
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Optimal Clock Period FPGA Technology Mapping
for Sequential Circuits�

Peichen Pan C. L. Liu

Dept. of Electrical & Computer Eng. Dept. of Computer Science

Clarkson University University of Illinois at Urbana-Champaign

Potsdam, NY 13699 Urbana, IL 61801

Abstract { In this paper, we study the technology

mapping problem for sequential circuits for LUT-

based FPGAs. Existing approaches map the combi-

national logic between
ip-
ops (FFs) while assum-

ing the positions of the FFs are �xed. We study in

this paper a new approach to the problem, in which

retiming is integrated into the technology mapping

process. We present a polynomial time technology

mapping algorithm that can produce a mapping so-

lution with the minimum clock period while assuming

FFs can be arbitrarily repositioned by retiming. The

algorithm has been implemented. Experimental re-

sults on benchmark circuits clearly demonstrate the

advantage of our approach. For many benchmark

circuits, our algorithm produced mapping solutions

with clock periods not attainable by a mapping al-

gorithm based on existing approaches, even when

it employs an optimal delay mapping algorithm for

combinational circuits.

1 Introduction
A look-up table (LUT) based FPGA consists of an array

of programmable logic blocks together with programmable
interconnections [17]. The core of a programmable logic
block is a k-input LUT (k-LUT) which can implement any
combinational logic with up to k inputs and a single output,
where k is a small positive integer. There are also several

ip-
ops (FFs) in each programmable logic block which can
be connected to the inputs and outputs of its LUT to realize
sequential behavior.

The technology mapping problem for LUT-based FPGAs
is to produce, for a given circuit, an equivalent circuit com-
prised of LUTs. This problem has been studied extensively.
However, almost all proposed mapping algorithms are de-
signed for combinational circuits. Mapping algorithms for
combinational circuits (will be referred to as combinational
mapping algorithms from now on) have been proposed for
di�erent optimization criteria: performance [2, 6, 9, 18], area

�The work was partially supported by the National Science

Foundation under grant MIP-9222408.

[4, 5, 7, 11, 16], routability [1, 14], and combinations of these
[3, 13]. In particular, Cong and Ding [2] proposed an optimal
delay combinational mapping algorithm for the unit delay
model and Yang and Wong [18] proposed an optimal combi-
national mapping algorithm for the general delay model.

Existing approaches to technology mapping for sequential
circuits use combinational mapping algorithms to map the
combinational logic between FFs. These approaches have
two obvious shortcomings: (i) failing to consider signal de-
pendencies across FF boundaries, and (ii) not considering
the possibility of exposing the combinational logic between
FFs in di�erent ways. Note that FFs in a sequential cir-
cuit can be repositioned by a technique called retiming [8].
Two recent sequential circuit technology mapping methods
[10, 15] also assume the initial positions of the FFs are �xed,
though retiming is used as a post-processing step in [15].

In this paper, we study a new approach to sequential cir-
cuit technology mapping, proposed in [12]. In this approach
the FF positions are assumed to be fully dynamic in the
sense that they can be arbitrarily repositioned by retiming.
Our main objective is to obtain mapping solutions with min-
imized clock period, which is the maximum number of LUTs
between any two successive FFs. We will present an e�cient
(polynomial time) algorithm that produces a minimum clock
period mapping solution for any sequential circuit1.

2 The new approach

To further motivate the new approach, let us examine two
examples. Consider the circuit in Figure 1(a). Suppose that
we want to map it to an FPGA architecture in which each
LUT has at most 3 inputs. One possible mapping solution,
without repositioning the FFs, is shown in Figure 1(a), where
the gates enclosed by a dashed circle are mapped to one
LUT. Figure 1(b) shows the mapping solution in terms of
LUTs. This mapping solution uses two LUTs and has a
clock period equal to two. Also note that the clock period of
this mapping solution cannot be further reduced by retiming.
Actually, it can be shown that any mapping solution must
use at least two LUTs and have a clock period two no matter
what combinational mapping algorithm is used. However, if
gate b is retimed by a value one (the FF f at the output of b
is moved to its inputs) as shown in Figure 1(c), all the gates
can be mapped to one 3-LUT as shown in Figure 1(d). Note

1The algorithm has been extended to the general delay model

in which case, it produces a mapping solution with a clock period

provably close to minimum.

that this mapping solution has a clock period of one.

i21i

(a)

f

c

a b

1i i2

c

a b

i2

1i i21i

(d)(c)(b)

Figure 1: Advantage of retiming.

To fully exploit the potential of retiming, logic replication
is necessary since replication can help produce mapping so-
lutions which are otherwise impossible to obtain. Consider
the circuit in Figure 2(a). Assume k = 4. It can be shown
that any mapping solution must use at least six 4-LUTs and
have a clock period at least two, even if retiming is used.
However, if we duplicate a (to become a and a0), b (to be-
come b and b0), and c (to become c and c0), then retime the
FFs across gates a0, b0, and c0 as shown in Figure 2(b), we
can map all the gates (including the duplicated ones) to a
single 4-LUT to obtain the mapping solution in Figure 2(c),
which has a clock period of one.

i2

1i

g1i

i 2

g
i2

1i

(a) (c)

e

f

b

a

c

’c

a’

’b

(b)

b

a

c

d

e

f

d

Figure 2: Advantage of logic replication.

Based on the above observations, we study the technology
mapping problem in the most general setting in which the
techniques of retiming and replication are exploited. Con-
ceptually, the solution space that will be explored can be
described by the diagram in Figure 3. Namely, the mapping
solution space consists of all the circuits that can be ob-
tained by retiming and replicating the given initial circuit,
then mapping the combinational logic between FFs, followed
by another retiming and replication step2. It is obvious that
the solution space explored in this new approach is enor-
mous since there are too many ways to retime and replicate
a circuit.

3 Preliminaries and problem de�nition

A (synchronous) sequential circuit can be modeled as an
edge-weighted directed (multi-)graph. The nodes are the
primary inputs (PIs), the primary outputs (POs), and the

2A technology mapping algorithm based on existing ap-

proaches may try to alleviate its drawbacks by carrying out these

conceptual steps in sequence. However, as long as it actually em-

ploys a combinational mapping algorithm, the same drawbacks

are still there.

replication

retiming
&&

replication

retiming

solutions in
solution
spacecircuit

sequential
a given mapping the

combinational
logic

Figure 3: Solution space explored in the new approach.

combinational processing elements (PEs) in the circuit. (A
PE is either a gate or a LUT depending on whether the
circuit is the initial one or a mapping solution.) The edges
are the interconnections. There is an edge e from u to v

(denoted u
e
! v) with weight t if the output of u, after

passing through t FFs, is an input to v. The clock period of a
circuit is the maximum number of PEs on the combinational
paths (paths without FFs) in the circuit.

Retiming is a technique of repositioning the FFs in a cir-
cuit without changing its functionality or the structure [8].
Retiming a node by a value i means removing i FFs from
each fanout edge and adding i FFs to each fanin edge of the
node. Figure 4 shows the case in which i = 1 or �1. In
general, the nodes in a circuit can be retimed collectively
(referred to as retiming the circuit). It can be shown that
the retimed circuit and the original one have the same func-
tionality if no retiming is performed at the PIs and POs (i.e.,
the retiming values for the PIs and POs are all zero).

-1

+1

v v

Figure 4: Retiming a node.

Refer again to Figure 3. We use N to denote the circuit
to be mapped. We assume that N is k-bounded, namely,
each node in N has at most k fanins. We will use w(e) to
denote the weight of an edge e in N . Let N 0 be a circuit
obtained from N by replication and retiming and N 00 be a
mapping solution of the combinational logic of N 0. Let S be
the circuit obtained from N 00 by putting the FFs back and
followed by another retiming and replication. (Note that the
PEs in N 00 are LUTs.) S is then a mapping solution of N .
The technology mapping problem addressed in this paper is
as follows:

Problem 1 Find a mapping solution with the minimum

clock period.

Finally, we list several graph-theoretic concepts. In a
directed acyclic graph with one sink but possibly several
sources, a cut (X;X) is a partition of the nodes such that
the sink is in X and all the sources are in X. The edge-set

E(X;X) of the cut is the set of edges fromX to X, the node-
set V (X;X) is the set of nodes in X that are connected to
one or more nodes in X. If jV (X;X)j � k, (X;X) is called
a k-feasible cut, or k-cut for short.

4 Formation of LUTs
In this section, we will present a method for forming LUTs

for nodes in a sequential circuit.

Although the formation of LUTs is rather straightforward
for combinational circuits, it is complicated for sequential cir-
cuits because a circuit may be arbitrarily retimed and repli-
cated in the new approach. In other words, we are working
with a family of circuits. To overcome this di�culty, we
introduce the concept of expanded circuits. Our LUT forma-
tion procedure will be carried out on the expanded circuits.

An expanded circuit is constructed by replication and it
has the property that all paths from any given node to the
only output node have the same number of FFs.

The expanded circuits for a node v are de�ned recursively
as follows: As the base case, the circuit with one node v0 but
no edge is an expanded circuit. Suppose E is an expanded
circuit. Let I be the set of sources (nodes with indegree 0) in

E. We pick a node in I, say ud. Then, for each edge x
e
! u

in N , add a node xd1 where d1 = d+ w(e) to E if it is not

there, and add an edge xd1
e
0

! ud with weight w(e) to E. The
resulting circuit is also an expanded circuit.

An important class of expanded circuits consists of: Eiv,
for i � 0. Eiv denotes the expanded circuit in which the
shortest distance (in terms of the number of edges) from
each source that is not a replicate of a PI, to v0 is i.

For the circuit in Figure 1(a), Figure 5 shows �ve ex-
panded circuits for node c. From (a) to (e) each expanded
circuit is constructed from the preceding one by expanding
the shaded node. Actually, the circuit in (a) is E0v , in (b) is
E1v , in (d) is E2v , and in (e) is E3v .

a

b1

0

0

b

1i
0

1

a

c 2
1

1i
0

a0 b1

0

1 i

a b1

i2
1

1i
0

c1

c0 c0 c0

b2a1

0

c

(a)

(e)(d)(c)(b)

c0

c1

Figure 5: Expanded circuits.

We now show that a LUT for a node can be derived from
a cut in the expanded circuits for the node. Let (X;X) be a
k-cut in an expanded circuit E for v. We �rst notice that all
FFs inside X can be moved out by retiming. The retiming
is: for each node ud in X, its retiming value is d; for all

nodes in X, their retiming values are zero. Let ud
e0

! x be
an edge in E(X;X). (Note that ud is a replicate of node u
in N and e0 is a replicate of edge e.) It can be veri�ed that
the number of FFs on e0 is d after the retiming. The LUT
derived from this cut is simply the subcircuit induced by the
nodes in X with the FFs being removed. Let L denote the
LUT. If ud is in the node-set V (X;X) of the cut, it means
that u after passing through d FFs is an input to L. As a
result, the number of inputs to L is equal to the number of
nodes in V (X;X), which is k. Therefore, L is a k-LUT.

As an example, for the 3-cut indicated in the expanded
circuit in Figure 5(d) as shown in Figure 6(a), Figure 6(b)
shows the corresponding 3-LUT. The inputs to this 3-LUT

are i1, c passing through a FF, and i2 passing through a FF.

c0

a0 b1

i2
1

1i
0

c1

c0

a0 b1

1i i2c

3-LUT

3-cut

X

X

(b)(a)

Figure 6: Derivation of a LUT from a cut.

Moreover, we can show that for any k-LUT there is a k-
cut that can derive the LUT in this fashion, if the expanded
circuit is Eknv , where n is the number of nodes in N . There-
fore, we have the following main result of this section:

Theorem 1 It su�ces to examine the k-LUTs for v that

can be derived from the k-cuts in Eknv .

It can be shown the number of nodes in Eiv is O(ni) and
the number of edges is O(kni). In particular, the numbers
of nodes and edges in Eknv are O(kn2) and O(k2n2), respec-
tively.

5 An algorithm for �nding an optimal

mapping solution
The way we solve Problem 1 is to solve its decision version

as stated in the following:

Problem 2 Given a target clock period �, determine a map-

ping solution with a clock period of � or less, whenever such

a mapping solution exists.

If we can solve Problem 2, we can do a binary search on �
to �nd a mapping solution with the minimum clock period.

We describe our algorithm for solving Problem 2 in this
section. The algorithm has two phases: the labeling phase
and the mapping phase. In the labeling phase, we com-
pute a label (de�ned later) for each node in N . After we
have computed all the labels and determined that there is a
mapping solution with a clock period of � or less, we then
generate one such mapping solution in the mapping phase.
In the next two subsections, we present the details of the two
phases, separately.

5.1 The labeling phase

Let S be a mapping solution. We de�ne a value (called
l-value) for each LUT in S. To de�ne the l-values, we use a
graph whose topology is the same as that of S, and assign a
weight ���w1(e)+1 to an edge e, where w1(e) is the number
of FFs on e in S. The l-value of a LUT in S is the maximum
weight of the paths from the PIs to the LUT according to
the new edge weights.

The label of a node in N is the minimum of the l-values of
the k-LUTs for the node, generated according to Theorem 1.

For a node v in N , we will use lopt(v) to denote its label. We
determine lopt(v) for each node v in N in this phase of the
algorithm.

Our method for computing the labels is quite similar to
a longest path algorithm. The approach is to compute a
lower-bound on the value of each label and to repeatedly
improve (increase) the lower-bound. The lower-bounds will
be equal to the actual labels when no further improvement is
observed for all the lower-bounds. Initially, the lower-bound
for all PIs are zero and the lower-bounds for all other nodes
are �1. Figure 7 shows the overall algorithm, where l(v)
denotes the lower-bound on lopt(v). Improving the lower-
bounds is carried out by Procedure Improve.

L Find(N;�)
// V denotes the set of nodes in circuit N ,
// w(e) denotes the number of FFs on edge e in N

1. for each node v in V // initialization
2. if v is a PI
3. then l(v) 0;
4. else l(v) �1;
5. updated FALSE;
6. for i 1 to jV j // improve at most n times
7. for each node v in V

8. if Improve(v) = TRUE, updated TRUE;
9. if updated = FALSE, return success;
10. updated FALSE;
11. return failure;

Improve(v)
a. Determine lnew;
b. if l(v) < lnew

c. then

d. l(v) lnew ;
e. return TRUE; // improved
f. return FALSE; // not improved

Figure 7: Algorithm for computing the labels.

The purpose of Procedure Improve is to test whether we
can improve the current lower-bound on the label of v, based
on the current lower-bounds on all labels, and if so, to update
the current lower-bound for v. lnew is the new lower-bound
for v computed from the current lower-bounds.

Now the remaining issue is to determine lnew . Based on
the discussion in Section 3, we have

lnew = min
(X;X)

�
maxfl(u)� � � d+ 1 j ud is in V (X;X)g

�
;

where the minimum is taken over all k-cuts in Eknv .
We will use the above formula to compute lnew. Our

approach is to study the corresponding decision problem,
namely,

Problem 3 Check whether lnew � L for a given integer L.

We use network
ow techniques to solve Problem 3. A

ow network G is constructed from Eknv by applying to Eknv

a standard network transformation, called node-splitting to
reduce the problem of �nding a k-cut to that of �nding a
cut with an edge capacity bound. To do so, each node in
Eknv except v0 is split into two nodes with a bridging edge
between them. A supersource is added and connected to all
the sources. The bridging edge for node ud has capacity one
if l(u) � � � d + 1 � L. All other edges in G has in�nite
capacity.

As an example, suppose for the circuit in Figure 1(a),
we currently have l(i1) = l(i2) = 0, l(a) = l(b) = 1, and
l(c) = �1 , and the target clock period is one. In the
expanded circuit for c in Figure 8(a), suppose we want to
test whether lnew � 1. For node b1, l(b)�� �1+1 = 1, so the
corresponding bridging edge has capacity one. On the other
hand, for node a0, l(a)� � � 0 + 1 = 2, so the corresponding
bridging edge has in�nite capacity. Figure 8(b) shows the

ow network, where the bridging edges for nodes i01, i

1
2, c

1,
and b1 have unit capacity and all other edges have in�nite
capacity.

c0

a0 b1

i2
1

1i
0

c1

a0 b1

1i
0

c1 i2
1

(a) (b)

s

c0

1

1 1 1

Figure 8: Construction of
ow network.

The edge capacity of a cut is the sum of the capacities of
the edges in the edge-set of the cut. The following result can
be shown for the
ow network G:

Lemma 1 lnew � L i� G has a cut with edge capacity no

more than k. 2

Based on the classical Max-
ow Min-cut Theorem, G has
a cut with edge capacity no more than k i� the maximum

ow in G is at most k. We can, therefore, use an augmenting
path algorithm for solving the max-
ow problem to deter-
mine whether G has a cut with edge capacity no more than
k in O(k � jE(G)j) = O(k3n2) time. Thus, we can determine
whether lnew � L in O(k3n2) time.

Obviously, lnew is from the following set

fl(u)� � � d+ 1 j ud is in Eknv g

whose size is O(kn2), the number of nodes in Eknv . We can
�rst sort all the values in the set , and then use binary search
to determine lnew. Overall, we have an O(k

3n2 log(kn))-time
algorithm for determining lnew.

L Find(N;�) needs to call Procedure Improve O(n2)
times in the worst case. In summary, we have the follow-
ing result:

Theorem 2 The labels of all nodes in N can be determined

in O(k3n4 log(kn)) time. 2

Remark: To guarantee that a mapping solution with the
target clock period can always be found whenever there ex-
ists one, we need to use the expanded circuit Ekn. This is the
worst case scenario. In practice, we may use an expanded
circuit Ei for an i considerably smaller than kn. For instance,
for node c in the circuit in Figure 1(a), it can be shown that
it is su�cient to use E2c (in Figure 5(d)) for examining the
3-LUTs for c. To make our algorithm
exible and to save
computation time, we can use i as a control parameter so
that the expanded circuit Ei, instead of Ekn is used in Pro-
cedure Improve.

5.2 The mapping phase

The purpose of this phase is to generate a mapping solu-
tion with a clock period of � or less (if, of course, there is
one such mapping solution).

The �rst step is to assemble a mapping solution from the
LUTs corresponding to the cuts that realize the labels. To
do so, we trace from the POs backward and to include those
LUTs that are on paths from PIs to POs in the mapping
solution. Speci�cally, we keep two lists D and U . D is the
set of nodes in N whose k-LUTs have already been included
in the partial mapping solution and U is the set of nodes
whose k-LUTs are inputs to some k-LUTs in D and have
not yet been included in the partial mapping solution. At
the beginning, D consists of the PIs and U consists of the
POs. At each iteration, a node v in U is removed and added
to D. Let the k-LUT that realizes lopt(v) be Lv which is
determined in the labeling phase. Then, if u after passing
d FFs is an input to L we create an edge from Lu to Lv
with weight d in S, and add u to U if it is not in D or U .
This process stops when U becomes empty. Let S denote the
resulting mapping solution. After the process is �nished, D
may not contain all the nodes in N . For those nodes not in
D, they disappear because they are contained in some of the
LUTs.

We now de�ne a retiming r on S. For each LUT Lv in S,
the retiming value is as follows:

r(Lv) =

�
0 v is a PI or PO

d l
opt(v)

�
e � 1 otherwise.

Let Sr denote the circuit obtained from S by applying
retiming r. Note that by de�nition Sr is also a mapping
solution of N . We have the following result:

Theorem 3 The following three statements are equivalent:

(i) N has a mapping solution with a clock period of � or

less.

(ii) lopt(v) � � + 1 for each PO v in N .

(iii) Sr has a clock period of � or less. 2

Based on Theorem 3, we can check whether there is a
PO whose label is larger than �+1 after the labeling phase.
If this is the case, the algorithm will not proceed to the
mapping phase because there is simply no mapping solution
with the target clock period �. If for each PO, its label is
less than or equal to �+ 1, the algorithm simply return Sr

since it meets the target clock period �.

6 Experimental results

Our optimal clock period mapping algorithm has been
implemented in the C language (referred to as SeqMapII).
Experiments were carried out on sequential benchmark cir-
cuits in the LGSynth91 suite. In this section, we describe
our experiments and summarize the results.

For comparison, we also implemented a technology map-
ping algorithm based on existing approaches which will be
referred to as ComMap. ComMap maps a sequential cir-
cuit by mapping the combinational logic between FFs us-
ing FlowMap | a delay optimal technology mapping algo-
rithm for combinational circuits [2]. ComMap also uses re-
timing as a pre-processing step as well as a post-processing
step. Speci�cally, it retimes the initial circuit to the min-
imum clock period before applying FlowMap. It also re-
times the mapping solution to the minimum clock period
after FlowMap. The resulting circuit is then the output of
ComMap.

We tested both ComMap and SeqMapII on a set of bench-
mark circuits using 5-LUTs. The results are summarized in
Table 1. In Table 1, under column initial we list the number
of gates and the number of FFs of each benchmark circuit
(decomposed using tech decomp -a 2 -o 2 in SIS). Under
column ComMap, we list the number of LUTs, the number
of FFs, and the clock period (�) of the mapping solution
produced by ComMap. The same quantities are also listed
for SeqMapII. For SeqMapII, we set the control parameter
i, the depth of the expanded circuits used to form LUTs, to
be 6 in the experiments. (Therefore, the clock periods of the
mapping solutions produced by SeqMapII might not be mini-
mum.) Even with such a small depth, SeqMapII consistently
produced mapping solutions with smaller clock periods than
that produced by ComMap as can be observed from the ta-
ble. This clearly shows the advantage of the new approach.
It can also be seen that the mapping solutions produced by
SeqMapII usually have fewer LUTs than that produced by
ComMap. This was also expected since SeqMapII can form
LUTs by extending across FF boundaries. Overall, the map-
ping solutions produced by ComMap use 10% more LUTs,
33% larger clock periods, and 2% less FFs. For all the test
circuits except s38417, the CPU times of our current imple-
mentation of SeqMapII were less than two minutes and in
most cases only a few seconds on a SPARC 5 workstation
with 32Mb memory. However, for s38417 it took SeqMapII
close to 30 minutes due to the large size of the circuit and a
larger reduction in the clock period. Overall, the CPU times
of SeqMapII are about 10 times that of ComMap for the test
circuits.

7 Conclusions

In this paper, we studied the FPGA technology mapping
problem for sequential circuits in the most general setting. In
our approach, retiming is fully integrated into the mapping
process. As a result, the mapping solution space explored by
our approach is much larger than what existing approaches
are able to explore. Another way to understand our approach
is that for our approach, there is no FF boundary at all, in
the sense that if one circuit is obtained from another one
by retiming, our algorithm will produce the same mapping
solution for both circuits. In other words, where to place the

test Initial ComMap SeqMapII

circuit gates FFs LUTs FFs � LUTs FFs �

ex1 326 20 202 56 6 209 60 5
ex5 105 9 72 29 4 58 24 3
mult16a 261 16 75 58 3 38 55 2

mult32a 533 32 153 202 3 78 207 2
s344 109 15 50 40 3 36 36 2
s349 112 15 49 39 3 33 33 2

s382 148 21 73 49 3 64 43 2
s400 158 21 72 47 3 66 46 2
s444 169 21 77 51 3 64 43 2

s526 252 21 166 84 3 127 89 2
s526n 251 21 166 85 3 140 97 2
s953 348 29 196 61 5 202 54 4

s1488 734 6 339 63 5 266 25 4
s9234 2352 193 590 270 5 593 276 4
s15850 3852 522 1670 704 9 1627 818 8
s38417 8709 1583 4170 2503 8 3761 2507 6

Total 8120 4341 69 7362 4413 52
Ratio 1.10 .98 1.33 1 1 1

Table 1: Experimental results.

FFs in a circuit has no e�ect on our algorithm. On the other
hand, for a mapping algorithm based on existing approaches,
there always exist FF boundaries and signal dependencies
across FF boundaries are severed. We further presented a
polynomial mapping algorithm which can produce mapping
solutions with the minimum clock periods.

References
[1] N. Bhat and D. Hill. Routable technology mapping for FP-

GAs. In ACM/SIGDA Workshop on FPGAs, pages 143{148,
1992.

[2] J. Cong and Y. Ding. FlowMap: An optimal technologymap-

ping algorithm for delay optimization in lookup-table based

FPGA designs. IEEE Trans. on Computer-Aided Design,
13:1{11, 1994.

[3] J. Cong and Y. Ding. On area/depth trade-o� in LUT-based

FPGA technologymapping. IEEE Trans. on VLSI Systems,
2:137{148, 1994.

[4] A. H. Farrahi and M. Sarrafzadeh. Complexity of the

lookup-table minimization problem for FPGA technology

mapping. IEEE Trans. on Computer-Aided Design, 13:1319{
1332, 1994.

[5] R. J. Francis, J. Rose, and Z. Vranesic. Chortle-crf: Fast

technology mapping for lookup table-based FPGAs. In

ACM/IEEE Design Automation Conf. (DAC), pages 227{
233, 1991.

[6] R. J. Francis, J. Rose, and Z. Vranesic. Technology mapping

for lookup table-basedFPGAs for performance. In Intl. Conf.
on Computer-Aided Design (ICCAD), pages 568{571, 1991.

[7] K. Karplus. Xmap: A technology mapper for table-lookup

FPGAs. In ACM/IEEE Design Automation Conf. (DAC),

pages 240{243, 1991.

[8] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing

synchronous circuitryby retiming. In Proc. 3rd Caltech Conf.
on VLSI, pages 87{116, 1983.

[9] A. Mathur and C. L. Liu. Performance driven technology

mapping for lookup-table based FPGAs using the general

delay model. In ACM/SIGDA Workshop on Field Pro-
grammable Gate Arrays, 1994.

[10] R. Murgai, R.K. Brayton, and A. Sangiovanni-Vincentelli.

Sequential synthesis for table look up programmable gate

arrays. In ACM/IEEE Design Automation Conf. (DAC),
pages 224{229, 1993.

[11] R. Murgai, N. Shenoy, R.K. Brayton, and A. Sangiovanni-

Vincentelli. Improved logic synthesis algorithms for table

look up architectures. In Intl. Conf. on Computer-Aided De-

sign (ICCAD), pages 564{567, 1991.

[12] P. Pan and C. L. Liu. Technology mapping of sequen-

tial circuits for LUT-based FPGAs for performance. In

ACM/SIGDA Intl. Symposium on Field-Programmable Gate

Arrays, pages 58{64, 1996.

[13] P. Sawkar and D. Thomas. Area and delay mapping for

table-look-up based �eld programmable gate arrays. In

ACM/IEEE Design Automation Conf. (DAC), pages 368{
373, 1992.

[14] M. Schlag, J. Kong, and P.K. Chan. Routability-driven

technology mapping for lookup table-based FPGA's. IEEE
Trans. on Computer-Aided Design, 13:13{26, 1994.

[15] U. Weinmann and W. Rosenstiel. Technology mapping for

sequential circuits based on retiming techniques. In Proc.
European Design Automation Conf., pages 318{323, 1993.

[16] N.-S. Woo. A heuristic method for FPGA technology map-

ping based on the edge visibility. In ACM/IEEE Design
Automation Conf. (DAC), pages 248{251, 1991.

[17] Xilinx. The Programmable Gate Arrays Data Book. Xilinx,
San Jose, CA, 1993.

[18] H. Yang and D. F. Wong. Edge-Map: Optimal performance

driven technology mapping for iterative LUT based FPGA

designs. In Intl. Conf. on Computer-Aided Design (ICCAD),

pages 150{155, 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

