
RuleBase: an Industry-Oriented Formal Verification Tool

Ilan Beer, Shoham Ben-David, Cindy Eisner and Avner Landver
IBM Haifa Research Laboratory, Haifa, Israel
{beer,shoham,cindye,landver}@vnet.ibm.com

Abstract

RuleBase is a formal verification tool, developed by the IBM Haifa
Research Laboratory. It is the result of three years of experience in
practical formal verification of hardware which, we believe, has
been a key factor in bringing the tool to its current level of maturity.
We present the tool, including several unique features, and summa-
rize our usage experience.

1 Introduction

While formal verification of hardware design is increasingly gain-
ing recognition in the EDA industry, it has not yet penetrated the
standard hardware design cycle. In order to do so, the technology
must be made more accessible to hardware designers and verifica-
tion teams.

This paper describes an industry-oriented tool, called RuleBase, for
formal verification of hardware designs, that was developed with
the intent of bridging the formal verification usability gap. It is a re-
sult of over three years of study and experience in applying formal
verification to industrial designs. RuleBase now offers usability,
capacity and robustness features that make it an industrial-strength
formal verification tool.

RuleBase uses an enhanced version of SMV [McM93] as its verifi-
cation engine, employing the CTL model checking verification
method [CE81]. SMV is an efficient and robust symbolic model
checker, developed by Ken McMillan at Carnegie-Mellon Univer-
sity.

To make RuleBase an industrial tool, significant development ef-
fort has been made in several areas: First, since the temporal logic
CTL is not an easy language for specification by non-experts, Rule-
Base has its own language - Sugar - built on top of CTL, which
makes specification easier. Second, RuleBase supports standard,
commonly used hardware description languages such as VHDL and
Verilog, and operates within various design environments. Third,
debugging tools are provided to aid in the analysis of verification
results. Fourth, RuleBase is highly automated in every aspect of the
verification process, particularly in HDL translation and design size
reduction.

Last but not least, much of the RuleBase development effort has
been put into various techniques to address the state-explosion

problem, thereby increasing the capacity of the tool and enabling
verification of industrial designs. In its current state, RuleBase can
verify design partitions consisting of up to 300 latches of control
logic after reduction. This capacity, coupled with automatic reduc-
tion as a pre-processing phase, supports the verification of even
larger models. Although larger model sizes have been reported in
the past by academic works, these were usually regular repetitive
structures, while in our case designs consist of random logic.

The above properties make formal verification with RuleBase an
effective process. The list of hardware units successfully verified
with RuleBase in IBM includes bus bridges, cache controllers, bus
interface units, and more. Additionally, RuleBase has been used to
formally verify hardware at the architectural level, specifically ver-
ification of cache coherence protocols.

Initial experience shows that after a short training period, designers
can operate the tool independently and achieve impressive results.
The move from the realm of the specialists into that of the general
design community is, we believe, within reach.

The remainder of this paper is organized as follows. Section 2 de-
scribes the RuleBase verification process. Section 3 describes sev-
eral major features of the RuleBase tool. Section 4 compares
RuleBase with related works. Section 5 provides a partial summary
of experience and results of applying RuleBase to various hardware
designs. Finally, Section 6 shortly summarizes the tool, experience
and conclusions.

2 Verification Process

Before describing the RuleBase tool, key steps in our verification
process are presented in order to give the reader a feel of how Rule-
Base is used.

2.1 Design for Formal Verification

The formal verification process can be made more effective if for-
mal verification considerations are taken into account early in the
design cycle. Most of the guidelines focus on design partitioning,
with the goal of isolating pure random logic in blocks of a size suit-
able for formal verification. Because the guidelines conform to
what is common practice in many hardware design methodologies,
they do not put undue restrictions on the design partitioning. The
guidelines are: (1) Separate control from datapath: RuleBase is
most appropriate for the verification of complex control logic,
while datapath is replaced by abstract models. (2) Keep well de-
fined and documented interfaces between partitions to ease the de-
velopment and maintenance of environment models (see below).
(3) Pull asynchronous interfaces to partition boundaries. (4) Prefer
the use of one clock per partition (although multiple clocks can also
be handled).

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

2.2 Environment Modeling

If a design was capable of accepting any possible sequence of in-
puts, formal verification would simply consist of writing specifica-
tions. However, most designs cannot accept arbitrary sequences of
inputs, because designers use knowledge about the expected input
sequences in order to simplify the design.

An environment model is a description of the legal input sequences
to the unit under verification. While test suites used in simulation
describe a subset of the legal input sequences one at a time, an en-
vironment model describes simultaneouslyall and only the expect-
ed behaviors of the unit’s inputs.

2.3 Specification Writing

This process consists of translating the informal specification, usu-
ally written in a natural language, into a set of formal properties rep-
resented in Sugar, the RuleBase specification language. The
informal specification often assumes background knowledge,
which should be expressed explicitly as assertions about signal be-
havior. For example, high-level requirements about cache coher-
ence are translated into claims about status bits of cache lines.

2.4 Debugging

Once the environment has been modelled and the specification cod-
ed, the tool is invoked and produces a “pass” or “fail” for each for-
mula in the specification. In the case of a formula failure, a counter-
example is presented to the user as a waveform, demonstrating an
execution trace where the formula does not hold. The origin of the
failure may be a real design problem, or, often in initial runs, a
wrong formula or an incorrect environment model. In any case, ex-
amination of the counter-example will point to the source of the
problem.

If a formula passes, the results should still be analyzed. It is often
the case that a pass is afalse positive, that is, either the formula is
erroneous or the environment model is too strict and does not model
all possible behaviors of the inputs. RuleBase provides various fea-
tures to aid in the analysis of passes as well as fails (see Section
3.3).

3 The RuleBase Tool

RuleBase uses an enhanced version of SMV as its verification en-
gine. SMV [McM93] was developed by Ken McMillan at Carn-
egie-Mellon University. It is an efficient and robust symbolic
model checker that uses binary decision diagrams (BDD) to repre-
sent the unit under test. The specification language of SMV is CTL.
Our tool, including SMV, provides significant improvement over
the bare engine.

RuleBase supports several hardware description languages and rep-
resentation formats, including VHDL and Verilog, and is easily in-
tegrable into a variety of design environments.

RuleBase has a graphical user interface that allows convenient con-
trol over the formal verification process. The user interface facili-
tates user intervention in the process, while allowing a fully
automated verification when the user selects not to intervene. The
front panel of RuleBase is shown in Figure 1.

Environment models (see Section 2.2) are written in the RuleBase
language, a dialect of SMV which supports multiple environments
(for instance, a read-only environment, a write-only environment

and a read-write environment). This language includes non-deter-
ministic constructs which allow abstraction and thus a compact de-
scription of the full environment’s behavior.

The following subsections describe in detail some of RuleBase’s
primary features, namely the Sugar specification language, mech-
anisms for withstanding size problems, and debugging aids.

3.1 Sugar - RuleBase Specification Language

The SMV model checker uses CTL [CE81] as a specification lan-
guage. CTL was designed to have an efficient model-checking al-
gorithm, and yet be expressive enough to specify important
properties. However, CTL has one big drawback: although its syn-
tax is very simple, its semantics are difficult to learn and master.
Even an expert finds it difficult to understand formulas written by
others.

Sugar - the RuleBase specification language - provides a way for
hardware designers who are not CTL experts to read and write spec-
ifications easily. Sugar is built on top of CTL and includes addition-
al language constructs. These constructs are translated by RuleBase
into CTL and verified using the standard verification algorithms.

Some of the Sugar constructs are described below. More constructs
and details, including the exact semantics and claims about expres-
siveness, can be found in [BBL96].

Within

Experience shows that many design behaviors are repetitive, where
a basic transaction takes place again and again, and properties are
interesting only within the boundaries of a single transaction. The
within operator addresses this issue. Its syntax is“within(start,
end)(Sugar-formula)”, where start andend are Boolean expres-
sions. The meaning is “check the Sugar formula only in time inter-
vals beginning withstart and ending withend”. For example,“AG
within(start, end)(AG (request -> AF acknowledge))” means: “in
all time intervals delimited bystart andend a request must be fol-
lowed by an acknowledge”.

Next-Event

The operator“next_event(p)(q)” has the following meaning: the
next time thatp occurs,q will occur. For example,“AG((request &
requester = high_priority) -> next_event(grant)(granted =
high_priority))” means: “if there is a request from a high-priority
device, then the next time there is a grant, the higher priority device
is the one granted”. Similarly“next_event(p)[n](q)” means thatq
must occur thenth time thatp occurs. For example: “AG(request
-> next_event(data)[4](last_data))” means: “last_data should be
asserted together with the fourth data after a request”. The CTL
equivalent of this formula is:“AG (request -> !E[!data U (data &
EX E[!data U (data & EX E[!data U (data & EX E[!data U (data
& !last_data)])])])])” .

Strong and Weak Operators

Most Sugar operators have two forms: strong and weak. The strong
form requires an event to happen eventually (liveness property),
while the weak form only states that a bad event cannot happen
(safety property). An operator becomes strong by appending a ‘!’
to its name. For example, “next_event!(p)[3](q)” (strong version)
states thatp must happen three times and thenq must hold, while
“next_event(p)[3](q)” (weak version) states that ifp happens three
times thenq must hold.

3.2 Coping with the Size Problem

Symbolic model checking [McM93] addressed the state explosion
problem by using BDDs. While this was a major advance and made
model checking a useful tool for real hardware designs, the size
problem is far from being solved. Much effort has been put into
RuleBase in order to increase its capacity. Some of the methods are
described below:

Automatic, Per-Formula Reduction

Usually, a formula is influenced by only part of the design, while
other parts are irrelevant to its truth or falsity. For example, if the
formula verifies a property of one design output, only this output
and its input cone of logic are necessary. RuleBase identifies unnec-
essary parts and removes them.

Knowing the expected behavior of inputs allows RuleBase to re-
duce the design further. This knowledge is gathered from environ-
ment models which are provided by the user (see Section 2.2). The
technique is most effective when some of the inputs can be assigned
a constant value. This is usually the case with configuration inputs,
or data inputs which have no effect on the control. More reduction
techniques identify equivalent sub-components which may result
from redundant logic or former reductions.

Ordered Partitioned Transition Relation

The technique of keeping the transition relation (TR) partitioned
was presented in [BCL91] and implemented in SMV. Subsequent-
ly, an ordering heuristic for the partitions was described in [GB94].
RuleBase employs these techniques when appropriate. The deci-
sion of when to leave the TR partitioned is based on the ratio of
number of times the TR must be computed to the number of times
it is used. The user can override this decision.

Dynamic BDD Ordering

Since SMV, the verification engine, uses BDDs for Boolean func-
tion representation and for symbolic computations, a good BDD or-
dering is essential. We don’t know of any static ordering algorithm
which produces satisfactory order for the various functions (TR,

Figure 1: RuleBase Front Panel

state-sets, next-state functions, etc.). However, we have found the
dynamic ordering algorithm described in [Rud93] to be very effec-
tive in spite of its simplicity. RuleBase uses a variation of this algo-
rithm, which turns dynamic re-ordering on and off at various points
in the verification process, using heuristic knowledge gained
through experimentation, and controllable by the user. This im-
provement is necessary since the ordering process is time-consum-
ing and must be used carefully.

Checking Safety Formulas On-The-Fly

Formulas belonging to a subset of the CTL logic can be verified
while traversing the reachable state space, without the need for the
full model-checking algorithm. This technique has two advantages:
(1) The state-space search can stop as soon as an error is detected.
(2) If the state-space search is completed without errors, there is no
need to continue. Particularly, there is no need to construct a full
transition relation.

RuleBase can check several safety formulas at a time, producing
counter-examples to those formulas which fail without building the
full transition relation, and continuing to check the rest. If some of
the formulas do not belong to the mentioned subset, RuleBase con-
tinues with usual model-checking.

3.3 Debugging Aids

As mentioned in Section 2.4, verification results should always be
analyzed. In the case of a formula failure, it is obvious that a
counter-example is needed. In the case of a success, it is essential
to verify that the formula really exercised the design, and the result
is not a false positive. RuleBase has various tools to support both
kinds of analysis. Some of these tools are described below.

Timing Diagrams

RuleBase presents counter-examples and witnesses (see below) as
timing diagrams. Given such a timing-diagram, it is easy for de-
signers to locate the problem, since the debugging process is similar
to the one employed in traditional simulation-based verification. If
a diagram is too crowded with signals and transitions, RuleBase can

be asked to explain the counter-example. The explanation points to
the key events (signal, time, value) needed to understand the exam-
ple.

Test Generation

If a user prefers to debug a problem using a simulator, RuleBase
creates a control program (test) for simulation, which is used to re-
produce the error condition.

Witness and Vacuity

When a formula passes successfully, RuleBase tries to produce a
witness: an execution trace that demonstrates a non-trivial path on
which the formula holds. Analyzing a witness may help to discover
unexpected behaviors resulting from over-restriction of environ-
ment models.

If RuleBase fails to find a non-trivial witness, it means that the for-
mula passedvacuously: some of the conditions leading to the point
where the property is to be checked never hold. For instance, in the
case of the formula “if a and then b, c must hold”, it may be the case
that the sequence “a and then b” never happens, so that the formula
passes vacuously. In this case, RuleBase produces an explanation
that tells which is the first condition that is not met. In the example
above, RuleBase indicates whether a or b is never met.

Formula Explanation and Warnings

 It is often the case that verification fails because the formula, rather
than the design, is incorrect. Although Sugar specifications are con-
siderably more clear that CTL formulas, it is still possible to make
an error. The most common error is using temporal operators inside
conditions, which usually means something different than what the
user intended to say.

RuleBase has two solutions to aid the identification of such cases:
it produces warnings when it finds “suspicious” formulas, and it can
translate a Sugar formula to an English explanation. Several formu-
lation problems have been detected by comparing this explanation
with what the user had in mind

4 Comparison to Related Works

Formal verification has recently become a topic of much interest in
the electronic design community. However, one should distinguish
between the different categories of formal verification techniques.
Several tools provide equivalence checking between implementa-
tion levels, which is important by itself, but is totally different from
the functional verification that RuleBase provides. Other tools em-
ploy theorem proving techniques, which are more powerful than
(propositional) model checking and can probably handle larger de-
signs, but these tools demand users to invest much effort in close
guidance of the proof process, contrasted to the fully automated
model-checking.

Model checking as a technique for hardware verification has been
studied in academia at U.C. Berkeley using HSIS [Azi94] and at
Carnegie-Mellon University using SMV [McM93]. Several case
studies of formal verification in an industrial environment have
been published in the past few years [Cla93] [Lon93] [CYF94]
[EM95] all of which used SMV as their model checker. These pa-
pers, in addition to demonstrating the use of model checking, offer
some helpful suggestions and insights as to how to overcome size
and expressibility problems. All of these case-studies were done by
formal verification experts, rather than by designers. RuleBase’s in-

tention is to make model checking accessible to the general design
community.

Two model checking tools that have been published in the past year
are Verdict [PP95] and CVE [BLPV95]. Both are integrated into
the design environment in the sense that they accept standard lan-
guages (Verilog and VHDL, respectively). Verdict, like RuleBase,
is based on SMV, while CVE has an independent model-checker. It
is difficult to compare capacity without the aid of a benchmark, thus
we can not give a good comparison on this important issue. Never-
theless, as RuleBase is able to deal with 300 state variable designs,
we believe that its capacity is at least comparative with other model
checking tools. RuleBase’s specification language, Sugar, is theo-
retically equivalent in expressive power to the CTL used by SMV,
and thus is equivalent in expressive power to Verdict and more ex-
pressive than CIL used by CVE. However, many properties (i.e.,
next_event) are so difficult for the non-expert to express in CTL as
to make Sugar more expressive than CTL for all practical purposes.
In addition, RuleBase’s debugging aids in the form of support for
witnesses to correct formulas and vacuity checking are, we think,
unique.

5 Experience

First and foremost, the development of RuleBase has been driven
by practicality considerations, namely, capacity, robustness and us-
ability. To ensure that the development of RuleBase maintains
these requirements, the tool has been used in various verification
projects throughout its development. The experience gathered in
these verification projects has been applied to adjust and refine the
tool and its usage methodology so as to better match the verification
challenges.

Since 1993, we have used RuleBase to verify many hardware units,
both at the architectural and the implementation level. Part of this
usage experience is detailed below.

5.1 Experience in Design Verification

RuleBase has been applied in the unit verification of various de-
signs in IBM. In this context, the design is essentially an implemen-
tation of an architecture, and is checked against a set of rules
derived from the architecture specification. Each unit is verified
separately, and is occasionally further divided into its constituent
blocks, due to size limitations. Typically, a unit subject to formal
verification consists of many state machines, some of which are
quite large, which communicate with one another. The control logic
underlying these state machines is complex and error prone. Data
also exists in the form of queues, buffers and arrays.

A hardware unit is presented to RuleBase as an RTL description in
some HDL. RuleBase performs automatic, per-formula reductions
of the unit under verification, thereby scaling down the size by fac-
tor of 2 to 10. RuleBase can model-check designs whose size - in
reduced form - is some 300 state variables (inputs or latches). In
pre-reduction terms, the size of the largest unit verified by Rule-
Base is up to a few thousands of state-variables of control logic.

Following is a partial list of the units which were formally verified
using RuleBase:

1. PCI bus bridges, including PCI-to-MicroChannel, PCI-to-
ISA, PCI-to-VESA and PCI-to-PCI bridges [BB+95]. For each
bus bridge dozens of PCI rules were written and verified.
These included the full PCI specification (basic transfers,

command usage, termination types, arbitration, signal stability,
exclusive access etc.) as well as many implementation-level
rules (e.g. performance). The following are two sample rules
used in these projects:

 - “In fast back-to-back transactions, the first transaction must
be a write command”.

- “A PCI slave should not disconnect (STOP#) after FRAME#
has been de-asserted”.

The formal verification of these units has revealed nearly 200
bugs - including several deadlocks. Three of the chips were
fully functional at first silicon realization; the other two were
fully functional at second silicon realization. A summary of
using RuleBase in the verification of these designs can be
found in [BB+95].

2. An X86 bus interface unit. Rules were written to verify the
X86 bus protocol, transaction initiation and completion, split
cycles, queue entry, queue promotion, snooping, pipelining
and others. Two sample rules used in this project are:

- “Writeback cycles and locked cycles are never pipelined.”

- “If a snoop hits an address that is in the writeback buffer
before the last BRDY of that writeback, then HITM should be
asserted 2 clocks later”.

The verification of this unit employed a phased methodology
where global properties have been verified in the complete unit
only after a detailed verification of its constituent components.
Nearly 70 bugs have been found by RuleBase in this unit; first
silicon realization is functional and currently being tested.

3. An on-line L2-cache for a PowerPC processor. In this unit,
formal verification has focused on three key blocks, namely
the Processor Interface Unit, the System Interface Unit and the
Cache Control Unit. Rules were written to verify the bus
protocol, MESI states, data ordering, cache coherency, snoop
logic, locked transfers, queuing mechanisms, command
priorities, burst transfers, split cycles and others. The
following are sample properties verified in this project:

- “If a read is requested to an address that already resides in the
writeback buffer, do the writeback first”.

- “If a system snoop-and-invalidate hits a line in the L2 cache,
then the L2 cache must send a snoop and invalidate of the
same address to the L1 cache”.

Nearly 70 bugs were detected by RuleBase in this unit, which
is a significant fraction of the design bugs found altogether
with simulation.

Details of several verified units of the above projects are summa-
rized in table 1.Size Before Reductionis the total number of latches
and inputs in the design unit.Size After Reduction is the resulting

number of state variables (actual reduction depends on the verified
formula; we selected the largest representatives).

To summarize our experience, RuleBase has proven to be an ex-
tremely successful tool for unit-level design verification. As such,
it has been integrated into the verification methodology of the VLSI
department in IBM Haifa Research Laboratory (HRL), and is ap-
plied to practically all verification projects in HRL. Other IBM de-
velopments laboratories are currently considering the integration of
RuleBase into their design methodologies.

In addition, in the last year we have started to support RuleBase as
a tool used directly by designers and verification teams rather than
by specialists. Initial experience shows that they can independently
use the tool to good effect after a short training period.

5.2 Experience in Protocol Verification

In addition to unit-level verification of hardware designs, RuleBase
has also been applied to the verification of protocol specifications.
In this type of application, the model under verification is not an
HDL description to be verified against a specification. Rather, it is
the protocol specification itself that is modeled and validated
against its required properties. Protocol verification is not restricted
to the unit-level, since the protocol can be modeled at a high level
of abstraction. Thus formal verification of protocol specifications
can be applied to system-level models.

RuleBase has been applied to the formal verification of two cache
coherency protocols. In the first project, a 3-level directory-based
MESI cache coherence protocol was modelled and verified. For-
mal verification found a number of holes in the specification of the
request queue protocol which caused deadlocks in the system. In
the second project, a distributed shared-memory MESI cache co-
herence protocol linking a number of tightly-coupled multi-proces-
sors was verified. Formal verification found two holes in the
specification resulting in deadlocks in the system, and one coher-
ence violation resulting from a very specific sequence of events.

In both projects, the model was coded in the RuleBase language,
environments were developed and rules were written, including
cache coherence rules, deadlock-freedom rules, MESI rules and
correct response to processor requests. The formal verification ef-
fort revealed subtle specification bugs which would almost certain-
ly not have been found using simulation.

In previous work [EM95] on protocol verification, only AG EF
rules were used for verifying the absence of deadlocks. However,
our experience has shown that both AG EF and AG AF rules are
needed. AG AF rules are needed because a bug in the environment
model can cause state machines to non-deterministically return to
the idle state, which will allow AG EF rules to pass even if the pro-
tocol contains a deadlock. On the other hand, AG AF rules are not
sufficient, because they require fairness which, if not carefully

Unit
Size Before
Reduction

Size After
Reduction

Effort
(years)

#Bugs

A 1500 150 1.0 69

B 800 140 0.5 68

C 810 215 0.5 20

D 1200 330 0.5 20

Table 1. Implementation Verification Summary (partial)

used, has the potential to mask out the very problems that the rule
is trying to discover [Lon93], p. 65. Also, they do not verify that ev-
ery state is reachable from every other state. Therefore, both AG AF
deadlock rules as well as AG EF deadlock rules are required in or-
der to ensure absence of deadlock.

We have found RuleBase to be a valuable tool for the verification
of real-life protocol specifications. If applied early enough, this
kind of verification can save much effort by preventing the realiza-
tion of wrong protocols. Additionally, the formal model developed
for the protocol verification has applicability in later design stages,
including (1) serving as a basis for actual hardware implementation
and (2) laying out a framework for coverage-driven test generation
for simulation.

6 Summary

Formal verification in an industrial design environment is fast be-
coming a reality. The most important aspects of a commercial for-
mal verification tool are capacity and ease of use. Three years of
experience and development have brought the RuleBase tool to ma-
turity in both aspects. First, its capacity is up to 300 state variables,
and up to a few thousand before automatic reduction. Second,
RuleBase includes a variety of features to ease its use in a standard
design environment: automatic translation from commonly used
HDLs, an easy to use specification language, and many debugging
aids. As a result, we believe that model checking technology has fi-
nally reached the point where hardware designers and verification
teams can use formal verification as part of the standard hardware
design cycle without the intensive aid of specialists in formal tech-
niques.

7 Acknowledgments

We thank Danny Geist, Gavin Meil, Wayne Nation, Ram Ragha-
van, Bruce Singer, Yakov Zandman, and the designers of the Haifa
Design Group, whose cooperation contributed to the maturity of
RuleBase. We also thank Yaron Wolfsthal, Raanan Gewirtzman
and Aharon Aharon for supporting this work.

References

[Azi94] A. Aziz et al., “HSIS: A BDD-Based Environment for
Formal Verification”, DAC’94, pp. 454-459.

[BB+94] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman and M.
Yoeli, “Methodology and System for Practical Formal
Verification of Reactive Hardware”, CAV’94, LNCS
818, pp. 182-193.

[BB+95] I. Beer, S. Ben-David, C. Eisner, Y. Engel, R.
Gewirtzman, and A. Landver, “Establishing PCI
Compliance using Formal Verification: a Case Study”,
Intl. Phoenix Conf. on Comp. and Comm. 1995.

[BBL96] I. Beer, S. Ben-David, and A. Landver, “Sugar:
Syntactic Sugaring of CTL Formulas as a Productivity
Aid to Formal Verification”, in preparation.

[BLPV95]J. Bormann, J. Lohse, M. Payer and G. Venzl, “Model
Checking in Industrial Hardware Design”, DAC’95, pp.
298-303.

[BCL91] J. Burch, E. Clark and D. Long, “Representing Circuits
More Efficiently in Symbolic Model Checking”,

DAC’91, pp. 403-407.

[CYF94] B. Chen, M. Yamazaki and M. Fujita, “Bug
identification of a Real Chip Design by Symbolic Model
Checking”, Proc. European Design and Test
Conference, 1994, pp. 132-136.

[CE81] E. Clarke and E. Emerson, “Design and Synthesis of
Synchronization Skeletons using Branching Time
Temporal Logic”, in proc. Workshop on Logics of
Programs, LNCS 131, pp. 52-71, 1981.

[Cla93] E. Clarke et al., “Verification of the Futurebus+ Cache
Coherence Protocol”, Proc. 11th Intl. Symp. on
Computer Hardware Description Lang. and their
Applications, 1993.

 [EM95] A. Eiriksson and K. McMillan, “Using Formal
Verification/Analysis Methods on the Critical Path in
System Design: A Case Study”, CAV’95, LNCS 939,
pp.367-380.

[GB94] D. Geist and I. Beer, “Efficient Model Checking by
Automated Ordering of Transition Relation Partitions”,
CAV’94, LNCS 818, pp. 299-310.

[Lon93] D. Long, “Model Checking, Abstraction and
Compositional Verification”, Ph.D. Thesis, CMU, 1993.

[McM93]K. McMillan, “Symbolic Model Checking”, Kluwer
Academic Publishers, 1993.

[PP95] B. Plessier and C. Pixley, “Formal Verification of a
Commercial Serial Bus Interface”, International
Phoenix Conference on Computers and
Communications, 1995, pp. 378-382.

[RB] RuleBase Formal Verification Tool: User’s Manual,
IBM Science and Technology, Haifa Research
Laboratory, contact: beer@vnet.ibm.com.

[Rud93] R. Rudell, “Dynamic Variable Ordering for Ordered
Binary Decision Diagrams”, ICCAD’93, pp. 42-47.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

