
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Formal verification of PowerPCTM arrays using symbolic trajectory evaluation �

Manish Pandey1 Richard Raimi2 Derek L. Beatty2 Randal E. Bryant1

1School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213
2Motorola Inc., 6501 William Cannon Drive West, Austin, TX 78735.

Abstract

Verifying memory arrays such as on-chip caches and register
files is a difficult part of designing a microprocessor. Current tools
cannot verify the equivalence of the arrays to their behavioral or
RTL models, nor their correct functioning at the transistor level.
It is infeasible to run the number of simulation cycles required,
and most formal verification tools break down due to the enormous
number of state-holding elements in the arrays.

The formal method of symbolic trajectory evaluation (STE) ap-
pears to offer a solution, however. STE verifies that a circuit
satisfies a formula in a carefully restricted temporal logic. For
arrays, it requires only a number of variables approximately loga-
rithmic in the number of memory locations. The circuit is modeled
at the switch level, so the verification is done on the actual design.

We have used STE to verify two arrays from PowerPC micro-
processors: a register file, and a data cache tag unit. The tag unit
contains over 12,000 latches. We believe it is the largest circuit to
have been formally verified, without abstracting away significant
detail, in the industry. We also describe an automated technique
for identifying state-holding elements in the arrays, a technique
which should greatly assist the widespread application of STE.

1. Introduction

In this paper we report on using Symbolic Trajectory Evaluation
(STE) to verify on-chip memory arrays from PowerPC microproces-
sors. Arrays include circuits such as multi-ported register-files, in-
struction and data caches and cache tag units. These circuits typically
consist of a Static Random Access Memory (SRAM) core embed-
ded within complex logic. Such units are generally designed at the
transistor-level and have non-trivial internal timing, including self-
timed components.

Verification of on-chip arrays has been a weakness in the verifi-
cation strategies of many companies. Behavioral or RTL models of
arrays are usually simulated as part of the full-chip verification effort.
These simulation results then need to be related to the actual array im-
plementations. In recent years, formal verification tools for comparing
RTL models to gate level netlists have come into widespread use[7].
Most use Ordered Binary Decision Diagram (OBDD) representations

�This research is sponsored by the Wright Laboratory,Aeronautical Systems Center,Air
Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA)
under grant number F33615-93-1-1330 and in part by a grant from Motorola Inc.

0

of Boolean functions [4], and utilize the canonicity of OBDDs to de-
termine equivalence. It is now common in the industry to simulate
at the RTL level, and depend on such Boolean comparison tools to
guarantee equivalence of lower-level implementations.

Arrays have not fit well into this strategy, however. Translating
transistors into combinational logic and latches can fail to capture the
complex timing in arrays. The state explosion problem poses a greater
difficulty, however. Arrays contain enormous numbers of storage
elements, and a Boolean comparison tool will naively attempt to build
OBDDs of functions which depend on all the storage bits. This is
usually not feasible.

Recently, at the joint IBM-Motorola PowerPC microprocessor de-
sign center, Somerset, the formal verification technique of Symbolic
Trajectory Evaluation (STE) has been applied to arrays. STE offers
the following advantages:

1. Array properties can be verified using a number of variables
approximately logarithmic in the number of array nodes, ame-
liorating the state explosion problem.

2. STE tools utilize switch-level simulation, allowing accurate mod-
eling of actual transistor behavior.

3. Arrays usually have concise, well-understood specifications.
STE tools can directly verify adherence of the transistor or RTL
model to these specifications.

We used the Voss STE system [11] in our work. Voss provides a
powerful, functional language interface to the STE verifier, called FL.
FL is a strongly-typed polymorphic functional language, similar to ML
[9]. Voss represents Boolean functions with OBDDs, making Boolean
function manipulation particularly fast and convenient.

2. Preliminaries

STE [10] is a descendant of symbolic simulation [5]. A symbolic
simulator propagates symbolic variables through a circuit network, in
addition to logic constants. For symbolic simulation to be efficient, a
compact format for Boolean functions is needed. The development of
Ordered Binary Decision Diagrams (OBDDs) in the late 1980’s pro-
vided such a format [4]. With that advance came the desire to integrate
symbolic simulation with a rigorous, formal proof procedure. Bryant
and Seger developed the theory of Symbolic Trajectory Evaluation
towards that end [10].

In STE, properties of circuits are expressed in a restricted temporal
logic. Formulae in the underlying logic can be simple predicates (e.g.,
’node x is 1’) or conjunctions of these. Such formulae can be operated
on by a next time operator (e.g., “node x is 1 on the next time step”), or
qualified by domain restriction (e.g., “node x is 1 when function E is
true”). These latter are also formulae. An assertion is an implication
between two formulae.

1

WADR0[0:4]

WE0

DIN0[0:31]

R31

R3

R0
R1
R2

R4

TR3

TR0 READ
PORT 3

WRITE
PORT 0

WRITE
PORT 1

READ
PORT 0

READ
PORT 1

READ
PORT 2

READ
PORT 4

RE4

WRITE
INHIBIT

TGPR_WR

TGPR_RD

READ_CLK

WRITE_CLK

RADR0[0:4]

DOUT0[0:31]

RE0

WADR1[0:4]

DIN1[0:31]

WE1

RADR1[0:4]

DOUT1[0:31]

RE1

RADR2[0:4]

DOUT2[0:31]

RE2

RADR3[0:4]

DOUT3[0:31]

RE3
RADR4[0:4]

DOUT4[0:31]

Figure 1: Multi-ported Register File Unit.

STE provides an algorithm for proving such assertions valid. It is
a model-checking algorithm, in that it checks whether a system is a
model of an assertion in the logic. However, it should not be confused
with CTL model-checking [6]. STE lacks the expressiveness of CTL,
e.g., eventuality properties are not expressible, nor is existential path
quantification available. Use of STE is limited to applications wherein
the properties to be verified are expressible in its (rather limited) logic,
and, in addition, the set of starting states for the verification can be
safely assumed to be reachable states. Unlike CTL model-checkers,
STE tools do not calculate the reachable state set of a circuit. For
arrays, these restrictions are acceptable. It is generally sound to as-
sume that array nodes can hold arbitrary bit combinations. And, even
in cases where this is not so, the state invariants can usually be man-
ually derived and the array properties verified under these invariant
conditions. Additionally, the behavior of memories can generally be
expressed in the STE logic.

To use STE, properties of circuits are expressed as assertions of
the form A =) C , where A is termed the antecedent, and C the
consequent. Intuitively, the antecedentdefines initial settings and input
stimuli, while the consequent defines expected results. The symbolic
simulation engine simulates the symbolic patterns of the antecedent,
and simulation results are compared to the consequent.

The intuitive sense of STE is that it proves that the behavior exhib-
ited by symbolic simulation of the antecedent is one of the possibly
many behaviors consistent with the consequent, proving this for any
assignment of values to the variables involved. The reader is referred
to [10] for more detail.

3. PowerPC array circuits

The first circuit we verified was a relatively simple multi-ported
register file unit of a PowerPC microprocessor. The second circuit is
the tags unit for a data cache circuit from a recent PowerPC design.

3.1. Multi-ported register file

Figure 1 shows a high-level view of the register file, which has 2
identical write ports and 5 identical read ports. When READ CLK is
high, the register file does a read operation and when WRITE CLK
is high, the register file does a write operation. The READ CLK and

mvtag0 mv mvtag1 tag2 mvtag3 LRU

mvtag0 mv mvtag1 tag2 mvtag3 LRU

mvtag0 mv mvtag1 tag2 mvtag3 LRU

mvtag0

SNOOP_REQ

mv mvtag1 tag2 mvtag3 LRULOAD_REQ

STORE_REQ

INDEX[0:6]

RESET

control
other

signals
TAGIN[0:19]

STAT[0:1]

WW[0:1]

CLK1

CLK2

HIT

4-way COMPARATOR + LOGIC

set127

set0
set1
set2

HITWAY[0:1] DIRTY TAGOUT[0:19]

LRU

UPDATE

Figure 2: Data Cache Tags Unit

the WRITE CLK signals are mutually exclusive. The environment
guarantees that the two write addresses are always different.

The register file contains 36 registers of 32 bits each, arranged in
two banks, R0-R31 and TR0-TR3. During a write operation, when
TGPR WR is low, the writes go to one of R0-R31 as specified by the
5-bit address for each write port. When TGPR WR is high, the writes
go to one of TR0-TR3 based on the two least significant address bits.
The environment is supposed to keep the middle address bit (bit 2) at
0, when the TGPRs are to be written. WRITE INHIBIT when high
prevents any writes from occurring. Also, each port has a write enable
signal (WE0, WE1).

The read ports also have read enable signals (RE0,..., RE4). When
TGPR RD is low, the five address bits select a register from the first
bank. When TGPR RD is high, the lowest two address bits select a
register from the second bank, and bit 2 of the address must be low for
the read to be successful. If a read does not occur on a port, or if bit
2 of the address is high when TGPR RD is high, then the port’s data
output stays precharged high.

3.2. Data cache tags unit

The data cache tags (DTAG) circuit, shown in figure 2, contains
128 4-way-associative sets. Each set contains 4 tags of 20 bits each,
and each tag has one valid and one modified (dirty) bit. Also, each
set contains 6 least-recently-used (LRU) bits which record the access
history of its four ways.

In a typical operation, a 7-bit index at the INDEX input selects one
of the 128 sets, and the 20-bit tag at TAGIN is compared in parallel with
all four tags in the selected set. If a tag matches, then the HIT signal
goes high and the LRU bits are updated to reflect that the matched way
is most recently used. HITWAY indicates which of the four ways is
hit. If none of the four tags match, the HIT signal remains low, and
the least recent tag appears at TAGOUT (for cache replacement).

Other important operations are the reset and the tag write operations.
In the reset operation, the RESET signal resets the DTAG unit by
zeroing all valid, modified and LRU bits. In the tagwrite operation,
the tag value at TAGIN and the valid and modified bit values at STAT
are written into a way selected by WAYSEL of a set specified by
SLOW INDEX.

j

Register R i
(antecedent)

u

Register R i

Register R i

v

u

u

v

Register R

ASSERTION

(Dout0=u)

(ReadEn0=1)

(TGPRRead=0)

(ReadAdr0=i)

(op = Read)

NODE VALUE and TIMING PHRASE

READ_CLK

WRITE_CLK

(antecedent)

iRADR0

EN0

TGPR_RD

DOUT0

(consequent)

(consequent)

NODE
CIRCUIT

(R[i]=u)
in antecedent
(TR[n]=v)
in antecedent

(R[i]=u)
in consequent

(TR[n]=v)
in consequent

Figure 3: Implementation mapping for the register-file.

4. Verification methodology

In verifying the arrays, we structured our specifications into 2 parts:
a set of high level assertions over an abstracted system state, and an
implementation mapping that relates that abstracted state to circuit
state. The set of assertions is defined by the set of operations that
the array can perform. Each assertion gives the conditions required
for doing one operation, and the conditions guaranteed as a result of
it. The implementation mapping converts the abstracted state into
constraints on signals in the circuit over time. Structuring specifica-
tions in this way keeps the most critical part of the specification—the
abstract description of the desired behavior—simple, clear, and free
of implementation-specific details. This methodology [1, 2] is not
directly supported by Voss. However, we disciplined our use of the
FL language to write our specification in a hierarchical manner and
separated the abstract assertions from the implementation mapping.

Each abstract assertion is a symbolic expression of the form

Antecedent
LEADSTO

=) Consequent. The Antecedent specifies the cur-
rent state of the abstract machine and the current inputs. The Conse-
quent specifies what the outputs and new state of the machine should
be, after the abstract machine makes a transition.

For example, the abstract assertion for a read operation at port 0 of
the register file (see Section 3.1) is

(Op = Read) ^ (R[i] = u) ^ (TR[n] = v) ^ (1)

(ReadAdr0 = j) ^ (TGPRread = 0) ^ (ReadEn0 = 1) (2)
LEADSTO

=)

(R[i] = u) ^ (TR[n] = v) ^ (3)

(when(i = j)(Dout0 = u)) (4)

The antecedent says that a read operation is being performed, register
Ri contains the symbolic value u, register TRn contains the value v
(line 1), the read address is the symbolic value j, the first register bank
is being read, and reading is enabled (line 2).

In the consequent, line 3 states that the register values remain un-
changed in the read operation e.g. if register Ri contains the value

u initially, after a read operation at some address j, Ri still contains
u. In line 4, we verify that the read operation results in the correct
data value being sent to the output. When Ri contains u, and the
read address is j, we are interested in checking the output for data u,
only when (i = j), which is expressed by the when condition. Using
symbolic values i, j, u, n, and v allows us to cover all pertinent cases
with such an assertion.

The implementation mapping, illustrated in figure 3, expands such
an assertion to include details of the circuit implementation, such as
the timing of state, IO, and clock signals. It maps the value of each
component of the abstract state (for example, ReadAdr0) onto the
values of one or more specific circuit nodes at specific times. For
example, the figure shows how (op = Read) in the abstract assertion
translates to the READ CLK signal making low to high and then high
to low transitions during specified times, and the WRITE CLK signal
staying low.

Note that the variables i, n, and j in the assertion are used as ar-
ray indices. The implementation mapping represents each of them
in binary form as a word of symbolic Boolean variables. From the
antecedent fragment R[i] = u, the implementation mapping will ini-
tialize each RAM storage node s in the register file with a symbolic
ternary function

fs(i; u) =

�
u; if i = s

X; otherwise

where X is the ternary constant of switch-level simulation. This
technique, called symbolic indexing [3], is critical to the efficiency
of STE on arrays [1, pp. 161–163]. It is responsible for reducing
the number of variables STE considers to a number approximately
logarithmic in the number of array locations.

5. State node identification

In order to apply the methodology above, it is necessary to expose
the internal circuit state to the implementation mapping. In the register
file, for instance, the internal state consists of the registers in both
register banks. In the DTAG circuit, the states which we need to
expose are all the tag, valid, modified, and LRU bits.

We worked with flat transistor netlists in which it was not imme-
diately obvious if a given node was a memory storage node, and if
so which location it represented. To address this, we created an auto-
mated state node identification method [8] which identifies the storage
nodes in a SRAM array. This method does a write operation with
symbolic data and address, resulting in a unique symbolic indexing
function being exhibited on each memory storage node. Searching the
circuit nodes for these ternary functions yields all the storage nodes
and the memory locations they represent. This technique made it pos-
sible to identify the state nodes in the register file and the tag, valid
and modified bits in the DTAG circuit.

Since the LRU state nodes can not be written to directly by using
the regular DTAG operations, the above technique needed extension.
The LRU bits can be reset to all zeros or they can change as a result
of a tag operation to reflect the past memory access pattern. We
made use of this property to put unique symbolic values on the LRU
nodes by symbolic simulation. The LRU bits were first reset, and then
we performed a two DTAG operations such that a symbolic way w

(encoded with Boolean variables w1 and w0) was accessed in the first
operation, and symbolic way v (encodedwith Boolean variables v1 and

mapping

Transistor-level
model

Implementation

to exe translator

SPECIFICATION
(with STE engine)

FL interpreter

HDL Model

HDL to exe
translator

Abstract
assertions

IMPLEMENTATION

switch-level

Figure 4: Tool organization for our verification experiments.

v0) was accessed in the second operation. This put unique symbolic
Boolean values (Boolean functions of w1, w0, v1 and v0) on all the
six LRU bits of a set. From our knowledge of how the LRU bits get
updated when a DTAG operation occurs, we were able to identify all
the LRU bits of all the sets.

6. Experiments and results

In the discussion that follows, all assertions will be written in a form
of FL pseudo-code. This pseudo-code gives the flavor of FL, while
being more readable.

6.1. Tool organization
The FL interpreter shown in figure 4 includes a STE engine which

can accept STE assertions. As described in section 4, we structured
our specification as abstract assertions and implementation mapping,
both described in the FL language. This specification was converted
into STE assertions by the interpreter. The interpreter accepts hard-
ware designs in the :exe format [11], which essentially describes the
hardware as a set of excitation functions for the circuit nodes. We
converted our transistor-level designs to the :exe format by using a
translator included with the Voss system. An internal HDL is used to
describe hardware design at the RTL level. In order to run STE on the
RTL designs, we built a HDL to :exe translator.

6.2. Creation of a switch-level model
A prerequisite to running STE on a transistor circuit is an accurate

switch-level model. The default transistor strengths and node sizes
used in our circuit design methodology are often sufficient to run
switch-level simulation, but not for RAM core sense amps and some
precharged circuits.

To run Voss on our circuits we had to translate our schematics into a
flat netlist format. For the register file circuit, no manual intervention
was necessary to create an accurate switch-level model. The DTAG
circuit, however, having sense amps and non trivial internal timing,
including self-timed components, required some hand modeling. Voss
allows back-annotating circuit nodes with delay values, and we found
this very useful for creating the DTAG switch-level model. We also
religiously avoided the use of transistor directions, preferring instead
to model current paths by increasing the number of strength levels. We
avoid transistor directions because they can mask real circuit behavior,
and consequently, real circuit bugs. It was necessary, in places, to
increase the number of transistor strength levels by hand, to solve
modeling problems.

6.3. Register file
To verify the register file, we wrote six assertions. Five describe the

read operation at each of the five read ports, and the sixth describes the
register-file write operation. The assertions to verify the read operation
are similar to the one described in section 4. Each assertion also
includes the enable signalReadEn0, and verifies that the outputs have
the correct value for both high and low values of this signal. Details
of the write operation assertions appear below. The implementation
mapping is very similar to the illustration of Figure 3.

6.3.1. Write operation
The register file has two write ports which can update the registers

in parallel. The assertion describing the write operation appears below.
It shows a subsetof the various possible combination of control signals
for write.

(R[i] = u) ^ (TR[n] = v) ^ (5)

(writePort0(j;x;wen0))^ (writePort1(k;w;wen1)) ^ (6)

(TGPRwrite = twr) ^ (writeInhibit = winhibit) (7)
LEADSTO

=)

(when(writeNone)(R[i] = u)) ^ (8)

(when(writeNone)(TR[n] = v)) ^ (9)

(when(twr)(R[i] = u)) ^ (10)

(when(:twr)(TR[n] = v)) ^ (11)

:::

(when(i 6= j ^ i 6= k ^write01 gpr)(R[i] = u)) ^ (12)

(when(i = j ^ i 6= k ^write01 gpr)(R[i] = x)) ^ (13)

(when(i 6= j ^ i = k ^write01 gpr)(R[i] = w)) (14)

writeNone = :(wen0 _wen1) (15)

write01gpr = :winhibit ^wen0 ^wen1 ^ :twr (16)

Lines 5 through 7 are the antecedent. Line 5 states that initially
register Ri contains the symbolic value u and register TRn contains
the symbolic value v. A write operation is done at write port 0 with
symbolic address j, symbolic data x and the write enable for the port
set to symbolic value wen0 (line 6). Similarly, a write is done at write
port 1, with address k, data w and write enable wen1. Finally, the
symbolic value twr controls which of the two banks the writes go to
and, winhibit when true inhibits all writes.

To make the consequent more readable, we have used the ab-
breviations writeNone and write 01gpr. These have been de-
scribed in terms of the symbolic variables in lines 15 and 16.
writeNone describes the condition that writes to both ports are dis-
abled. write01 gpr describes the condition when writes through both
ports are enabled, and the writes go to the first bank of the register file.

The consequent consists of lines 8 through 14. Lines 8 and 9
express the condition that when both write ports are disabled, all the
registers remain unchanged. When writes are done to the second bank
of registers, the first bank remains unchanged (line 10), and vice-versa
(line 11). When register i contains the value u initially, and write
addresses at both ports do not match i, then the value of register i
remains unchanged (line 12). If i matches the address at the first write
port (i = j), but not the second port (i 6= k), then register i gets
updated to the data at the first port (line 13). Since, it is specified that

write addresses at the two ports will not be the same, we do not check
the results of write when the write addresses match, i.e. i = j = k.

6.3.2. Resource requirements
The verification of the register file takes a total of 267 seconds (on

a IBM RS6000/580) for the complete set of assertions and generates a
maximum of 8875 OBDD nodes. Voss used 31 MB of memory; 21 MB
was used to represent the circuit nodes, and the excitation functions,
and the rest was taken up by OBDDs and other run-time structures
created by the FL interpreter.

6.4. Data cache tags
The data cache tags unit can do the following operations on any

clock cycle – reset, load request, store request, snoop kill, snoop flush,
tag refill, and status write. The assertions for some of these operations
are described below.

6.4.1. Reset operation
The reset operation resets the tags unit by zeroing all the valid,

modified and LRU bits. This can be succinctly expressed by the
following assertion:

(op = reset)
LEADSTO

=) (V [i][w] = 0) ^ (M [i][w] = 0) ^ (L[i] = 0x00)

6.4.2. Tag write operation
In this operation, tag bits and valid and modified (status) bits are

written to a given way of a set. As a result of the write the LRU bits get
updated to make the written way the most recent way. This operation
can be specified by the assertion below.

(op = tagwrite) ^

(T [i][w] = t) ^ (V [i][w] = v) ^ (17)

(M [i][w] = m) ^ (L[i] = l) ^ (18)

(writeindex = wi) ^ (writeway = ww) ^ (19)

(writetag = wtag) ^ (writestatus = wstat) (20)
LEADSTO

=)

(when(wi 6= i _ww 6= w)

((T [i][w] = t) ^ (V [i][w] = v) ^ (M [i][w] = m))) ^ (21)

(when(wi = i ^ww = w)

((T [i][w] = wtag) ^ (V [i][w] = wstat[0])^

(M [i][w] = wstat[1])))^ (22)

(when(wi 6= i)(L[i] = l)) ^ (23)

(when(wi = i)(L[i] = update(l; ww))) (24)

In the antecedent, lines 17 and 18 show the initial system state. They
state that the tag value, valid bit and modified bit of the ith set and the
wth way are t, v and m respectively. It also states that initially the
LRU bits of the ith set is l. The next two lines show that tag value
wtag and the status bits wstat are written to set wi and way ww.

As a result of the tag write, the tag, valid and modified bits of the
addressed way get updated and all other ways remain unchanged. This
is shown in lines 21 and 22. Line 24 shows that for an addressed set,
the LRU bits get updated to reflect access to wayww, and they remain
unchanged for a set that is not addressed (line 23).

The status write operation is very similar to the tag write operation
– the only difference is that tags bits are not written during a status
write.

6.4.3. Load request operation
For verifying the load request operation we wrote two assertions.

The first assertion shows that if the initial machine state is
(T [i][0] = t0) ^ (T [i][1] = t1) ^ (T [i][2] = t2) ^ (T [i][3] = t3)^
(V [i][0] = v0)^ (V [i][1] = v1)^ (V [i][2] = v2)^ (V [i][3] = v3)^
(M [i][0] = m0) ^ (M [i][1] = m1) ^ (M [i][2] = m2)^
(M [i][3] = m3) ^ (LRU [i] = l),
and a load request is done with an index value of i and the tag input is
tagin, then one of the following two things happen:

1. One of the four ways hit:
For example, way 0 hits when t0 = tagin, and the valid bit
for way 0, v0, is true. The LRU bits get updated to reflect that
way 0 was most recently accessed, and all other state bits remain
unchanged. The HIT output becomes true, HITWAY becomes
00 to reflect that way 0 has been hit, and at the dirty bit output,
the value of m0, the dirty bit of way 0, is written out.

2. None of the ways hit: In this case all the state bits remain un-
changed, and the dirty and the tag bits of the way to be replaced
(least recently used way) are written out.

Certain combinations of state bit values are forbidden in this circuit.
For instance, in a set no two tags can match, and it is assumed that
the environment always maintains this state invariant by not writing
in matching tag values Similarly, only certain combinations in the
LRU bits are legal, and only these represent valid LRU information.
All the DTAG actions above have been verified under these invariant
conditions. A second assertion verifies that the tag, valid, modified
and the LRU bits for a set that is not indexed remain unchanged in
a load operation. Store request and snoop operations have not been
described here, but they are very similar to the load request operation.

6.4.4. Resource requirements
The verification of the DTAG circuit takes about 10 minutes (on a

IBM RS 6000/580) for the most complex of the assertions (e.g., the
store request assertion) and generates 110,000 OBDD nodes. Voss
used 150 MB of memory (of which 103 MB is to represent the circuit).

6.5. Bugs
In the process of verification, no bugs were found in the actual,

register-file circuit. The designer did, however, test our methods by
making two copies of the design, inserting a bug into one copy, and
seeing if our tool could find it (it did). In addition, we translated
and ran Voss on the RTL version of the register file, and found that
it did not obey the specification. The “misbehavior”, however, was
in an underspecified area: when addressing a register in TR0-TR3,
the specification states that the two most significant address bits were
don’t cares. However, the simulation model went into an error state if
1’s were asserted on these lines, and this was detected by a failure of
our assertion, in Voss. The transistor netlist under the same conditions,
completed the write (and the same assertion passed). This difference
was detected, and showed the power of STE methods. It did not affect
correct modeling of the register file inside the larger chip, however,

since the surrounding circuitry to the register file did, in fact, keep
these bits low during writes to TR0-TR3.

Two actual bugs were discovered in the DTAG circuit. The first
bug, a serious functional error, was known beforehand, but its nature
was kept secret from the person running the STE verification. This
bug was due to a transistor “sneak path” (i.e., a signal running in an
unexpected direction) in the “hit” detection circuitry of the DTAG.
This error was masked in regular verification process because of the
assignment of directions to transistors. In addition, it is not clear if
the appropriate digital vector would have been found to reveal it, had
the directions not been applied. A single symbolic simulation vector,
used during creation of the switch-level model, brought out this bug.
This bug had already been fixed, in a later version of the circuit than
the version upon which we were working.

The second bug was discovered when an assertion for what is called
the status-write operation failed. Tracing the cause of the failure
revealed that the LRU bits had not been updated, contrary to the
specification. The LRU bits determine which line in a cache set
will be replaced, in the event the set becomes full and a new line
must be brought in. Faulty LRU bits merely cause discrepancies
in performance (the line replaced may be the one most needed, for
instance). This makes bugs in LRU bits difficult to find in digital
simulation, unless one specifically monitors these bits on a cycle by
cycle basis.

6.6. Debugging

In our verification effort, we needed switch-level debugging capa-
bilities for two separate tasks, initially to create the switch-level model
of the DTAG circuit, and later to trace the causes of assertion failures.
Voss proved to be a good tool for both tasks.

For creating a switch-level model, we used Voss as a symbolic
simulator, with assertions that had the circuit stimulus as the antecedent
and an empty consequent. Using a mix of symbolic and constant
stimulus values proved valuable in tracing signals and determining
which part of a circuit was not correctly modeled. Symbolic ternary
functions which appear on circuit nodes give a wealth of information
on circuit operation because they represent the result of many different
simulation cases runs at once.

When an assertion fails, STE returns a Boolean function of symbolic
variables in the assertion which indicates the reason for the failure. Any
assignment to the symbolic variables which makes the Boolean func-
tion false is a counter- example. We used this information to substitute
constants for some of these variables in these failing assertions. With
fewer symbolic variables, it is easier to understand symbolic values
that appear on circuit nodes, simplifying the task of tracking down
problems.

7. Conclusion

We have found STE to be a powerful method for verifying on-
chip memory arrays, and Voss to be a flexible tool. Our results are
encouraging and have reinforced our belief that the logic of STE is
sufficient for specifying properties of data-intensive systems. We have
verified circuits with a rigor not possible by conventional simulation.
We detected design errors and specification ambiguities that were non-
obvious, and traced their cause with ease—all with a remarkably small
expenditure of memory storage and CPU time.

An important side effect of this effort is that the assertions now
serve as design documentation. The HDL description, often claimed
as the circuit specification, is not really a specification. It is an im-
plementation of that specification. The assertions generated for using
STE come much closer to capturing the design intent.

We look forward to working, in the future, on fashioning STE into
an easy to use tool for arrays. We anticipate working on a simplified,
array-specific user interface, and on better automation for switch level
modeling.

8. Acknowledgments

Our thanks go to Carl Seger, who answered our questions on Voss
and added some features for us, to Brian Branson, Paul Reed, Mike
Brauer and Cody Croxton, for helping us understand the circuits we
verified, and to Scott Butler, Charlie Malley and Hemendra Talesra
who helped define sensible goals for our verification effort.

References

[1] D. L. Beatty, “A Methodology for Formal Hardware Verification
with Application to Microprocessors,” Ph.D. Thesis, published
as Technical report CMU–CS–93–190, School of Computer Sci-
ence, Carnegie Mellon University, August 1993.

[2] D. L. Beatty and R.E. Bryant, “Formally verifying a micropro-
cessor using a simulation methodology,” DAC, 1994.

[3] D. L. Beatty, R.E. Bryant, C. J. H. Seger, “Synchronous circuit
verification by symbolic simulation: an illustration,” Advanced
Research in VLSI: Proceedings of the 6th MIT Conference, pp.
98–112, MIT Press, March 1990.

[4] R. E. Bryant, “Graph-based algorithms for Boolean function ma-
nipulation,” IEEE Transactions on Computers, C-35(8), August,
1986

[5] R. E. Bryant, “Symbolic simulation—techniques and applica-
tions,” DAC, 1990.

[6] E. M. Clarke, E. A. Emerson, A. P. Sistla, “Automatic verifi-
cation of finite-state concurrent systems using temporal logic
specifications,” ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

[7] A. Kuehlmann, A. Srinivasan, D. P. LaPotin, “Verity—a formal
verification program for custom CMOS circuits,” IBM Journal
of Research and Development, 39(1/2), January/March 1995.

[8] M. Pandey,R. E. Bryant, “Memory array state node identification
tool,” accepted for publication in Motorola Technical Develop-
ments, Motorola Inc.

[9] L. C. Paulson. ML for the Working Programmer. Cambridge
Univ. Press, 1991.

[10] C. J. H. Seger, R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods in
System Design,6:147–189 (1995).

[11] C. J. H. Seger, “Voss—a formal hardware verification system:
user’s guide,” Technical Report 93-45, Department of Computer
Science, University of British Columbia, 1993.

PowerPC is a trademark of the International Business Machines Corporation.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

