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ABSTRACT

This paper presents a technique for simulating

processors and attached hardware using the prin-

ciple of compiled simulation. Unlike existing, in-

house and o�-the-shelf hardware/software co-si-

mulators, which use interpretive processor simu-

lation, the proposed technique performs instruc-

tion decoding and simulation scheduling at com-

pile time. The technique o�ers up to three orders

of magnitude faster simulation. The high speed

allows the user to explore algorithms and hard-

ware/software trade-o�s before any hardware im-

plementation. In this paper, the sources of the

speedup and the limitations of the technique are

analyzed and the realization of the simulation

compiler is presented.

I. Introduction

Simultaneous design of hardware and software can take
place at di�erent abstraction levels. At the HLL-level

compiler and processor are designed jointly in order to
obtain optimum performance on selected high-level lan-
guage constructs. At the application-level the on- and
o�-chip hardware have a role of a processing accelera-
tor, or external interface, and are optimized to deliver
optimum results for a speci�c application or a class of
them. The goal of instruction-level HW/SW co-design
is to make frequently used instructions fast by appro-
priate design of the instruction set architecture of the
processor. All three levels correspond to software-based

HW/SW co-design, where the realization in software is
the starting point, and hardware alternatives are intro-
duced in order to speedup execution. Independently of

the abstraction level, the co-design cycle has to be closed
by intensive veri�cation of hardware and software.

Debugging and veri�cation can be done using hard-
ware or software models, i.e. emulators or simulators, re-
spectively. The main advantage of hardware models, like
emulators is their speed, which is mostly only an order
of magnitude slower than the speed of the �nal system.
However, emulators are costly, o�er low visibility of the
internal state of the device, possess low exibility, deli-
ver inaccurate timing, and the design has to be specially
adapted in order to be run on an emulation platform.
Also, with emulators the boundary between hardware
and software is mostly a priori �xed. This contradicts
directly the main philosophy of HW/SW co-design | to
take advantage of a exible boundary between hardware
and software, and to position it in an optimum way.

All these drawbacks are easily circumvented using a
software model. The price paid is the signi�cantly re-
duced speed. Although selecting the appropriate simu-
lation accuracy can deliver faster simulation, there are
still up to four orders of magnitude di�erence in speed
between emulators and simulators.

In this paper we describe a new technique for HW/SW
co-simulation. It relies on the principle of compiled si-
mulation for simulation of both hardware and software.
Whereas compiled simulation is a well known approach
to hardware simulation, its use for simulation of soft-
ware is new. All reported HW/SW co-simulation en-
vironments rely on the classical interpretive processor
simulation technique. We show that compiled simula-
tion is able to deliver bit-true, clock-true simulation of
the instruction set architecture of the processor with a
speedup of up to three orders of magnitude compared
to the classical interpretive technique. The new simula-
tion technique can be applied equally well to veri�cation
of HLL-, application-, or instruction-level HW/SW co-
designs.

According to Amdahl's law, even a signi�cant spee-
dup in software simulation can be of minor value for
HW/SW co-simulation if hardware simulation is the bott-
leneck. However, if the cycle-based behavioral or RTL
model of the hardware is appropriate, the amount of
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co-simulated hardware is limited, or if the interaction
between software and hardware is localized to speci�c
code fragments or initiated only by events which hap-
pen less frequently than the clock edge of the processor,
the increased software simulation speed can inuence the
overall HW/SW co-simulation speed signi�cantly. Our
experience shows that in a great deal of embedded sy-
stems with DSP functionality both of these conditions
are met.

Additional advantage of the compiled approach is
comfortable HW/SW debugging with a single source le-
vel debugger for hardware and software. If the C code
is selected as the intermediate format for software si-
mulation, and the behavioral model of the hardware is
written in C, the standard source level debugger of the
host can be used to debug hardware and software. The-
reby, the HW/SW debugger has all the program-control
and state-observation features of standard instruction le-
vel debuggers, and at the same time permits cycle-based
hardware debugging.

Compiled simulation achieves the high speed by ad-
ditional compile-time preprocessing which inuences the
overall turnaround time. The increased preprocessing
time is the price which has to be paid for improved run-
time performance and presents the main drawback of the
technique. However, using incremental compilation only
the redesigned parts of the code can be preprocessed and
thereby the overall preprocessing time reduced.

The paper is organized as follows. After the intro-
duction in Section II the motivation guiding this work
is explained. Section III discusses previous work which
is related to those presented in the paper. The princi-
ple of compiled simulation for programmable architec-
tures is presented in Section IV. The realization of the
simulation compiler for three o�-the-shelf DSP proces-
sors with di�erent architectures is reported in Section V.
Section VI provides a detailed discussion about HW/SW
co-simulation and debugging using the compiled techni-
que. Finally, in Section VII the conclusions are given.

II. Motivation

The main motivation for the work presented in this pa-
per was the low speed of the instruction-level simulators
found in HW/SW co-simulation environments. The fol-
lowing example arises from the development of the AD-
PCM G.721 and G.726 speech transcoders for the Digi-
tal European Cordless Telecommunications (DECT) and
Digital Circuit Multiplication Equipment (DCME).

First, we used an o�-the-shelf DSP processor. O�-
line veri�cation of the hand-written software implemen-
tation (�93 millions instructions) on the standard set of
CCITT-ITU test sequences (13 seconds of speech signals)
on the target hardware took 7 seconds. The same veri-

�cation using the instruction set simulator (4K insns/s)
provided by the DSP chip vendor took approximately
6.4 hours on an 86 MIPS machine (Sparc-10).

Next, we wanted to explore ways to speedup execu-
tion of the transcoder introducing changes in the archi-
tecture. It is well known that the FMULT procedure of
the G.726 algorithm is the time-critical part of the algo-
rithm. We extended the processor model with a simple
hardware accelerator executing the normalization ope-
ration of the FMULT procedure. The additional clock-
accurate behavioral model of the accelerator had almost
no impact on the veri�cation speed. Multiple instruc-
tions have been replaced by a single I/O write/read fun-
ction, so that the simulation speed was decreased only
modestly, However, we needed additional 7 hours of si-
mulation to validate correctness and performance of the
new design. Experimentation with �nite-word length is-
sues could not be done with this simulator.

If the same algorithm is expressed in C, and compi-
led using the C compiler provided by the chip-vendor,
o�-line veri�cation of the resulting code (�750 millions
instructions) on the simulator would last for 2 days and
3 hours. Obviously, the turnaround time has to be mea-
sured in days and any experimentation with application-
oriented compiler and processor adaptations is impossi-
ble.

We observed that for the kind of HW/SW co-designs
we are interested in, the software simulator is the bott-
leneck. It is well known that in most cases the clock-
accurate model of the attached hardware consumes more
simulation time than the simulation of a single clock-
cycle of the processor. However, in software-based HW/-
SW co-designs the interaction with the hardware is mostly
localized to speci�c code fragments of the software. In
this case the hardware can be modeled using a less accu-
rate model during periods of no interaction, and a more
accurate when the interaction with the software takes
place. As a consequence, the overall simulation speed of
the hardware is signi�cantly higher than the speed of the
software simulator, and the software simulator becomes
a limiting factor.

III. Previous Work

Processor simulators such as instruction set simulators
are almost always supplied with o�-the-shelf or in-house
DSP processor. They enable comfortable debugging and
veri�cation through controlled program execution and
provide visibility of processor resources necessary for code
development. All currently available instruction set si-
mulators use the interpretive simulation technique. Their
main disadvantages are the low simulation speed (2K-
20K insns/s [1]) and their inability to be extended by
the user.



Instruction set simulators are standard components
of HW/SW co-design environments [2,3]. The speed of
these simulators ranges from 300 insns/s to 20K insns/s
depending on the character of the processor model, the
simulation technique applied or the accuracy level pro-
vided.

The compiled simulation technique we use for our si-
mulator is well known in simulation of hardware circuits,
e.g. [4]. We follow the same general idea, but apply
it to the simulation of the instruction set architecture.
Our approach resembles binary translation used for mi-
grating executables from one machine to another [5], or
collecting run-time statistics [6]. However, clock/bit-true
translation and debugging are not objectives of binary
translation.

IV. Compiled Simulation of Programmable

Architectures

Interpretive simulators process instructions using a soft-
ware model of the target processor. A virtual processor
is built using a data structure representing the state of
the processor, and a program which changes the proces-
sor state according to the stimuli | either a new in-
struction pointed to by the program sequencer or some
external events, such as interrupts. In general, interpre-
tive simulators can be summarized as a loop in which
instructions are fetched, decoded, and executed using a
\big switch" statement, such as the one below:

while(run) {

next = fetch(PC);

insn = decode(next);

switch (insn) {

...

add: exe_add(); break;

...

}

}

Our approach translates each target instruction di-
rectly to one or more host instructions. For example, if
the following three target instructions

add r1,r2;

mov r2,mem(0x175);

mul r2,r3;

are interpreted, the above simulation loop iterates once
for each instruction. The compiled simulation approach
translates the target instructions into the following host
instructions, represented here as macros:

ADD(_R1,_R2); SAT(_R2); ADJ_FL(_R2); PC();

MOV(_R2,MEM(0x175)); ADJ_FL(); PC();

MUL(_R2,_R3); SAT(_R3); ADJ_FL(_R3); PC();

where SAT(), ADJ FL(), and PC() model the satura-
tion logic, adjustment of the ags, and the change of
the program counter, respectively. The translation com-
pletely eliminates the fetch and decode steps, and loop
overheads of interpretation, resulting in a faster simu-
lation. For target processors with complex instruction
encoding, the decode step can account for a signi�cant
amount of time. Additional speedup is created because
the compiled-simulation generates code tailored to the
required accuracy level, while an interpreter provides a
�xed level of accuracy. For example, if interrupts are not
required, compiled-simulation suppresses the simulation
of the interrupt logic already at compile-time, and no
run-time penalty is payed.

For large programs, the speed of compiled simulation
could be degraded by low locality of reference if the gene-
rated simulation code is much larger than the available
cache. In this situation, an interpreter would perform
better. DSP programs, however, typically exhibit high
locality; as a result, the generated simulation program
does also. Moreover, the program memory of DSP pro-
cessors, especially �xed-point ones, is small compared
to typical host-machine cache sizes. Our measurements
show no di�erence in simulation speed between small and
large DSP programs. However, a detailed analysis still
has to be done.

However, compiled-simulation assumes that the code
does not change during run-time. Therefore self-modi-
fying programs will force us to use a hybrid interpre-
tive/compiled scheme. Fortunately, self-modifying pro-
grams are rare. The isolated cases we encountered so far
are limited to programs that change the target address
in branch instructions. This type of self-modifying code,
however, can be easily handled without interpreting.

The binary-to-binary translation process can be orga-
nized in two ways. The direct approach translates target
binary to host binary directly (Fig. 1a). It guarantees
fast translation and simulation times, but the translator
is more complex and less portable between hosts. To
simplify the translator and improve its portability, we
split the translation process into two parts | compile
the target code to a program written in a high-level lan-
guage such as C (front-end processing), and then compile
the program into host code (back-end processing) (Fig.
1b). In this way we take advantage of existing compilers
on the host and we reduce the realization of the simu-
lation compiler to building the front-end. Portability is
greatly improved but with a possible loss in simulation
speed.

Some features of machine code are di�cult to repre-
sent in a high-level language like C. For example, in the
absence of very sophisticated analysis, compiled simula-
tion must assume that every instruction can be a tar-
get of an indirect branch statement. Therefore, every
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Figure 1: Two Approaches to Binary-To-Binary Trans-
lation.

compiled instruction must have a label, and computed
goto or switch statements are used to simulate indirect
branching. These labels reduce the e�ectiveness of many
compiler optimizations. If indirect branching is not used
in the code, and this is reported to the simulation com-
piler by an appropriate ag, the generated intermediate
code is more amenable to compiler optimizations.

V. Realization of the Simulation Compiler

The simulation environment SuperSim SS-21xx has been
implemented for the Analog Devices ADSP-21xx family
of DSP processors. It consists of the simulation compiler
(ssc), host C compiler (gcc), and C source level debug-
ger (dbx). This enables cycle- and bit-true behavioral
simulation of the processor in a comfortable debugging
environment.

The ssc simulation compiler has a form of a two-pass
translator with a translation speed of about 1500 target
insns/s (Sun-10/64MB). Translating the whole program
memory (16 Kinsns) of the ADSP-2105 into intermediate
C representation takes less than 11 seconds. To enable
additional trade-o� between recompilation and execu-
tion speed, the simulation compiler can translate target
instructions into intermediate C code using macros or
function calls.

Compiling the intermediate C code to the host exe-
cutable takes most of the overall translation time. For
the version with function-calls the compilation speed of
the gcc-2.5.8 compiler with optimization -O1 was ab-
out 240 target insns/s (120 target insns/s for -O3). For
all 16 Kinsns the compilation with -O1 takes less than
2 minutes. Using macros the compilation speed slows
down almost 5 times compared to the function-call ver-
sion. In the same time the speedup in execution time is
only about 30%. Our current work is concentrating on
speeding up the compilation by recompiling only those
parts of the target binary which have been changed.

Table 1 presents some real-life examples of SS-21xx
performance. Simulation speed measured in insns/s de-
pends on the complexity of instructions found in the
target code. The FIR �lter example is generated by
the C compiler of the target that generates compound
instructions rarely. However, the ADPCM example is
hand-coded optimally and uses complex compound in-
structions frequently. The results from Table 1 show
that our simulator outperforms the standard simulator
by almost three orders of magnitude on the FIR example
and by about 200 times on the ADPCM example. The
same veri�cation which took 6.4 hours with the standard
ADSP-21xx simulator is reduced to less than 2 minutes
using SuperSim.

The speed improvement we obtained has two main
sources. One source is the compile-time decoding and
scheduling of the instructions. The other source is that
the �nal simulation program does not include any de-
bugging-related code, but still o�ers complete debugging
support. All the necessary debugging information is in-
serted by the compiler of the host, and the host-speci�c
debugger. The existing interpretive simulators are de-
signed to support host-independent debugging, and are
forced to insert debugging-related operations (e.g. bre-
akpoint checking) at the source level. This introduces
an additional, signi�cant slowdown of the simulation.

The ADSP-21xx does not have a visible pipeline. In
order to prove our concepts on architectures with pi-
peline e�ects, we have written compiled simulation ex-
amples for the TI's TMS320C50 and NEC's �PD77016
processors. Despite overhead introduced for pipeline mo-
deling, results from Table 1 show that our approach still
achieves signi�cant speedup. Our analysis has shown
that the compiled simulation technique fails if indirect
delayed branches have to be simulated. In this case the
simulator has to switch to the interpretive simulation.
More details about compiled simulation of pipelines can
be found in [7].

VI. HW/SW Co-Simulation

Designers frequently, during an early stage of the design
process, create a software prototype of the design. At
this stage, designers can explore implementation options
in which some of the functions are shifted into hardware.
SuperSim supports this exploration because it attaches
easily to behavioral models of the hardware. Later, the
behavioral models can serve as a starting point in hard-
ware design. Co-simulation becomes useful again, once
the behavioral models have been re�ned into hardware,
perhaps rendered using a hardware description language
(HDL such as VHDL or Verilog) or as a net list. One can
verify such hardware components by attaching either a
HDL simulator or a logic simulator to SuperSim.



example simulator optimization insns/s speedup

FIR �lter ADSP-21xx - 3.9K 1
SS-21xx -O3 2.5M 640

" -O2 2.0M 510
" -O1 1.6M 420

TI-C50 - 2.4K 1

SS-C50y -O3 0.4M 160

SS-77016y -O3 0.4M -

ADPCM ADSP-21xx - 4.0K 1
SS-21xx -O3 0.8M 200

" -O2 0.6M 150
" -O1 0.4M 100

host: Sun-10/64MB; SS-21xx ags: -f; compiler: gcc 2.5.8; y-preliminary;

Table 1: Simulation Examples - Performance Results.

We coupled our compiled simulator to a block-diagram
editor, a C library of clock-accurate behavioral models
of hardware components, and a C code generator. The
resulting HW/SW co-simulation environment is able to
deliver fast, clock-accurate simulation.

Figure 2 presents an example of an A/D converter
with glue logic attached to a DSP processor. Commu-
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Figure 2: HW/SW Co-Simulation Using SuperSim.

nication between software and hardware is mediated by
cycle hooks. The hooks pass control to the hardware
model which is written in C. The hooks also accept data
from the hardware models. We can insert di�erent cycle
hooks executing di�erent hardware models depending on
the type of instruction which is executed in the current
cycle, or in the cycles before or after. In this way we are
able to control the accuracy of the hardware simulator
and thereby the speed. Obviously, the same procedure
could be applied to interpretive simulators. However, in
the case of compiled simulators the selection can be done
already at compile-time, and no run-time overhead for
selecting the appropriate hardware model is introduced.

Table 2 presents some simulation results. The ex-
ample is taken from the front-end of a speech proces-
sing device. It consists of an FIR �lter executing on a
DSP processor, and external acquisition hardware. If
the state of the hardware is updated at each clock tick

using the same hardware model hook, the resulting speed
of the compiled HW/SW co-simulator is 89.0K insns/s.
Using the ADSP-21xx interpretive simulator delivering
4.0K insns/s the resulting HW/SW co-simulation speed
would be only 3.8K insns/s. Attaching di�erent hard-
ware model hooks to di�erent instruction instantiations,
the simulation speed was raised to 1.1M insns/s with the
SS-21xx compiled simulator, and to only 4.2K insns/s
with the interpretive one.

When the hardware models are written in C, the
hooks are simple calls. However, when the models are
written in HDL, the hooks are more complicated. They
must synchronize SuperSim to the HDL simulator and
also convert data values before and after communicating
with the HDL simulator.

Our simulator o�ers full debugging support using the
standard C level debugger (e.g. dbx or gdb). It o�ers
breakpoint setting and watching of registers, memory,
ags, stack and pins. This is a large advantage compa-
red to standard interpretive debuggers which are highly
target dependent. Figure 3 shows an example of the gra-
phical user interface of the dbxtool debugger which was
adapted to execute C code of the simulator, and in the
same time display assembly instructions of the target or
the C code of the simulator. As soon as the simulation
program reaches the clock-cycle hook, the same debug-
ger which was used for software debugging switches to
the code describing the behavioral model of the attached
hardware.

Debugging of software and hardware with a standard
source-level debugger is one of the main advantages of
the compiled technique over the standard interpretive
approach. If behavioral models of the hardware are ex-
pressed in C, and if the C language is used for the inter-
mediate representation of the software model, compiled
simulation seems to be the optimum solution for comfor-
table debugging of HW/SW co-designs.



simulator model insns(cycles)/s

SW only (ADSP-21xx) interpretive ISA 4.0 K
SW only (SS-21xx) compiled ISA 2.5 M
HW only behavioral C 93.0 K
HW/SW (ADSP-21xx) code-independent HW model 3.8 K
HW/SW (SS-21xx) " 89.0 K
HW/SW (ADSP-21xx) code-dependent HW model 4.2 K
HW/SW (SS-21xx) " 1.1M

host: Sun-10/64MB; SS-21xx ags: -f; compiler: gcc 2.5.8; optimization -O3

Table 2: HW/SW Co-Simulation - FIR Filter with Acquisition Hardware.

Figure 3: Debugging with SuperSim.

VII. Conclusions and Further Research

Compiled simulation provides very fast and accurate in-
struction set simulation. The presented simulation envi-
ronment generates bit-, cycle-, and pin-accurate HW/SW
co-simulation engines that are two to three orders of
magnitude faster than interpretive simulators. Moreo-
ver, standard source level debuggers o�er a comfortable
debugging environment and the intermediate represen-
tation in C is open for extensions by the designer. The
presented compiled simulator is easily interfaced to beha-
vioral hardware models. In addition to fast simulation,
it o�ers a comfortable debugging environment in which
hardware and software are debugged using the same de-
bugger.

Currently, recompilations (with SuperSim) after de-
sign changes are relatively slow. Though recompilation
will always take additional time relative to interpreta-
tion, we believe that we can reduce the time by limiting
recompilation only to code that has changed. Moreover,

a SuperSim-interpreter hybrid, in addition to alleviating
the problems of indirect delayed branches, can provide
fast simulation speed, as well as fast turn-around time
on design changes.

We are also investigating two key problem areas in
interfacing SuperSim to hardware simulators: how ac-
curate do we need to model the processor pin interface.
With behavioral models, we have idealized the processor
interface to a small set of pins: the data, the address,
and interrupt request lines, but not detailed handsha-
king signals. With more detailed hardware models, ho-
wever, it may be advantageous to use a detailed proces-
sor interface that simulates all pins accurately. We are
investigating the attachment of commercially-available
processor-interface models to SuperSim.
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