
Optimizing Systems for E�ective Block-Processing:

The k-Delay Problem

Kumar N. Lalgudi Marios C. Papaefthymiou Miodrag Potkonjak

Department of Electrical Engineering
Yale University

New Haven, CT 06520

Department of Computer Science
University of California
Los Angeles, CA 90095

Abstract|Block-processing is a powerful and pop-
ular technique for increasing computation speed by
simultaneously processing several samples of data.
The e�ectiveness of block-processing is often reduced,
however, due to suboptimal placement of delays in
the dataow graph of a computation.

In this paper we investigate an application of
the retiming transformation for improving the ef-
fectiveness of block-processing in computation struc-
tures. Speci�cally, we consider the k-delay problem
in which we wish to retime any given computation
so that given an integer k the resulting computa-
tion can process k data samples simultaneously in a
fully regular manner. Our main contribution is an
O(V 3E+V 4 log V)-time algorithm for the k-delay prob-
lem, where V is the number of computation blocks
and E is the number of interconnections in the com-
putation.

1 Introduction

In many application domains, computations are de-
�ned on semi-in�nite or very long streams of data. The
rate of the incoming data is dictated by the nature
of the application and often cannot be satis�ed by a
straightforward implementation of a systems' speci�ca-
tion. In order to meet the computational demands of
several applications, multiple samples of the incoming
data stream must be processed simultaneously. This
approach, known as block-processing or vectorization, is
widely used to satisfy throughput requirements through
the use of parallelism and pipelining. Block-processing
enhances both regularity and locality in computations,
thus facilitating their e�cient hardware implementation
[1, 4]. Enhanced regularity reduces the e�ort in software
switching and address calculation, and improved locality
improves the e�ectiveness of code-size reduction meth-
ods [7]. Moreover, block-processing enables the e�cient
utilization of pipelines and e�cient implementations of
vector-based algorithms such as FFT-based �ltering and
error-correction codes. In general, block-processing is
bene�cial in all cases where the net cost of processing
n samples individually is higher than the net cost of pro-
cessing n samples simultaneously.

C

(6+3)

A B

(7+6)(7+5)

(a) (b)
C

(6+3)

A B

(7+6)(7+5)

Figure 1: Improving the e�ectiveness of block-processing by re-

timing. The block-processing factor of the original computation
dataow graph in Part (a) is 1. The block-processing factor of the
retimed graph in Part (b) is 3.

There are several ways to increase the block-processing
factor of a computation, that is, the number of data sam-
ples that can be processed simultaneously. For example,
one can unfold the basic iteration of a computation and
schedule computational blocks from di�erent iterations
to execute successively. This technique, however, may
not uniformly increase the block-processing factor for all
computational blocks.
Another transformation that can increase the block-

processing factor is retiming. Unlike other optimization
techniques that have targeted high-level synthesis [3, 9],
retiming has been used traditionally for clock period min-
imization [2, 5, 6]. Figure 1 illustrates the use of retiming
to improve block-processing. The computation dataow
graph (CDFG) in this �gure has three computation
blocks A, B, and C and three delays. An input stream is
coming into block A, and an output stream is generated
by A. Assuming that the computation is implemented by
a uniprocessor system, the pair (x+ y) above each block
gives the initiation time x and the computation time y
per block input. The initiation time includes context-
switching overhead for fetching data and instructions
from the background memory and the cost for recon�g-
uring pipelines. A single iteration of the computation in
Figure 1(a) completes in (7+5)+(7+6)+(6+3)=34 cycles
by executing the blocks in the order A1; B1; C1. For three
iterations, the computational blocks can be executed in
the order A1; B1; C1; A2; B2; C2; A3; B3; C3. In this case,
a new input is consumed every 34 cycles, and the entire
computation needs 3�34 = 102 cycles. The functionally
equivalent CDFG in Figure 1(b) that has been obtained
by retiming the original CDFG can complete all three
iterations in a single block iteration that requires only
(7+5+5+5)+(7+6+6+6)+(6+3+3+3) = 62 cycles,
however. By grouping all three delays on one edge, the
computations of the three iterations can be executed in
the order A1; A2; A3; B1; B2; B3; C1; C2; C3, thus amor-
tizing the initiation time of each block over three inputs.

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

Recently, retiming has been studied in the context
of optimum vectorization for a class of DSP programs
[8, 10]. Speci�cally, a technique for linear vectorization
of DSP programs using retiming has been presented in
[10]. This technique involves the redistribution of de-
lays in the CDFG representation of a DSP program in
a way that results in maximum concentration of delays
on the edges. Fully regular vectorization, however, can-
not be achieved using the linear vectorization approach
in that paper. Moreover, the non-linear integer program-
ming formulation of the retiming problem for computing
linear vectorizations presented in that paper can be com-
putationally very expensive.
In this paper, we consider the problem of retiming

computation dataow graphs to achieve any given block-
processing factor k. We call this the k-delay problem.
We �rst present a straightforward integer linear program-
ming (ILP) formulation of the k-delay problem. We then
give an O(V 3

E+V 4 lgV)-time algorithm for the k-delay
problem, where V is the number of computation blocks
and E is the number of interconnections in the CDFG.
This is the �rst polynomial-time algorithm ever presented
for the k-delay problem. Given a CDFG and a positive
integer k, our algorithm computes a retimed CDFG that
achieves a block-processing factor of k or determines that
such a retiming does not exist. An important feature of
our approach is that all blocks in the retimed CDFG
achieve the same block-processing factor k and the same
execution order across iterations. As a result, our re-
timed CDFGs can operate faster and be less expensive
to implement than generic block-processed CDFGs.
The remainder of this paper is organized as follows.

In Section 2 we describe the representation of computa-
tions as dataow graphs, and we give background ma-
terial on block-processing and retiming. We also give a
precise mathematical formulation of the k-delay problem.
In Section 3, we present an integer linear programming
formulation of the k-delay problem. In Section 4, we
describe an asymptotically more e�cient algorithm for
the k-delay problem whose running time is polynomial
time in the size of the CDFG. We conclude in Section 5
with an empirical evaluation of our proposed optimiza-
tion technique.

2 Preliminaries

In this section, we give background material on compu-
tation dataow graphs, block-processing, and retiming.
We also give a mathematical formulation of the k-delay
problem.

2.1 Computation dataow graphs

A computation dataow graph is an edge-weighted di-
rected graph G = hV;E;wi. The vertices v 2 V model
the computation blocks of a computation (subroutines,
arithmetic or boolean operations), and the directed edges
e 2 E model interconnections (data and control depen-
dencies) between the computation blocks. Each edge
e 2 E is associated with a weight w(e) that denotes the
number of delays associated with that interconnection.
A CDFG is well-formed if for every edge e 2 E, we have
w(e) � 0, and every directed cycle contains at least one
delay.

2.2 Block-processing

Block-processing strives to maximize the throughput
of a computation by simultaneously processing multiple
samples of the incoming data. The maximum number of
samples that can be processed simultaneously or imme-
diately after each other by a block v is called the block-
processing factor kv of that block. A block-processing is
linear if all blocks have the same block-processing fac-
tor k. Given a linear block-processing with factor k, the
k � jV j computational block evaluations that generate k
iterations of the computation constitute a block itera-
tion. A linear block-processing with factor k is regular
if the k data samples processed simultaneously by every
computational block are accessed during the same block
iteration. The retimed CDFG in Figure 1(b), for exam-
ple, can be block-processed linearly and regularly with a
block-processing factor of 3.
The following lemma gives necessary and su�cient

conditions for achieving e�ective block-processing.

Lemma 1 Let G = hV;E;wi be CDFG. We can achieve
a linear and regular block-processing of G with factor k
if and only if for every edge e 2 E, we have

w(e) = 0 or w(e) � k : (1)

Proof. ()) If Relation (1) is not satis�ed for some CDFG
that can be block-processed linearly and regularly with
a factor of k, then there exists an edge u

e
! v such that

1 � w(e) � k � 1. Vertex v can process at most w(e)
samples per iteration. Since w(e) < k, the remaining
k � w(e) samples must be accessed from the previous
block iteration, which contradicts regularity.
(() Straightforward.

2.3 Retiming

A retiming of a CDFG G = hV;E;wi is an integer
valued vertex-labeling r : V ! Z. This integer value
denotes the assignment of a lag to each vertex which
transforms G into Gr = hV;E;wri where for each edge

u
e
! v in G, wr is de�ned by the equation

wr(e) = w(e) + r(v) � r(u) : (2)

In order for the retimed CDFG Gr to be well-formed, the
retiming r must satisfy the constraint wr(e) � 0 for all
edges e 2 E.
An important characteristic of the graph G in the con-

text of retiming that is de�ned for each pair of vertices
u and v is the parameter

W (u; v) = min
n
w(p) : u

p
; v

o
;

where w(p) =
P

e2pw(e) denotes the delay count of a
path p.
Another useful parameter de�ned for a CDFG is

F = max
u

e

!v2E

fw(e) +W (v; u)g ; (3)

which gives an upper bound on the number of delays that
can be placed on any edge. It can be shown that for any
any retiming r, we have

wr(e) � F for every edge e 2 E : (4)

2.4 The k-delay problem

According to Lemma 1, a linear and regular block-
processing with factor k can be achieved only for CDFGs
that have either 0 or at least k delays on each edge. If
a given CDFG does not satisfy Relation (1), we can re-
distribute its delays by retiming. We call the problem of
computing such a retiming the k-delay problem:

Problem KDP (The k-delay problem) Given a CDFG
G = hV;E;wi and a positive integer k, compute a retim-

ing function r : V ! Z such that for every edge u
e
! v

in E, we have

wr(e) = 0 or wr(e) � k ; (5)

or determine that no such retiming exists.

3 ILP formulation

Problem KDP cannot be expressed directly in a linear
programming form because of the disjunction in Rela-
tion (5). In this section we rely on the notion of the
companion graph that was described in [5] to express
Problem KDP as an Integer Linear Program (ILP).
The companion graph G0 of a CDFG G is constructed

by segmenting every edge u
e
! v 2 E into two edges

u
e1
! xuv and xuv

e2
! v, where xuv is a dummy vertex.

Thus, the companion graph G
0 = hV 0

; E
0
; w

0i is de�ned
as

V
0 = V [

n
xuv : u

e
! v 2 E

o
;

E
0 =

n
u

e1
! xuv; xuv

e2
! v : u

e
! v 2 E

o
;

and for each edge u
e
! v 2 E, we have

w
0(e1) = minf1; w(e)g ; and

w
0(e2) = w(e)�minf1; w(e)g :

The following lemma gives necessary and su�cient
conditions for any retiming that solves Problem KDP.

Lemma 2 Let G = hV;E;wi be a CDFG, and let G0 =
hV 0

; E
0
; w

0i be its companion graph. Then there exists a
retiming function r : V ! Z that solves Problem KDP
on G if and only if there exists a retiming function r

0 :
V
0 ! Z such that for every edge u

e
! v 2 E

0, we have

r
0(v) + w

0(e) � r
0(u) � 0 ; (6)

and for every edge u
e
! v in E, we have

w
0

r0 (e1) � 1 ; (7)

w
0

r0 (e2) � F �w0r0(e1) ; and (8)

w
0

r0 (e2) � (k � 1) �w0r0(e1) : (9)

Proof. Inequality (6) ensures that the retimed CDFG
is well-formed. Inequalities (7) and (8) ensure that the
delay counts in G0

r0 satisfy the de�nition of a companion

graph. Inequality (9) ensures that for every edge u
e
! v

in E, if edge u
e1
! xuv has a delay after retiming, then

edge xuv
e2
! v has at least k � 1 delays. In other words,

we ensure that if edge u
e
! v in E has any delays, then

it has at least k delays after retiming. By construction,
a solution r for Problem KDP on G can be derived from
r
0 by simply setting r(u) = r

0(u) for all u 2 V .

Theorem 3 Let G = hV;E;wi be a computation ow
graph and let G0 = hV 0

; E
0
; w

0i be its companion graph.
Then Problem KDP on G can be expressed as an integer
linear program on the companion graph G0.

Proof. Follows directly from the linearity of Relation (2)
and the form of the inequalities in Lemma 2.

4 Polynomial-time algorithm

The constraints in the ILP formulation of Prob-
lem KDP do not appear to have any special structure.
We thus need to resort to general integer linear program-
ming solvers to compute a solution. In this section we
show that Problem KDP can be solved e�ciently by giv-
ing a polynomial-time algorithm for it. We �rst give a
set of necessary conditions for the feasibility of Prob-
lem KDP on a given CDFG. Subsequently, we describe
the construction of a transformed graph GT , and we give
a set of necessary and su�cient conditions for the fea-
sibility of Problem KDP on G

T . We then present a
polynomial-time algorithm that uses GT to solve Prob-
lem KDP.

4.1 Necessary conditions

The following lemma gives necessary conditions for the
feasibility of Problem KDP.

Lemma 4 Let G = hV;E;wi be a CDFG. Problem KDP
is feasible on G only if the following conditions hold.

C1: For every vertex pair u; v 2 V , we have W (u; v)+
W (v; u) � k.

C2: For every vertex pair u; v 2 V such that there

exists a path u
p
; v in G with delay count w(p)

and W (u; v) < w(p) < k, there exists a retiming

r : V ! Z such that in the retimed graph Gr, we

have Wr(u; v) � k.

Proof. Omitted.

The challenge in solving Problem KDP is to deter-
mine which edges should have nonzero delay count. In
the ILP formulation, we determine these edges explic-
itly. The asymptotically e�cient technique we describe
in this section determines these edges implicitly. It �rst
identi�es vertex pairs u; v 2 V such that for every path

u
p
; v 2 Gr, we have wr(p) > 0. It subsequently obtains

a solution to Problem KDP by greedily redistributing the
delays of each path.
The main idea of our technique is to identify vertex

pairs u; v 2 V such that the shortest path u
q
; v in

every retimed CDFG that satis�es Relation (5) must
necessarily contain delays. We call these vertex pairs
delay essential (DE). For example, every vertex pair

u; v 2 V for which there exists a path u
p
; v such

that W (u; v) < w(p) < k is delay essential, because
Wr(u; v) = 0 implies that wr(p) = w(p) � W (u; v) < k

(c)

A B C D E
0 0

-1

(b)

A B C D E
0 0

(a)

A B C D E

Figure 2: Illustration of explicit and implicit delay essential
(DE) vertex pairs. The CDFG in Part (a) has been transformed

by Algorithm AddEdges to generate the CDFG in Part (b) and
then �nally the CDFG in Part (c). The bold edges in Part (b) are

between explicit DE pairs. The weights on these edges indicate the
excess delay associated with the corresponding vertex pairs. The
bold edges in Part (c) denote both explicit and implicit DE pairs.

For example, the pair B;D is implicitly DE and becomes apparent
only after the DE vertex pairs B;C and C; D are made explicit.

which violates Relation (5). Condition C2 must hold for
every such pair, that is, the delay count of the shortest

path u
p
; v in Gr must be at least k, otherwise Rela-

tion (5) will be violated for some edge along this path.
The following lemma casts the necessary conditions

of Lemma 4 as a retiming problem on an appropriately
constructed constraints graph.

Lemma 5 Let G = hV;E;wi be a given CDFG and let
G
� = hV;E�

; w
�i be the constraints graph that is con-

structed from G as follows: For every vertex pair u; v 2 V

such that there exists a path u
p
; v with delay count w(p)

and W (u; v) < w(p) < k, add a new edge u
e
! v with

edge weight w�(e) = W (u; v)� k. Then Problem KDP is
feasible for G only if there exists a retiming r : V ! Z

such that for every edge u
e
! v 2 E

� in the retimed graph
G
�

r we have

r(v) � r(u) + w
�(e) � 0 : (10)

Proof. Follows from the construction of G� and Condi-
tion C2 in Lemma 4.

Observe that Condition C2 is necessary but not su�-
cient, since it captures only explicit delay requirements
and not implicit or hidden requirements. Let us assume,
for example, that we wish to solve Problem KDP for the
CDFG in Figure 2(a) with k = 2. Since the shortest
and the second shortest paths between vertices B and
D have 1 and 4 delays, respectively, Condition C2 does

not apply, and the pair B;D does not appear to be de-
lay essential. We can verify, however, that the shortest
path between B and D must necessarily contain delays
in any solution of Problem KDP, since it is impossible
to retime the given CDFG and zero out the delay count
of B ! D. Since the vertex pairs B;C and C;D must
satisfy Condition C2, they need at least 2 delays on their
shortest paths B ! C and C ! D. Thus, no delay along
the path B ; C ; D can be moved outside B ; D.
Since retiming changes the delay along paths between
the same vertex pair in an identical manner, the delay
on edge B ! D cannot be moved out of B ; D.
In order to expose implicit delay requirements, we con-

struct a new graph G
T = hV;ET

; w
T i from G such that

all delay essential vertex pairs become explicit. The
graph GT is constructed from G by introducing an edge

u
i
! v with weightwT (i) = W (u; v)�k between every de-

lay essential vertex pair u; v 2 V . Intuitively,W (u; v)�k
equals the excess delay of the pair u; v 2 V and gives an
upper bound on the number of delays that can be \con-
tributed" by that pair to the rest of the graph. As new
edges are introduced, new vertex pairs can become de-
lay essential, as shown in Figure 2. For example, the
pair B;D becomes delay essential only after the delay
requirements of the pairs B;C and C;D become explicit.
Algorithm AddEdges in Figure 3 transforms the

given graph G into GT . The algorithm operates in two
steps. In the �rst step, explicit delay essential pairs are
determined by comparing the delay counts on the short-
est and second shortest paths for every vertex pair and
checking for Condition C2. (It can be shown that it is
su�cient to compare the delay count of the two shortest
paths between a vertex pair u; v 2 V to determine if it
is delay essential.) For every delay essential vertex pair

u; v, an edge u
e
! v with weight w(e) =W (u; v)�k is in-

troduced to ensure thatWr(u; v) � k. In the second step,
implicit delay essential pairs are determined by compar-
ing for every vertex pair the delay counts of the shortest
path in the transformed graph of the current iteration
and the shortest path in the original graph. If for a ver-
tex pair (u; v) the delay counts of these two paths di�er,

then an edge u
e
! v with weight w(e) = W (u; v) � k

is introduced to ensure that Wr(u; v) � k. The pro-
cess is repeated until every delay essential vertex pair
is made explicit by these additional edges. (It can be
shown that is is su�cient to place the additional edge
only if the delay counts for the two shortest paths di�er
by less than k. If their di�erence exceeds k, then the
condition Wr(u; v) � k is taken care of automatically.)
The following lemma expresses the necessary condi-

tions for the feasibility of Problem KDP on a given G in
terms of the transformed graph GT .

Lemma 6 Let G = hV;E;wi be a CDFG, and let GT =
hV;ET

; w
T i be the transformed graph generated by Al-

gorithm AddEdges. Let r : V ! Z be a solution for

Problem KDP on G. Then for every edge u
e
! v 2 E

T ,
r satis�es

r(v) � r(u) +w
T (e) � 0 : (11)

Proof. Omitted.

Lemma 7 Algorithm AddEdges transforms a given
CDFG G = hV;E;wi into GT or determines that such a

transformation is not possible in O(V 3
E+V 4 lgV) steps.

AddEdges(G; k)

1 for every vertex pair u; v 2 V
2 do m[u][v] FALSE

3 Q ;

4 Run an all-pairs 2-shortest paths algorithm on G.

5 for every vertex pair u; v 2 V with u
p1
; v and u

p2
; v

being the two shortest paths between u; v
6 do if w(p2)�w(p1) < k

7 then Q Q [f(u; v)g

8 repeat

9 for every delay essential vertex pair u; v 2 Q

10 do m[u][v] TRUE

11 Introduce u
e
! v with wT (e) =W (u; v)� k

12 ET ET [
n
u

e
! v

o

13 GT hV;ET ; wT i

14 Q ;

15 Run an all-pairs shortest paths algorithm on GT

16 for every pair u; v 2 V with W (u; v) > WT (u; v)

17 do if m[u][v] = FALSE
18 then Q Q [f(u; v)g

19 until Q = ;

20 return GT

Figure 3: Algorithm AddEdges transforms G = hV;E;wi into

GT in O(V 3E + V 4 lgV) steps. In the new graph GT , all delay
essential vertex pairs of G are explicit.

Proof. The repeat loop in Step 8 executes O(V 2) times,
since each iteration adds at least one edge. The loop body
runs in O(V E + V

2 lgV) time.

4.2 Su�cient conditions

In this section we show that the necessary conditions
presented in Subsection 4.1 are also su�cient for Prob-
lem KDP. The following lemma proves an important
property of GT

r which is used in Lemma 9 to prove the
su�ciency of these conditions. Intuitively, this lemma

shows that if an edge u
e
! v has positive but fewer than

k delays in a graph Gr that satis�es the conditions of
Lemma 6, then its delay count is the minimum delay
count for the vertex pair u; v 2 V . Consequently, we can
zero out the delay count of such an edge by retiming.

Lemma 8 Let G = hV;E;wi be a CDFG, and let GT =
hV;ET

; w
T i be the transformed graph generated by Algo-

rithm AddEdges. Let r : V ! Z be a retiming such
that for every edge e 2 E

T , we have

r(v) � r(u) +w
T (e) � 0 : (12)

Then for every de�cient edge u
e
! v in E, such that

0 < w
T
r (e) < k, we have

w
T
r (e) = W

T
r (u; v) : (13)

Proof. Omitted.
A supervertex U of a vertex u is the set of vertices x

such that

U = fx 2 V : x
p
; u in G with w(p) = 0 or

u
q
; x in G with w(q) = 0g : (14)

A B C D

E

(a)

F

G H

(b)

C D A B

0

0

Figure 4: Generating the supergraph of a transformed CDFG.
The supervertices A = fAg, B = fB;Gg, C = fC;Eg, and

D = fD;F;Hg of the CDFG in Part (b) are obtained by collaps-
ing vertices connected by zero-weight edges of the CDFG in Part

(a). Vertices connected by bold edges are not collapsed to form
supervertices even though the bold edges may have zero weight.

We can transform any given G into its supergraph
sup(G) by collapsing all vertices connected by zero-
weight edges into a single supervertex. This transforma-
tion is illustrated in Figure 4. Note that when we com-
pute the supergraph of a transformed graph sup(GT),
we only collapse those vertices connected by zero-weight
edges that belong to the original graph G. In Figure 4,
for example, even though the additional edge C ! D has
no delays, the vertices C and D are not collapsed.
In the following lemma, we show that a retiming that

minimizes the number of edges with delays in E sub-
ject to Inequality (11) is a solution to Problem KDP.
We prove this result by contradiction. We consider a re-
timing that satis�es Inequality (11) and minimizes the
number of edges 2 E with delays without solving Prob-
lem KDP. We then show how to to further minimize the
number of edges with delays in E, thus contradicts our
assumption that our initial retiming was optimal.

Lemma 9 Let G = hV;E;wi be a given CDFG and let

G
T = hV;ET

; w
T i be its transformed graph generated by

Algorithm AddEdges. Let M = fe 2 E : w(e) � 1g de-
note the set of edges in G with delays on them. If r is a
retiming that minimizes jM j under the constraint

r(v)� r(u)+w
T (e) � 0 for every u

e
! v 2 E

T
; (15)

then r is a solution to Problem KDP.

Proof. Let r minimize the number of edges with delays
under Inequality (15). If r does not solve Problem KDP,
then there exist edges i 2 E in GT

r such that 1 � w
T
r (i) �

k � 1. Let u
j
! v 2 E be such an edge with wT

r (j) = m,
where 1 � m � k � 1. Let sup(GT

r) be the supergraph
of GT

r , and let U and V be the supervertices of u and v,
respectively.
We now compute a new retiming r0 that maintains the

necessary conditions for the feasibility of Problem KDP

on G. Consider an assignment r0(X) = m �W
T
r (U ;X)

to all supervertices X in sup(GT
r). By the de�nition

of shortest paths, for every supervertex pair (X1;X2) in
sup(GT

r) we have

W
T
r (U ;X2) �W

T
r (U ;X1) +W

T
r (X1;X2) ;

which can be rewritten as

r
0(X2) � r

0(X1) +W
T
r (X1;X2) � 0 :

Consequently, the supergraph sup(GT
r)r0 obtained by

setting r(u)+r0(u) equal to the retiming of u 2 V satis�es
Inequality (15).

For the new retiming r
0, the edge u

j
! v contains

no more delays. Note that we have, r
0(U) = m �

W
T
r (U ;U) = m�0 = m. Since 0 < w

T
r (u

j
! v) = m < k,

we infer from Lemma 8 that WT
r (U ;V) = W

T
r (u; v) =

w
T
r (j) = m, which implies that r0(V) = m�WT

r (U ;V) =
m � m = 0. Since r0(U) = m and r

0(V) = 0, it follows

that u
j
! v has a zero delay count after the retiming r0.

We now show that the number of edge with delays can
be reduced further. By construction, a supergraph has no
zero-weight edges. Therefore, retiming supervertices en-
sures that no delays are introduced on zero-weight edges.
Since all delays are removed from at least one edge,

namely u
j
! v 2 E, the resulting supergraph sup(GT

r)r0

has a smaller number of edges in E with nonzero de-
lays than G

T
r , thus contradicting our assumption that r

minimizes the number of edges with delays in E. We
conclude from this contradiction that r is a solution to
Problem KDP.

4.3 The algorithm

The proof of Lemma 9 captures our two-step strategy
for solving Problem KDP. The �rst step generates the
transformed G

T and computes a retiming that satis�es
Inequality (11), thus ensuring that all paths in Gr have
enough delays. The second step places delays onto indi-
vidual edges using a greedy procedure that computes an
incremental retiming for every edge with fewer than k de-
lays. In each iteration, the incremental retiming removes
all the delays on the de�cient edge and redistributes them
on other edges with delays without violating any of the
necessary conditions. This process is repeated until there
are no more de�cient edges left and all edges satisfy Rela-
tion (5). The �nal retiming is the sum of the retiming in
the �rst step and of all the incremental retimings in the
second step. Algorithm SolveKDP described in theFig-
ure 5 implements this greedy procedure.

Theorem 10 Algorithm SolveKDP computes a retim-
ing that correctly solves Problem KDP, or determines
that the problem is infeasible in O(V 3

E+V
4 lgV) steps.

5 Conclusion

It is straightforward to calculate the potential bene�t
of block-processing and k-delay retiming. If we denote
the sum of the all initiation times by O and the sum of all
computation times by C, the total reduction in execution
time with regular block-processing is given by the factor

SolveKDP (G;k)

1 GT AddEdges (G;k)

2 Compute r that satis�es (11) for every edge in GT

3 if no feasible r exists

4 then return INFEASIBLE

5 while 9 u
j
! v 2 E of GT

r with 0 < wT
r (j) < k

6 do Construct sup(GT
r)

7 Compute WT
r (U ;X) using single-source

shortest-paths from U to all X 2 sup(GT
r)

8 for every X 2 sup(GT
r)

9 do r0(X) wT
r (j)�W

T
r (U ;X)

10 r r + r0

11 return r

Figure 5: Algorithm SolveKDP for solving Problem KDP.

k � (O + C)=(O + k � C). We applied our techniques to
an adaptive voice echo canceler, an adaptive video coder,
and two examples from [10]. Our results indicate that it
is possible to achieve performance improvements between
30% and 45% using our k-delay optimization.

References

[1] L. M. Guerra, M. Potkonjak, and J. Rabaey. System-level de-

sign guidance using algorithmproperties. In Proc. of the VLSI

Signal Processing Workshop, pages 62{73, October 1994.

[2] A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou. Opti-

mizing two-phase, level-clocked circuitry. In Advanced Re-

search in VLSI and Parallel Systems: Proc. of the 1992

Brown/MIT Conference. MIT Press, March 1992.

[3] D. C. Ku and G. De Micheli. Relative scheduling under tim-

ing constraints: Algorithms for high-level synthesis of digital

circuits. IEEE Transactions on CAD of Integrated Circuits

and Systems, 11(6):696{717, 1992.

[4] S. Y. Kung. VLSI Array Processors. PrenticeHall, Englewood

Cli�s, 1988.

[5] K. N. Lalgudi and M. C. Papaefthymiou. DelaY: An e�cient

tool for retiming with realistic delay modeling. In Proceed-

ings of the 32th ACM/IEEE Design Automation Conference,

pages 304{309, June 1995.

[6] C. E. Leiserson and J. B. Saxe. Retiming synchronous cir-

cuitry. Algorithmica, 6(1), 1991.

[7] S. Liao, S. Devadas,K. Keutzer, S. Tjiang, and A. Wang. Stor-

age assignment to decrease code size. In Proc. of the ACM

SIGPLAN Conf. on Programming Language Design and Im-

plementation, pages 186{195, 1995.

[8] S. Ritz, M. Pankert, V. Zivojnovic, and H. Meyr. Optimum

vectorization of scalable synchronous dataow graphs. In

Proc. of the International Conference on Application-Speci�c

Array Processors, pages 285{296, October 1993.

[9] R. A. Walker and D. E. Thomas. Behavioral transformation

for algorithmic level ic design. IEEE Transactions on CAD

of Integrated Circuits and Systems, 8(10):1115{1127, 1989.

[10] V. Zivojnovic, S. Ritz, and H. Meyr. Retiming of DSP pro-

grams for optimumvectorization. InProc. of the International

Conference on Acoustic, Speech, and Signal Processing, 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

