-D [10] and FlowSYN [11]. The FlowMap-based FlowSYN
algorithm, which uses an efficient functional decomposition method,
outperforms FlowMap-r in terms of circuit depth and area.

All these performance-directed mapping algorithms concentrate on
the covering step. To obtain ak-bounded network in the decom-
position step, the DMIG algorithm [3] and SIS-algorithms [12] like
xl k decomp, speedup, andtechdecompare used. The decomposi-
tion step typically yields a network in which each gate has at most two
inputs. This maximizes the flexibility during the covering step. A rea-
son for the little attention given to the decomposition step is the fact
that technology independent logic optimization generates Boolean
networks with relatively small nodes. Thus, decomposition has only
local effect, whereas a state-of-the-art covering step can deal with the
entire network and therefore dominates the final result.

In this paper, we present a novel, Boolean approach to
performance-directed technology mapping. As a first step, delay-
driven collapsing is performed. In contrast to previous mapping ap-
proaches, large network portions are collapsed such that the decom-
position step can have a significant impact. As the core of our ap-
proach, we have developed a powerful, functional decomposition al-
gorithm that createsk-bounded networks with small depth and area.
The main components of the decomposition algorithm are: First, a
BDD-based, iterative variable partitioning procedure that efficiently
evaluates a large number of variable partitions for their effect on cir-
cuit depth and area. Second, we have developed cost functions that
estimate the delay and area of Boolean functions after decomposition
and determine the effectiveness of the variable partitioning procedure.
Third, we use a multiple-output decomposition approach which ex-
tracts common subfunctions.

The rest of the paper is organized as follows. Section 2 reviews the
state of the art in functional decomposition. In Section 3, we present
our performance-directed variable partitioning procedure. Section 4
describes the overall approach. We show experimental results in Sec-
tion 5, and conclude the paper in Section 6.

2 REVIEW OF FUNCTIONAL DECOMPOSITION
Single-output decomposition. We first review the functional

single-output decomposition which is based on the theory of Cur-
tis [13], Roth and Karp [14]. Functional single-output decomposition
breaks a functionf (x;y) into the composition functiong(v;y) and
the subfunction vectord(x) = (d1(x); : : : ;dc(x)) such thatf (x;y) =
g(d(x);y). We deal with disjoint decompositions, where the bound
setBS= fx1; : : : ;xbg and the free setFS= fy1; : : : ;yn�bg are disjoint
sets whereb is the size of the bound set andn is the number of in-
puts of f . In non-trivial decompositions, composition functiong as
well as the subfunctionsdi have fewer inputs than the original func-
tion f . Therefore, functional decomposition can be recursively used
to computek-bounded networks.

Two problems must be solved to perform functional decomposi-
tion. First, the input variables off must be partitioned into thebound
set and the free set. This is thevariable partitioning problem. Sec-
ond, given a variable partition, a minimum numberc of subfunctions
di must be computed. This numberc depends on the variable partition.

We deal with the second problem first. To compute subfunctionsdi ,
the notion ofcompatibleBS-vertices was introduced [14]. Two BS-
verticesx̂v2f0;1gb andx̂w2f0;1gb arecompatible, denoted bŷxv�

x̂w, if and only if8ŷ2 f0;1gn�b : f (x̂v; ŷ)= f (x̂w; ŷ). For completely
specified functions, compatibility is an equivalence relation, which
partitions the set of BS-vertices intocompatible classes. The number
of compatible classes is denoted by`. Thedecomposition condition
states that a decomposition with the subfunction vectord exists if and
only if 8x̂v; x̂w 2 f0;1gb : x̂v 6� x̂w =) d(x̂v) 6= d(x̂w), i.e., different

codesd(x̂) must be assigned to incompatible BS-vertices. Thus, the
minimum numberc of subfunctions isc= dlog2`e. A simple method
to compute subfunctions and to fulfill the decomposition condition is
to assign a unique code of lengthc to each compatible class.

It is obvious that the computation of` is an important subtask of
functional decomposition. Roth and Karp [14] described how` is
computed using a SOP representation of the functionf . Lai et al.
showed that the computation is significantly sped up if the function
f is represented by a BDD in which the bound set variables are or-
dered before the free set variables [15]. Lai introduced a set of BDD
nodes calledcut set(f ;b) comprising all BDD nodes that have a level
greater thanb and a predecessor with a level less than or equal tob.
Each nodeν 2 cut set(f ;b) is in a one-to-one correspondence to a
compatible class. Thus, the number of compatible classes is given by
the cardinality ofcut set(f ;b).

We now give a brief review of previous approaches to the variable
partitioning problem. Note that all these approaches target area. Dur-
ing technology mapping fork-LUT architectures, usually BS cardi-
nality k is chosen. The SOP-based functional decomposition method
implemented in SIS either selects the first variable partition with
BS sizek that yields a non-trivial decomposition [16], or enumer-
ates all partitions of fixed size [17]. The enumerative approach was
adapted for BDD-based functional decomposition by Lai et al. [15]
and Sasao [18]. Since enumeration is very expensive, it is not appli-
cable for functions with many variables. Recently, a heuristic was pro-
posed which directly constructs a BS of fixed size from the SOP rep-
resentation off [19]. In contrast to the approaches mentioned above,
Schlichtmann proposed a BDD-based variable partitioning approach
that also selects a good BS size [20]. Our new performance-directed
variable partitioning presented in Section 3 is based on this approach.

Multiple-output decomposition. We briefly summarize func-
tional multiple-output decomposition. Its goal is to compute sub-
functions di that can be used for several outputs. Functional
multiple-output decomposition breaks a multiple-output function
f(x;y) = (f1; : : : ; fm) into the composition function vectorg(v;y) =
(g1; : : : ;gm) and the subfunction vectord(x) = (d1; : : : ;dq) such that
f(x;y) = g(d(x);y). Each composition function outputgk depends
on a subset of theq subfunctionsdi . Precisely,gk depends on
ck = dlog2`ke subfunctionsdi , where`k is the number of compati-
ble classes of functionfk(x;y). This guarantees that multiple-output
decomposition of a vectorf is at least as good as single-output decom-
position ofeach output off with respect to a given variable partition.

Multiple-output functional decomposition has the advantage that
by extracting common subfunctions it performs a task that is typically
confined to the logic optimization stage before technology mapping.

The problem faced during multiple-output decomposition is the
usually very large number of possible subfunctions for each output.
To cope with this problem, we use the multiple-output decomposition
approach as described in [21]. Additionally, we compute subfunctions
with minimal support [22].

3 PERFORMANCE-DIRECTED VARIABLE
PARTITIONING

For ease of explanation, we first describe the variable partitioning
procedure for a single-output functionf . Our goal is to partition the
variables off into bound set variablesx and free set variablesy such
that the arrival timeat(g) at the output of composition functiong is
minimal. We use the unit delay model, i.e., each LUT has a delay of 1
unit. The second goal of our variable partitioning procedure is to re-
duce the LUT count needed to implement functionf . Minimizing the
LUT count reduces the maximum interconnect length on the FPGA
chip and thus also affects performance.

We illustrate the variable partitioning problem with an example.
To obtain a small arrival timeat(g), one might intuitively assign early
arriving inputs to the bound set, and inputs with large arrival times to
the free set.
Example 1 Figure 1 shows an example with the bound set size 3.
Please assume that we want to achieve a 3-LUT implementation. The
numbers at the inputs denote arrival times. Each of the resulting sub-
functionsd1 andd2 has 3 inputs and can be implemented by a single
3-LUT, thus we have propagation delaysdt(di) = 1 andat(di) = 3.
Since the composition functiong has 4 inputs, it has to be decom-
posed further, and we have an estimated propagation delaydt(g) = 2

and arrival timeat(g) = 6. Note that we must assume a propagation
delay of 2 for each path throughg since we do not know at this point
howg will be decomposed.

It is easily recognized that using

d2

g

dt(di) = 1

at(di) = 3

dt(g)= 2

at(g)= 6

2 2 2 3 4

d1

Figure 1: Delay oriented
decomposition.

the variable with arrival time 3 in the
bound set and one of the inputs with
arrival time 2 in the free set would not
increase the maximum arrival time of
the inputs ofg, which is 4 anyway.
Thus, there are several variable parti-
tions of bound set size 3, all of which
should be evaluated to possibly re-
duce the numberc of subfunctions
di. Note that a variable partition for
which c = 1 reduces the number of inputs ofg to 3, thus decreasing
the arrival timeat(g) to 5. 2

The example shows that the variable partition must take into ac-
count the arrival times of the input variables, the numberc=dlog2`e
of subfunctions, and the estimated propagation delays of the resulting
functionsdi andg, which depend on the BS size andc, respectively.

We separate the variable partitioning problem into two subtasks.
First, we determine an optimal variable partitionVPi for each bound
set sizei. Then we select the best partition among allVPi . A solution
of the two subtasks requires proper cost functions.

To solve the first subtask, we propose an iterative heuristic. Each
iteration step involves a cost-reducing exchange of a BS and a FS
variable. Note that the BS size is given and is not allowed to change. A
greedy method would requirejBSj � jFSj tentative variable exchanges
in an iteration step to find the best exchange of a BS and a FS variable.
This is too expensive if the number of variables is large. Therefore, we
compute the BS variable that yields the lowest costs if moved to the
FS, and similarly we compute the FS variable that yields the lowest
costs if moved to the BS. ThebestBS and thebestFS variables found
in such a way are exchanged if this reduces the costs. An iteration
step then requires onlyjBSj+ jFSj tentative variable exchanges to find
a good (and possibly suboptimal) exchange.

We employ cost functions for delay and area to evaluate tentative
variable exchanges and to solve the second subtask mentioned above.
The cost functions estimate the arrival time of the composition func-
tion g and the total LUT count of the resulting functionsdi andg. The
only information used as input of the delay and area cost functions
is the BS sizeb, the number of compatible classes`, the maximum
arrival time among the BS variables, denoted byatmax(x), and the
maximum arrival time among the FS variables, denoted byatmax(y).
Let us first introduce thefunction propagation delay estimate FDE
and thefunction area estimate FAEof a Boolean functionh(x).
Definition 1 The function propagation delay estimateFDE is a
measure of the propagation delay of a Boolean function h(x) in the
unit delay model. It is defined by

FDE(h(x))=
n

1 : jxj � k
jxj�k+1 : jxj > k (1)

wherejxj denotes the number of variables that h depends on, and k is
the number of inputs of a LUT.
The FDE is the depth of a LUT network obtained by the Shannon
decomposition ofh and thus is a worst-case estimate of the function’s
propagation delay in the unit delay model.

For area we have examined various estimates that are linear,
quadratic or exponential in the number of variables. Our experiments
have shown that the best results are obtained using the same linear
estimate as for the function propagation delay estimate.
Definition 2 The function area estimateFAE is a measure of the
area of a Boolean function h(x) in terms of LUTs. It is defined by

FAE(h(x))=
n

1 : jxj � k
jxj�k+1 : jxj > k (2)

We define thedelay costfunction as
DC= max[(atmax(x)+FDE(d));atmax(y)]+FDE(g); (3)

which is a simple computation of the arrival timeat(g) as described
in standard literature.
Thearea costfunction

AC= ∑c
j=1FAE(dj)+FAE(g) (4)

sums up the area estimates for the resulting functions. Note that we
must know the numberc = dlog2`e of subfunctions to compute the
delay and area estimatesFDE(g) andFAE(g).

It has been shown in Section 2 that computing the number` of
compatible classes is simple iff is represented by a BDD and the BS
variables are ordered before the FS variables. In this case, we have
` = jcut set(f ;b)j. Thus, the delay and area cost functions can be
evaluated very fast for a given variable partition. Representing func-
tion f by a BDD additionally has the advantage that variable moves
and thus variable exchanges can be performed rapidly. If, e.g., a vari-
able on leveli shall be moved to levelj, j� i adjacent variable swaps
must be performed. Adjacent variable swaps modify the BDD only on
the levels of the swaped variables and are therefore carried out rapidly.

Let us resume the discussion of our variable partitioning procedure.
We now describe in more detail the computation of thebestBS and the
bestFS variable for a bound set sizeb. To find the best BS variable,
the topmost BS variable is tentatively moved to the FS. This is done in
the BDD by a variable move (a sequence of adjacent variable swaps)
from level 1 to levelb. Thus, the variable previously on level 2 is
on level 1 now, the variable previously on levelb is on levelb� 1
and the variable previously on level 1 is now on levelb. The BDD
is then traversed to computecut set(f ;b� 1); delay and area costs
are evaluated and stored. The variable move from level 1 to levelb is
repeated for the remainingb�1 BS variables. ThebestBS variable
is the variable with minimal area cost among all BS variables with
minimal delay cost. ThebestFS variable is computed similarly by
a sequence of variable moves (from leveln to levelb+1) and BDD
traversals. After exchanging the best BS and FS variable, the BDD is
traversed once again to computecut set(f ;b) and to check if the costs
have actually been reduced by the exchange.
Example 2 We illustrate the computation of the best BS and FS vari-
able for the functionf (z)= z1z2z3z4+z1 z5 and a bound set size of 3.
Figure 2 a) shows the initial BDD of functionf where the variableszi
are ordered according to their arrival timesat(zi), which are indicated
by the numbers next to the corresponding BDD nodes. First, we have
to compute the costs for the initial variable partitionBS= fz1;z2;z3g
andFS= fz4;z5g. For ease of explanation, we only consider delay
costs. In Figure 2 a), all nodes that have a level greater than 3 and
a predecessor with a level less than or equal to 3 are shaded. These
nodes comprise thecut set(f ;3). We needc = 2 subfunctions, as
l = jcut set(f ;3)j = 3. Note that we have the same decomposition
structure and the same arrival times of the BS and the FS variables as
in Figure 1 of Example 1. Therefore, we have a delay cost ofDC= 6.
Now, we have to compute the best BS variable. We movez1 from
level 1 to level 3. The obtained BDD is shown in Figure 2 b). The
delay cost after movingz1 to the free set is determined by evaluat-
ing the delay cost functionDC for theBS= fz2;z3g. As there are 2
nodes incut set(f ;2), only one subfunction is needed, which can be
implemented by a single 3-LUT. Therefore, the estimated propagation
delay of this subfunction isFDE(d) = 1. The resulting composition
functiong depends on 4 variables. Thus,FDE(g) evaluates to 2. Us-
ing Equation (3) and the maximum arrival times of the BS and FS
variables, we obtainDC= max[2+1; 4]+2= 6. If z2 andz3, respec-
tively, are moved to the free set, we get delay costs of 7. Thus, the
best BS variable isz1.

The computation of the best FS variable is done similarily. Moving
z5 to the bound set yields a delay cost of 7, whereas movingz4 to the
bound set yields a delay cost of 6. Thus, the best FS variable isz4.

Now, the best BS and FS variables are exchanged as shown in the
BDD of Figure 2 c) in order to check if a cost reduction is achieved.
The resulting BDD has 2nodes incut set(f ;3) so that we need one
subfunction. The number of inputs to the composition functiong is 3.
Thus,FDE(d) andFDE(g) evaluate to 1. We obtainDC = 5. Thus,
the delay costs are reduced from 6 for the initial partition to 5 for the
new variable partitionBS= fz2;z3;z4g andFS= fz1;z5g. 2

Iterative variable exchanges are performed for a given BS sizeb to
find an optimal variable partitionVPb. However, a closer look reveals
that we can gather information that is useful for other BS sizes dur-
ing the iterative procedure. Note that the BDD is completely traversed
jBSj+ jFSj+1 times for each variable exchange. Although each BDD
traversal is carried out to compute the cut set for a specific BS size
b, we can gatherall cut setscut set(f ; i), i = 2; : : : ;n�1, with only
small additional computational effort. For each BS sizei, we com-

00 1 110

c)

3

2

2

2 z2

z3

z1

z4

z1

DC= 6

2

2

2

3

z2

z3

z1 z1

z5 4

DC= 5

2

2

2

3

z1

z2

z3

z4

DC= 6

z5 4 z5 4

z4

a) b)
Figure 2: BDDs of Example 2.

pare the delay and area costs, as computed using the current variable
order, with delay and area costs stored forVPi . If a cost reduction is
achieved, thenVPi is replaced by the variable partition determined by
the current variable order. This method yields a coupling between the
iterative procedures performed for each BS size.

Multiple-output decomposition of function vectorf(x;y) =
(f1; : : : ; fm) requires a slight modification of this algorithm. First, we
have a BDD with several roots, one for each outputf j . Second, the
delay and area cost functions must be modified:
We use themultiple-output delay costfunction

MDC= max[DC1; : : : ;DCm]; (5)
whereDCj denotes the delay cost for outputf j . Themultiple-output
area costfunction sums up the area estimatesACj for each outputf j :

MAC= ∑m
j=1ACj : (6)

4 ALGORITHM OVERVIEW
In this section we describe the overall algorithm for performance-

directed technology mapping. The algorithm consists of three steps,
i.e., collapsing, decomposition, and covering.

We first try to completely collapse the circuit within a given limit
of CPU time. If collapsing is possible, the decomposition step starts
from the obtained flattened circuit. Otherwise, a depth-oriented partial
collapsing is performed by applying the SIS-commandreducedepth
-r -d d value[23]. This command, which is based on Lawler’s clus-
tering algorithm, first clusters nodes and then collapses each cluster
such that the resulting network has the specified depthd valueand
the cluster size is minimal. Since this command should only be used
on a network with nodes of comparable complexity, we first decom-
pose the nodes of the original network into nodes with at mostk inputs
using our performance-directed decomposition approach. We then ap-
ply reducedepthto the decomposednetwork to obtain a network with
depth 3 or 4. These networks are used as the starting point for the final
performance-directed decomposition.

For the decomposition step, functional multiple-output decomposi-
tion as described in Section 2 and the variable partitioning algorithm
of Section 3 are used. Only nodes of the network with more thank
inputs are decomposed. As candidates to be decomposed we select
only these nodes for which all nodes in the transitive fanin have at
mostk inputs. This guarantees accurate arrival times at the inputs of
the considered nodes.

After all nodes in the network have been decomposed into nodes
with at mostk inputs, we do a simple covering step. A node is col-
lapsed into its successors if each successor does not have more thank
inputs after collapsing.

5 EXPERIMENTS
Depth and Area Results. We implemented our new approach

calledBoolMap-Dand integrated it into the synthesis tool TOS. We
comparedBoolMap-Dwith two other performance-directed technol-
ogy mappers, i.e.,FlowMap-r [5] and FlowSYN[11]. We used the
same set of benchmark circuits as in [5, 11], which are given in the
first column of Table 1. In columns 2 to 5, we repeat the LUT count
and depth results forFlowMap-r and FlowSYNfrom [5, 11]. The
columns titledBoolMap-Dshow the results of our algorithm as de-
scribed in Section 4. CPU times of column 8 are measured on a

Table 1: TECHNOLOGYMAPPING FOR5-LUT BASED FPGAS
FlowMap-r[5] FlowSYN[11] BoolMap-D

circuit #LUT depth #LUT depth #LUT depth CPU/s
5xp1 23 3 20 2 13 2 3.6
9sym 61 5 7 3 7 3 1.4

9symml 58 5 7 3 7 3 1.4
C499� 151 5 133 5 101 4 627.8
C880� 211 8 232 8 146 7 62.3
alu2 148 8 113 6 43 4 38.5
alu4 245 10 249 9 268 7 950.0

apex6 232 4 257 4 189 4 139.1
apex7 80 4 89 4 78 3 70.3
count 73 3 75 3 42 2 30.2
des� 1087 5 893 4 594 3 1787.1

duke2 187 4 187 4 193 5 346.9
misex1 15 2 15 2 15 2 1.1
rd84 43 4 13 3 10 2 3.6
rot� 243 6 262 6 228 6 99.0
vg2 38 4 45 4 30 4 22.4
z4ml 13 3 6 2 5 2 0.6
sum 2908 83 2603 72 1969 63 -
perc. - - 100% 100% -24.4%-12.5% -

DEC AlphaStation 250 4/266. All circuits that have been partially
collapsed are marked with an asterisk in Table 1. For the marked cir-
cuits, the CPU times include initial decomposition, partial collapsing
(reducedepth), the final performance-directed decomposition, and
covering. For the other circuits, CPU time is spent for collapsing,
performance-directed decomposition, and covering.

BoolMap-D outperformsFlowMap-r and FlowSYNwith respect
to the circuit depth by 24.1% and 12.5%, respectively. Further-
more, a reduction in LUT count of 32.3% and 24.4% compared
to FlowMap-r and FlowSYNis achieved. There is only one cir-
cuit, duke2 , for which BoolMap-D produces a larger depth than
FlowMap-r or FlowSYN. Compared toFlowMap-r, BoolMap-Dpro-
duces 12 circuits with smaller depth and 4 circuits with equal depth.
Compared toFlowSYN, BoolMap-Dproduces 8 circuits with smaller
depth and 8 circuits with equal depth. For all circuits except for
alu4 andduke2 , BoolMap-Dproduces circuits with fewer LUTs
thanFlowMap-randFlowSYN, respectively.

Delay after Placement and Routing. To show the effectiveness
of BoolMap-Din reducing the circuit delay after placement and rout-
ing, we implemented all designs (exceptapex6, des , and rot)
obtained withBoolMap-Don Xilinx XC3000 FPGAs. The circuits
apex6 androt have too many I/O pins to be implemented on a sin-
gle XC3000 FPGA, and circuitdes has too many CLBs [1]. We used
the Xilinx tool apr for placement and routing. For each design, we
selected a Xilinx XC3000 chip which yields about 80% cell utiliza-
tion as proposed in [1]. The circuits obtained withBoolMap-Dcould
be routed easily. In fact, all designs were routed in the first routing
attempt.

We compare our results with the results of a FlowMap-type algo-
rithm that aims at minimizing the nominal delay of a circuit [6]. We
used the same set of benchmark circuits as in [6]. Column 2 of Ta-
ble 2 shows the type of the used Xilinx XC3000 chip. Columns 3
and 4 repeat the number of CLBs and the actual delay after placement
and routing for theNominal Delay Algorithm[6]. The columns titled
BoolMap-Dshow the results for our approach. As in [6], we mea-
sured the actual circuit delays using the Xilinx toolxdelay. The last
column gives the relative reduction of the circuit delay achieved by
BoolMap-D. The circuit delay is reduced by 27.8% on average.

6 CONCLUSION AND FUTURE WORK
In this paper, we have presentedBoolMap-D, a Boolean approach

to simultaneously minimize depth and area during LUT-based FPGA
technology mapping. In the first step, large network portions are col-
lapsed. Collapsing is motivated by the idea that decomposition has
then a greater potential to determine a new network structure with
small depth and area.

Functional decomposition is applied to the collapsed networks. We
have presented an effective heuristic solution of the variable partition-
ing problem targeting small circuit depth in the first place and small
area in the second place.

Compared to the mapping algorithms FlowMap-r and FlowSYN,
BoolMap-D reduces the depth of LUT networks by 24.1% and 12.5%
on average, and the number of LUTs by 32.3% and 24.4%, respec-
tively. We also placed and routed Xilinx FPGA designs, and achieved

Table 2: DELAYS AFTER PLACEMENT AND ROUTING
Nom.Del.Alg [6] BoolMap-D

XC3000 actual actual
Circuit part# #CLB delay #CLB delay red.
9sym 3020PC68 50 94.3 6 59.0 37.4%
C880 3090PQ208 195 208.3 117 143.8 31.0%
alu2 3064PC84 149 200.1 37 85.0 57.5%

apex7 3042PP132 65 93.2 59 80.7 13.4%
count 3020PC68 60 79.8 31 65.6 17.8%
vg2 3020PC68 39 78.1 25 70.7 9.5%
aver. 27.8%

delay reductions of 27.8% on average compared with a FlowMap-type
nominal delay algorithm.

ACKNOWLEDGMENT
The authors are very grateful to Prof. Kurt J. Antreich and Dr. Ulf

Schlichtmann for many valuable discussions.

REFERENCES
[1] Xilinx Inc., San Jose, CA-95125,The Programmable Logic Data Book, 1994.
[2] R. J. Francis, J. Rose, and Z. Vranesic, “Technology mapping of lookup table-based

FPGAs for performance,” inIEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 568–571,1991.

[3] K.-C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “DAG-Map: Graph-
based FPGA technology mapping for delay optimization,”IEEE Design & Test of
Computers, pp. 7–20, Sept. 1992.

[4] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems CAD, vol. 13, pp. 1–12,
Jan. 1994.

[5] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA technology
mapping,” in30th ACM/IEEE Design Automation Conference (DAC), pp. 213–218,
1993.

[6] J. Cong and Y. Ding, “On nominaldelay minimization in LUT-based FPGA technol-
ogy mapping,” inACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 82–88, Feb. 1995.

[7] H. Yang and D. F. Wong, “Edge-Map: Optimal performance driven technology
mapping for iterative LUT based FPGA designs,” inIEEE/ACM InternationalCon-
ference on Computer-Aided Design (ICCAD), pp. 150–155, 1994.

[8] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Per-
formance directed synthesis for table look up programmable gate arrays,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 572–575, 1991.

[9] N. Togawa, M. Sato, and T. Ohtsuki, “Maple: A simultaneous technology map-
ping, placement, and global routing algorithm for field-programmable gate ar-
rays,” in IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pp. 156–163, Nov. 1994.

[10] P. Sawkar and D. Thomas, “Performance directed technology mapping for look-
up table based FPGAs,” in30th ACM/IEEE Design Automation Conference (DAC),
pp. 208–212, 1993.

[11] J. Cong and Y. Ding, “Beyond the combinatorial limit in depth minimization for
LUT-based FPGA designs,” inIEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 110–114,Nov. 1993.

[12] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and opti-
mization,” inIEEE InternationalConference on Computer Design (ICCD), pp. 328–
333, Oct. 1992.

[13] H. A. Curtis, “A generalized tree circuit,”Journal of the ACM, vol. 8, pp. 484–496,
1961.

[14] J. P. Roth and R. M. Karp, “Minimization over boolean graphs,”IBM Journal of
Research and Development, pp. 227–238, 1962.

[15] Y. Lai, M. Pedram, and S. Vrudhula, “BDD based decomposition of logic func-
tions with application to FPGA synthesis,” in30th ACM/IEEE Design Automation
Conference (DAC), pp. 642–647, June 1993.

[16] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Logic synthesis for programmable gate arrays,” in27th ACM/IEEE
Design Automation Conference (DAC), pp. 620–625, June 1990.

[17] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Improved
logic synthesis algorithms for table look up architectures,” inIEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp. 564–567,Nov. 1991.

[18] T. Sasao,Logic Synthesis and Optimization. Kluwer Academic Publishers,
Boston/London/Dordrecht, 1993.

[19] W.-Z. Shen, J.-D. Huang, and S.-M. Chao, “Lambda set selection in Roth-Karp
decomposition for LUT-based FPGA technology mapping,” in32nd ACM/IEEE
Design Automation Conference (DAC), pp. 65–69, 1995.

[20] U. Schlichtmann, “Boolean matching and disjoint decomposition,” inIFIP Work-
shop on Logic and Architecture Synthesis, pp. 83–102, Dec. 1993.

[21] B. Wurth, K. Eckl, and K. Antreich, “Functional multiple-output decomposition:
Theory and an implicit algorithm,” in32nd ACM/IEEE Design Automation Confer-
ence (DAC), pp. 54–59, June 1995.

[22] C. Legl, B. Wurth, and K. Eckl, “An implicit algorithm for support minimiza-
tion during functional decomposition,” inEuropean Design and Test Conference
(EDAC/ETC/EUROASIC), March 1996.

[23] H. Touati, H. Savoj, and R. K. Brayton, “Delay optimization of combinational logic
circuits by clustering and partial collapsing,” inIEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pp. 188–191,1991.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

