
Stochastic Sequential Machine Synthesis Targeting
Constrained Sequence Generation*

Diana Marculescu, Radu Marculescu, Massoud Pedram

Department of Electrical Engineering - Systems
University of Southern California, Los Angeles, CA 90089

Abstract - The problem of stochastic sequential machines
(SSM) synthesis is addressed and its relationship with the
constrained sequence generation problem which arises
during power estimation is discussed. In power estimation,
one has to generate input vector sequences that satisfy a given
statistical behavior (in terms of transition probabilities and
correlations among bits) and/or to make these sequences as
short as possible so as to improve the efficiency of power
simulators. SSMs can be used to solve both problems. Based
on Moore-type machines, a general procedure for SSM
synthesis is revealed and a new framework for sequence
characterization is built to match designer’s needs for
sequence generation or compaction. As results demonstrate,
compaction ratios of 1-2 orders of magnitude can be obtained
without much loss in accuracy of total power estimates.

I. INTRODUCTION

With the growing need for low-power electronic circuits
and systems, power analysis and low-power synthesis have
become crucial tasks that must be addressed in order to design
complex high-performance digital systems. Power estimation
techniques must be fast and accurate in order to be applicable in
practice. Not surprisingly, these two requirements interfere with
one another and at same point they become contradictory.

General simulation techniques can provide high accuracy,
but at high computational cost. It is impractical to simulate large
circuits using millions or even thousands of input vectors and
therefore, the length of the sequence to be simulated is an
important consideration.

Probabilistic power estimation techniques generally have a
low computational overhead, but tend to be less accurate [1]. A
major concern in probabilistic approaches is the ability to
account for internal dependencies due to the reconvergent fan-
out in the circuit. This problem, which we will refer to as ‘the
circuit problem’, is by no means trivial. Indeed, a whole set of
solutions have been proposed, ranging from approaches which
build the global OBDD [2] and therefore capture all internal
dependencies, to intricate techniques which partially account for
dependencies in an incremental (and therefore more efficient)
manner [3][4] or use local OBDDs [5][6]. Recently, we pointed

*This research was supported by ARPA under contract F33615-95-C1627,
SRC under contract 94-DJ-559, NSF under contract MIP-9457392 and a
grant from Toshiba Corp.

out the importance of correlations not only inside the target
circuit, but also at the circuit inputs [7]. We will refer to this as
‘the input problem’; it is important not only in power estimation,
but also in low-power design.

Generating a minimal-length sequence of input vectors that
satisfies a prescribed set of statistics in not trivial. One such
attempt is made in [9] where authors use deterministic FSMs to
model user-specified input sequences. Since the number of states
in the FSM is equal to the number of patterns in the sequence to
be modeled, the ability to characterize anything other than short
input sequences is limited.

In summary, a number of issues appear to be important for
power estimation and low-power synthesis. Theinput statistics
which must be properly captured and thelength of the input
sequencewhich must be applied, are two such issues. From this
perspective, the present paper shifts the focus from ‘the circuit
problem’ to ‘the input problem’ and improves the state-of-the-art
by proposing an original solution forconstrained sequence

generation1.
Over the years, many important problems in sequential

circuit synthesis and optimization have been approached using
concepts from automata theory. It is quite natural (and useful) to
consider automata with stochastic behavior. The idea is that the
automaton, when in statesi and receiving inputx, can move into
any new statesj with a positive probabilityp(si,x). A practical
motivation for considering probabilistic automata is that even
sequential circuits which are intended to behave
deterministically, exhibit stochastic behavior because of random
malfunctioning of components [10].

The mathematical foundation of our approach relies on the
stochastic sequential machines (SSM) theory and without any
loss in generality, emphasizes those aspects related to Moore-
type machines which are applicable to both combinational and
sequential circuits. We reveal a general procedure for SSM
synthesis and describe a new framework for sequence
characterization to match designer’s needs for sequence
generation or compaction. We focus our attention to the basic
task of synthesizing an SSM, able to generate constrained input
sequences. Such a machine can be used not only in the stand-
alone mode (as is the case for sequence compaction) but also in
the front of the target circuit (for probabilistic power estimation).

To conclude, both simulation-based approaches and
probabilistic techniques for power estimation may benefit from
this research. The issues brought into attention in this paper are
new and represent a first step toward reducing the gap between
the simulative and probabilistic techniques commonly used in
power estimation.

The paper is organized as follows. Section II introduces some

1 Simply stated, any input sequence that must satisfy a set of
spatial and/or temporal correlations is ‘constrained’.

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

basic definitions from SSM theory and gives the main
decomposition theorems used in SSM synthesis. Section III
discuss the constrained sequence generation problem and gives a
practical procedure for sequence compaction. Section IV is
devoted to practical considerations and experimental results.
Finally, we conclude by summarizing our main contribution.

II . THE SYNTHESIS OFSSM

In this section, we review the concept of SSM and describe a basic
procedure for synthesizing SSMs from their mathematical models.

A. Stochastic machines: basic definitions
Definition 1. (Mealy-type SSM)
A Mealy-type SSM is a quadrupleM = (S, X, Y, {A(x, y)}) where
S, X, andY are finite sets (the internal states, inputs, and outputs,
respectively), and {A(x, y)} is a finite set containing |X| × |Y|
square stochastic matrices of order |S| such thataij(y|x) ≥ 0 for
all i andj, and

(1)

Interpretation: Let π be any |S|-dimensional vector. If the
machine begins with an initial distributionπ over the state setS
and is fed with a wordx, it outputs the wordy and moves on to
the next state. The transition is controlled by thetransition
matrix A(y|x) whereaij(y|x) is theconditional probability of the
machine going to statesj and producing the symboly, given it
had been in statesi and fed with symbolx.
Definition 2.
Let M be an SSM,u = x1x2...xk an input sequence andv =
y1y2...yk an output sequence. By definition,A(v|u) = [aij(v|u)] =
A(y1|x1)·A(y2|x2)·...·A(yk|xk); it follows from the interpretation of
the values ofaij(y|x) that aij(v|u) is the probability of machine
going to statesj and producing the sequencev, having been in
statesi and fed sequentially the sequenceu.
Example: LetM = (S, X, Y, {A(y|x)}) with X = {0, 1}, Y = {a, b},
S = {s1, s2} and

and let p = be an initial distribution forM. First, we can

see thatM is correctly defined, that is equation (1) is verified for
every possible initial state. Inspecting for instance the first row
in matrices A(a|0) and A(b|0), we observe that machineM,
initially in states1 and fed with symbol 0, will remain in states1
and produce a symbola with probability 1/2, will remain in state
s1 and produce a symbolb with probability 1/4, or will go to
state s2 and generate a symbolb with probability 1/4. In
addition, from definition 2 we have that

.

This means for instance, that the probability of the machine
printing the wordab, having been in states1 and fed the word 00

on the input, is (irrespective of the final state of the

aij y x()

j 1=

S

∑
y Y∈
∑ 1= where A y x() aij y x()=

A a 0()
1
2
--- 0

0 1
2

= A b 0()
1
4
--- 1

4

1
2
--- 0

= A a 1() 0 1
2

0 0

= A b 1()

1
2
--- 0

1
2
--- 1

2

=

1
4
--- 3

4
--- 

 

A ab 00() A a 0() A b 0()⋅

1
8
--- 1

8

1
4
--- 0

= =

1
8
--- 1

8
---+ 1

4
---=

machine).
Definition 3. (Moore-type SSM)
A Moore-type SSM is a quintupleM = (S, X, Y, {A(x)}, Λ)
whereS, X, andY are as in Definition 1, {A(x)} is a finite set
containing |X| square stochastic matrices of order |S| and Λ a
deterministic function fromS into Y.
Interpretation: The valueaij(x) (A(x) = [aij(x)]) is the probability
of the machine moving from statesi to sj when fed with the
symbol x. When entering statesj, the machine outputs the
symbolΛ(sj) ∈ Y.
Definition 4.
Let M be an SSM. LetA(u) = [aij(u)] = A(x1)· A(x2)·...·A(xk); it
follows from the above interpretation thataij(u) is the
probability of the machine going from statesi to statesj when
fed the wordu. The output wordv depends on the sequence of
states through the machine passed when scanning the input word
u.

As we can see from the above definitions, Mealy and Moore
stochastic machines generalize the corresponding definitions of
deterministic machines. We should note that Mealy-Moore
equivalence is still valid for stochastic machines, that is every
Moore-type SSM has a Mealy-type equivalent and vice versa.

B. The synthesis procedure
Without loss of generality, in what follows the machines are
assumed to be of Moore-type. The basic procedure can be
simplified by means of the following important result.
Theorem 1. [11]: Any m × n stochastic matrixA can be
expressed in the formA = ∑ pi Ui wherepi > 0, ∑ pi = 1, and
Ui are degenerate stochastic matrices (i.e., having only 0 or 1
entries), and the number of matricesUi in the expansion isat
most m(n-1) + 1.■

The theorem we provide next is very important from a
practical point of view; it gives the basis to efficiently apply
Theorem 1 on large matrices which may arise in practice.
Theorem 2. The sequence {pi} i ≥1 is monotonically non-
increasing and strictly positive.
Proof: It suffices to show thatp1 ≥ p2 > 0 due to the recursive
manner in which matricesUi are generated. According to the
definition, p1 = mini maxj [aij] and p2 = (1-p1)q2 where q2 =

mini maxj [a1
ij] (A1 = [a1

ij]). SinceA1 = [1/(1-p1)] [A-p1U1], the

inequality becomes mini maxj [aij] ≥ mini maxj [aij-p1u
1
ij] where

U1 = [u1
ij]. But for any fixedi, j, aij ≥ aij-p1u

1
ij (the elements of

matrix U1 are either 1 or 0 andp1 is positive); hence maxj [aij] ≥
maxj [aij-p1u

1
ij] for any fixed i and mini maxj [aij] ≥ mini maxj

[aij-p1u
1
ij] thus concluding our proof.■

Let A be a stochastic matrix whose rows are probabilistic
distribution vectorsp(si,x) and which can be expressed in the
form A = ∑ pi Ui (i = 1, 2,..., t < m (n-1)) according to the above
result. That means that eitherA has been decomposed exactly
usingt matricesUi, or considering only the firstt matrices in the
decomposition has been satisfactory for a given level of
accuracy.

Let Σ = {σ1,σ2,...,σt} be an auxiliary alphabet witht
symbols, one for each matrixUi in the expansion ofA, and letP
be a single information source overΣ emitting eachσi with
probability pi. We give in Fig.1 a simplified block diagram of
the network that synthesizes such a machine.

Fig.1
The combinational logic is constructed such that its output

is sj for input (xl, σm, sk) if and only if the entry of matrixUm in
the row corresponding to (sk, xl) and the column corresponding
to sj equals 1. We refer tolog2|Σ| inputs needed to encode the
source as auxiliary inputs. The output logic box is a
combinational logic implementing the functionΛ.
Interpretation: Theorem 1 states in fact that any SSM can be
decomposed into a finite number of deterministic sequential
machines. The behavior of the SSM is thus “simulated” by
selecting one of these deterministic machines based on the
values of the auxiliary inputs.
Example: Let’s synthesize now the stochastic machineM
defined byM = (S, X, Y, {A(x)}, Λ) with S = {0, 1} = X = Y,
Λ(0) = 1, Λ(1) = 0, and the following transition matrices:

(using the transpose

notation). Putting togetherA(0) and A(1) we have the whole

transition matrixA as: .

Applying Theorem 1, we get

thus Σ = {σ1,σ2,σ3,σ4} and P = (1/12, 1/4, 1/6, 1/12). Encoding
the symbols inΣ with 2 bits (w1,w2) as 00, 01, 10, 11
respectively, we get the following transition table.

Using a standard synthesis approach, we obtain a circuit
which synthesizes this SSM, as shown in Fig.2 (wordsΣ on bits
(w1,w2) must be supplied with the probability distributionP).

 delays
 output
logicInputs X

OutputsY

(auxiliary inputs)
SourceP, Σ

 combinational

 logic

A 0()

1
2
--- 1

4

1
2
--- 3

4

T

= A 1()

2
3
--- 1

2

1
3
--- 1

2

T

=

A A 0()
A 1()

1
2
--- 1

4
--- 2

3
--- 1

2

1
2
--- 3

4
--- 1

3
--- 1

2

T

= =

A
1
2
--- 1 0 1 1

0 1 0 0

T
1
4
--- 0 1 0 0

1 0 1 1

T
1
6
--- 0 0 1 0

1 1 0 1

T
1
12
------ 0 0 0 0

1 1 1 1

T
+ ++=

w1 w2

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

x

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

s1
n()

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

s1
n 1+()

0

1

0

0

1

0

1

1

1

1

0

1

1

1

1

1

y

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Fig.2
In summary, the basic synthesis procedure based on

Theorem 1, involves essentially the synthesis of a combinational
circuit with feedback and the construction of information
sources with prescribed probability distributions.

III . CONSTRAINED SEQUENCEGENERATION

In this section, we give a precise characterization of sequences
in terms of their transition matrices. We provide also an exact
formulation of the constrained sequence generation problem and
propose a block-oriented approximation algorithm for solving it.

A. Sequence characterization
In what follows, we associate with every Moore-type SSM its
output sequence (of lengthL ≥ 1), generated during its normal
operation, and we will interchangeably refer to both SSM and its
output sequence. For practical purposes, we restrict our attention
only to reduced stochastic machines of Moore-type [12].
Definition 5. (Output Equivalence)
Two reduced stochastic machinesM and M* are output-
equivalent if the following conditions are satisfied:
1) The state spacesSM andSM* have the same cardinality, that is,
|SM| = |SM* |;
2) The output spacesYM andYM* are the same, that isYM = YM* ;
3) For every statesi of M there corresponds a statesj of M*, and

vice versa, such that for every inputu

with L(u) ≥ 1.
Interpretation: If the isomorphism relationship between state
spacesSM andSM* is given by the function h : SM → SM* , then
we can represent the output-equivalence relationship between
machinesM andM* as in Fig.3:

Fig.3
Basically,SM is isomorphically mapped toSM* such that the

output spaces coincide. These considerations translate into a
definition for sequence equivalence as follows:
Definition 6. (Sequence Equivalence)
The output sequenceYM generated by machineM is ε-equivalent

with the output sequenceYM* produced by M* if

, where the norm is defined as .

(We note the special caseε = 0 when AM = AM* , which

D
Y

X

w1

w2

S

ΛM
si() ΛM∗

sj()=

si • • sj

•

h

Λ(sj)Λ(si)

YM = YM*

 SM*
SM

A
M

A
M∗

– ε< A max aij=

corresponds to exact equivalence).
Differently stated, two output sequences areε-equivalent if

they are generated by SSMs characterized by nearly the same

average transition probabilities, that is ,

for any inputx.

B. The generation procedure
In practice, we want to generate a fixed-length sequence
satisfying a certain set of constraints or, more frequently, we may
have obtained from simulation a characteristic sequence for a
target circuit and we want to compact it into a new one while
preserving its statistics. The first situation was illustrated in
Section II.B. Let’s analyze now the second case by considering
the problem of synthesizing a SSM from a given vector sequence.
Example: Assume that the following short sequence of 20 input
vectors (v1,v2,...,v20) is representative of the input data for some
target circuit.

Fig.4
In the lower part of Fig.4, we have the transition graph
corresponding to this sequence. The ‘state’ nodes are labelled
with the values that appear in the initial sequence (decimally
encoded), while the labels on the edges are conditional
probabilities captured by analyzing the initial sequence. For
instance, the word ’111‘is half of the time followed by ‘101’ and
the other half by itself, thus we havea75 = 0.5 anda77 = 0.5.

Let M be the SSM associated with this sequence; as we can
see,SM = {0, 1, 3, 4, 5, 6, 7} and |SM| = 7. We are trying to
synthesize a new machineM*, output-equivalent withM, and
eventually to generate an equivalent (and compacted) sequence
with the initial one, usingM*. To make our job easier, let’s
assume also thatYM = SM and YM* = SM* . From the very
beginning, just by looking at the first two conditions in Definition
5, we may deduce that |SM* | = 7 andYM*= YM = SM = SM* . The
corresponding stochastic matrixA for the initial sequence is
shown below, along with its decomposition

, according to Theorem 1:

Hence, we need a single auxiliary bitw to distinguish between
the two deterministic sequential machines obtained:w = 0
specifies the first machine which corresponds toU1 andw = 1
the second machine (both with probability 0.5) which

aij
M

x() aij
M∗

x()– ε<

 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0
v20... ...v2 v1

5

6

7

4 1

03

1 1

0.5 1

1

 0.5

 0.5

 0.5
1

Initial Sequence

Transition Graph

 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0
 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1

A
M 1

2
--- U1⋅ 1

2
--- U2⋅+=

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0.5 0 0 0 0.5

0 0 0 0 0.5 0 0.5

1
2

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

⋅ 1
2

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

⋅+=

corresponds toU2. An implementation ofM* (using D Flip-
Flops) is given in [8]. This SSM can now be used as a generator
for a 3-bit sequence with the same stochastic characteristics as
the original one. The bitw is generated using a random number
generator such that 0 and 1 are equally likely (i.e. probability
0.5). To generate a sequence, the SSMM* should be initialized
in the most probable state: in our case, either ‘110’, ‘101’ or
‘111’ can be used. Using a random number generator for the bit
w, we get the following behavior when considering ‘111’ as the
initial state.

Analyzing the next state bit lines, we get the following
stochastic matrix after 10 generated vectors:

Note: we can see that for 10 generated vectors withM*, the
initial stochastic characteristics are preserved exactly; indeed

from Definition 6 with ε = 0, we have ,
therefore, in this case, a compaction ratio of 2 has been achieved
without any loss of information.

In practice, we may have to deal with sequences that have a
large number of bits (and bit patterns) which will give rise to
large number of states in the SSM. The manipulation of matrixA
thus becomes prohibitive. To handle such cases, we apply the
above procedure in a block-oriented fashion, that is first
partition the whole sequence of sayn bits, intob smaller groups

of at most bits, and after that apply the procedure to each

block one at a time. By doing so, some accuracy is sacrificed by
ignoring dependencies across block boundaries, but the ability to
work with sequences having a large number of bits is
significantly increased.

We decide whether or not a set of bits are in the same block
by considering only correlations between pairs of bits. More
formally, given a set of bits {xi} 1≤i≤n to be partitioned intob
groups G1, G2,..., Gb, we construct a complete graph onn
vertices where each vertex corresponds to one of the bits and
each edge corresponds to the pairwise correlation between the
corresponding bits. The edge weights are defined by

for edge (x, y) in the bit-dependency graph. Next, we find an

step w y1
n y2

n y3
n y1

n+1 y2
n+1 y3

n+1

1 0 1 1 1 1 0 1

2 1 1 0 1 1 1 0

3 1 1 1 0 1 1 1

4 1 1 1 1 1 1 1

5 0 1 1 1 1 0 1

6 1 1 0 1 1 1 0

7 0 1 1 0 0 1 1

8 0 0 1 1 0 0 0

9 0 0 0 0 0 0 1

10 1 0 0 1 1 0 0

A
M∗

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0.5 0 0 0 0.5

0 0 0 0 0.5 0 0.5

=

A
M

A
M∗

– 0=

n
b

t x y,()cos p xi j→ yk l→() p xi j→() p yk l→()⋅–
i j k l, , , 0 1,=

∑=

assignment of each vertex to some group such that the expression

is minimized (where 0≤ α(x,y) ≤ 1 is a weighting coefficient
that represent the topological distance between thex andy inputs
in the circuit involved in the compaction process). This is in fact
a multi-way partitioning problem which is NP-complete in the
general case [13]. Fortunately, excellent heuristics are available
to solve this problem [14][15].

IV . EXPERIMENTAL RESULTS

The problem of sequence compaction is related to that of
sequence generation. Because the latter is contained as a step in
the compaction process, we will address the generation problem
through the compaction problem.

In all experiments, we targetlossy compression [16], that is
the process of transforming an input sequence into a smaller one,
such that the new body of data represents agood approximation
as far as power consumption is concerned. If the initial sequence
has the lengthL0 and it turns out that the new generated sequence
is of length L < L0, then the outcome of this process is a
compacted sequence equivalent to the initial one as far as total
power consumption is concerned; we say that acompaction ratio
of r = L0/L was achieved.

We assume that the input data is given in the form of a
sequence of binary vectors. The global strategy is depicted in
Fig.5 and follows the steps described in Section III.

Starting with ann-bit input sequence of lengthL0, we
extract the initial set of statistics and based on it, if the number
of bits n is too large to be managed as a whole, the set of input
bits is partitioned intob subsets (blocks) according to the
Kernighan-Lin heuristic proposed in Section III. To every block,
we associate a stochastic machine (SSM1, SSM2,...,SSMb in
Fig.6b). This is similar to approximating a single source on a
large number of bits with many independent sources, each one
having a smaller number of bits.

α x y,() t x y,()cos⋅
x Gp∈ y Gq∈,,

∑
1 p≤ q< k≤

∑

Fig.5
We note that, as a side effect, this strategy may introduce new
vectors in the final compacted sequence that were absent in the
original sequence.

Fig.6
Once a partitioning solution is obtained, we apply the

algorithm in Section III to each group of bits. From our
experience, this strategy works well (less than 5% relative error
on average) for pseudorandom or moderately biased input
sequences. If the sequence to be compressed is a highly correlated
one, then this approach will rise the level of the error about 10-
15% on average. Therefore, in such cases, the global modeling of
the SSM (as depicted in Fig.6a) is preferred.

Finally, a validation step is included in the strategy; using an
in-house gate-level logic simulator (which does account for
spurious activity in the circuits) developed under SIS, the total

Initial Sequence

 Build matrixA for

Generate compacted
 sequence

Decompose matrixA

 Gate-level logic simulation

 Partition input bits

 each block

(comparison)

Compacted Sequence
 L « L0

 L0

 target
circuit

target
circuit

oi

....
global SSM

o

 SSM1

 SSM2

 SSMb

(a) (b)

Table 1: Total power (uW@20MHz) forS1

r = 50 r = 100

Circ. #Inp.
Exact
Power

k = 4 k = 6 k = 4 k = 6

C1355 41 4218.000 4251.00 4232.40 4276.80 4236.00

C1908 33 6969.00 6970.80 7019.40 6894.00 6966.60

C3540 50 19603.20 19654.20 19393.80 19497.00 19102.20

C432 36 3070.80 3054.00 3018.00 3065.40 3024.60

C499 41 5374.820 5390.40 5374.80 5431.20 5397.00

C6288 32 347886.00 351669.60 348599.40 354933.60 349987.20

C880 60 5990.40 6018.60 6021.60 6084.00 5976.60

s1196 14 7698.60 7492.20 7512.60 7594.20 7452.60

s344 9 1814.40 1841.40 1849.20 1851.60 1865.40

s641 35 2908.80 2779.80 2798.40 2805.00 2806.20

s838 34 1551.00 1538.40 1540.20 1554.60 1503.60

s9234 36 21693.60 21081.60 21081.60 21673.20 21042.6

Average Error (%) 1.13 1.33 1.05 1.81
s298 3 975.00 974.40 972.60

s386 7 1996.80 2022.60 2023.20

Average Error (%) 0.68 0.78

Table 2: Total power (uW@20MHz) forS2

Circ. Exact
Power r = 5 r = 10

C1355 3783.17 3863.27 3918.51

C1908 6352.03 6683.00 6592.43

C3540 14471.32 12603.73 13034.91

C432 1809.95 1706.08 1860.58

C499 4390.45 4470.10 4467.74

C6288 104117.45 95628.77 92198.86

C880 3787.93 3526.17 3716.96

Average
Error (%)

6.11 5.06

power consumption of some ISCAS benchmarks has been
measured for the initial and the compacted sequences, making it
possible to assess the effectiveness of the compaction procedure
(under both zero- and real-delay models).

In Tables 1-2, we provide only the real-delay gate-level
simulation results for two initial sequences:S1 of length
L0=100,000, which is a moderately biased sequence andS2 of
length 4,000, which is a highly biased sequence taken from
industry. As shown in Table 1,S1 was compacted with two
different compaction ratios (namelyr = 50 andr = 100) using
the strategy in Fig.6b. For each value of the compaction ratio,
different sizes were allowed for the number of bits per block (k
= 4, 6). For two of the sequential circuits (s298 and s386) the
partitioning step was unnecessary due to the small number of
input bits (3 and 7, respectively).

As we can see, the quality of results is good even when the
length of the initial sequence is reduced by two orders of
magnitude. This reduction in the sequence length has a significant
impact on speeding-up the simulative approaches where the
running time is proportional to the length of the sequence which
must be simulated.

On the other side,S2 was compacted using the strategy
illustrated in Fig.6a for two compaction ratios (r = 5 and r =10).
As reported in Table 2, the results are still good, the average
relative error being below 10% on average.

On the efficiency side, the running times obtained forε =
0.01 (cf. definition 6) vary from a few to tens of CPU seconds
on a Sun SPARC 20. Settingε = 0.1 will reduce the running time
by one order of magnitude; in this way one can trade-off
accuracy vs. run-time (as guaranteed by Theorem 2) when this is
satisfactory from a practical point of view.

As an important observation, we note that the values in the
initial transition matrix themselves are important in the
decomposition process: some distributions of transition
probabilities tend to favor a small number of degenerate matrices,
as opposed to others which result in much longer decompositions.
In such cases, the decomposition becomes the critical step as far
as running time is concerned.

As the results demonstrate, large compaction ratios (1-2
orders of magnitude) can be obtained in a short amount of time
with a small loss in accuracy for total power prediction, either for
combinational or sequential circuits. From this perspective,
simulative approaches will significantly benefit from these
results.

V. CONCLUSION
In this paper, we addressed the problem of stochastic machines
synthesis targeting constrained sequence generation or
compaction. Shifting the attention from the ‘circuit problem’ to
the ‘input problem’, we proposed an original approach to
generate input sequences (which must satisfy a set of statistics)
and to compact an existing sequence into a much shorter
equivalent one.

The mathematical foundation of this approach relies in
probabilistic automata theory and based on this, a general
procedure for SSM synthesis is revealed. After that, these
machines can be used in a stand-alone mode for sequence
generation or compaction.

The issues brought into attention on this paper are new to the
power community and represent a first step to reduce the gap
between simulative and probabilistic techniques which are
currently the norm.

REFERENCES

[1] M. Pedram, ‘Power Minimization in IC Design: Principles
and Applications’, in ACM Transactions on Design
Automation of Electronic Systems, vol.1, no.1, pp.1-54,
Jan.1996

[2] A. Ghosh, S. Devadas, K. Keutzer, and J. White, ‘Estimation
of Average Switching Activity in Combinational and
Sequential Circuits’, in Proc. ACM/IEEE Design
Automation Conference, pp. 270-275, June 1992.

[3] F. N. Najm, ‘Transition Density, A Stochastic Measure of
Activity in Digital Circuits’, in Proc. ACM/IEEE Design
Automation Conference, pp. 644-649, June 1991.

[4] C.-Y. Tsui, M. Pedram, and A. M. Despain, ‘Efficient
Estimation of Dynamic Power Dissipation with an
Application’, in Proc. IEEE/ACM Intl. Conference on
Computer-Aided Design, pp. 224-228, Nov. 1993.

[5] B. Kapoor, ‘Improving the Accuracy of Circuit Activity
Measurement’, in Proc. ACM/IEEE Design Automation
Conference, pp. 734-739, June 1994.

[6] C.S.Ding, M. Pedram, ‘Tagged Probabilistic Simulation
Provides Accurate and Efficient Power Estimates at Gate
Level’, in Proc. of the Symposium on Low Power
Electronics, pp.42-43, Sept.1995.

[7] R. Marculescu, D. Marculescu, and M. Pedram, ‘Efficient
Power Estimation for Highly Correlated Input Streams’, in
Proc. ACM/IEEE Design Automation Conference, pp. 628-
634, June 1995.

[8] D. Marculescu, R. Marculescu, and M. Pedram, ‘Vector
Compaction Using Probabilistic Automata’, Technical
Report, Univ. of Southern California, March 1996.

[9] J. Monteiro and S. Devadas, ‘Techniques for Power
Estimation of Sequential Logic Circuits Under User-
Specified Input Sequences and Programs’, in Proc. Intl.
Workshop on Low Power Design, pp. 33-38, April 1994.

[10] J. Von Neumann, ‘Probabilistic Logics and Synthesis of
reliable organisms from unreliable components’, in Annals of
Mathematics Studies, Vol.34, pp.43-98, Princeton Univ.
Press, Princeton, New Jersey 1956.

[11] A. Davis, ‘Markov Chains as Random Input Automata’, in
American Mathematical Monthly, Vol.68, pp. 264-267, 1961.

[12] M. Rabin, ‘Probabilistic Automata’, in Information and
Control, Vol.6, pp. 230-245, 1963.

[13] M. Garey, and D. Johnson, ‘Computers and Intractability’,
New York: Freeman, 1979

[14] B. Kernighan and S. Lin, ‘An Efficient Heuristic Procedure
for Partitioning Graphs’, in Bell Systems Technical Journal,
Vol.49, No.2, pp.291-307, 1970.

[15] C. Fiduccia and R. Matheyses, ‘A Linear-Time Heuristic for
Improving Network Partitions’, in Proc. ACM/IEEE Design
Automation Conference, pp. 175-181, June 1982.

[16] J. Storer, ‘Data Compression: Methods and Theory’, Ch.1,
Computer Science Press, 1988.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

