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Abstract
The success of binary decision diagram (BDD) based algorithms
for verification depend on the availability of a high performance
package to manipulate very large BDDs. State-of-the-art BDD
packages, based on the conventional depth-first technique, limit the
size of the BDDs due to a disorderlymemory accesspatterns that re-
sults in unacceptably high elapsed time when the BDD size exceeds
the main memory capacity. We present a high performance BDD
package that enables manipulation of very large BDDs by using
an iterative breadth-first technique directed towards localizing the
memory accesses to exploit the memory system hierarchy. The new
memory-oriented performance features of this package are 1) an
architecture independent customized memory management scheme,
2) the ability to issue multiple independent BDD operations (super-
scalarity), and 3) the ability to perform multiple BDD operations
even when the operands of some BDD operations are the result of
some other operations yet to be completed (pipelining). A compre-
hensive set of BDD manipulation algorithms are implemented using
the above techniques. Unlike the breadth-first algorithms presented
in the literature, the new package is faster than the state-of-the-art
BDD package by a factor of upto 1.5, even for the BDD sizes that
fit within the main memory. For BDD sizes that do not fit within the
main memory, a performance improvement of up to a factor of 100
can be achieved.

1 Introduction
The manipulation of very large binary decision diagrams (BDDs) [1]
(for BDD related terminology, please refer to [2]) is the key to
success for BDD-based algorithms for simulation, synthesis, and
verification of integrated circuits and systems [3]. Conventional
BDD algorithms are based on a recursive formulation that leads to
a depth-first traversal of the directed acyclic graphs representing the
operand BDDs. A typical recursive depth-first BDD algorithm is
shown in Figure 1. The depth-first traversal visits the nodes of
the operand BDDs on a path-by-path basis. The large in-degree
of a typical BDD node makes it is impossible to assign contiguous
memory locations for the BDD nodes along a path. Therefore,
the recursive depth-first traversal leads to an extremely disorderly
memory access pattern.

In a typical computer system, the memory is organized hierarchi-
cally with smaller, faster, and more expensive (per byte) memory
closer to the processor [4]. A simplified memory hierarchy con-
sists of processor registers, several levels of on- and off-chip caches
(SRAM), main memory (DRAM), and a hard disk. When the BDD

�Supported by Micro Grant
ySupported by Motorola and SRC Grants

0

df op(op,F ,G)
if (terminal case(op,F , G)) return result;
else if (computed table has entry(op,F , G)) return result;
else

let x be the top variable of F , G;
T = df op (op,Fx , Gx );
E = df op (op,F

x
0 , G

x
0 );

if (T equalsE) return T ;
result = find or add in the unique table (x, T , E);
insert in the computed table ((op,F , G) , result);

endif
return result;

Figure 1: Depth-First BDD Manipulation Algorithm

size exceeds the capacity of a given level in the memory system,
the disorderly pattern of the depth-first algorithms translates to a
severe performance penalty. When the BDD size exceeds the cache
size, a slowdown by a factor of 2-10 may be observed due to a high
cache miss rate. When the BDD size measured in the number of
memory pages exceeds the number of translation look-aside buffer
(TLB) entries, a further slowdown may be observed. However, the
most dramatic degradation in performance is observed when the
BDD size exceeds the main memory size; the depth-first algorithms
thrash the virtual memory leading to unacceptablyhigh elapsed time
even though the amount of CPU time spent doing useful work is
low. Therefore, the depth-first algorithms place a severe limit on
the size of the BDD that can be effectively manipulated on a given
computer system.

To a first approximation, the performance of BDD manipulation
algorithms is dominated by the performance and capacity of each
level in the memory system hierarchy. Hence, the design of high
performance BDD algorithms require a careful consideration of
memory related issues. We presenta new BDD package that enables
manipulation of very large BDDs by directing the iterative breadth-
first technique towards localizing the memory accesses to exploit
the memory system hierarchy. Our novel contributions are:

� data structures and memory management techniques to pre-
serve the locality of reference,

� a technique to perform multiple, independentBDD operations
simultaneously (superscalarity), and

� a technique to perform multiple BDD operations even when
the operands of some BDD operations are the result of some
other BDD operations yet to be completed (pipelining).

Superscalarity and pipelining are targeted towards deriving higher
performance from the memory system hierarchy by exploiting the
locality of reference in the memory access pattern across several
BDD operations.

The rest of the paper is organized as follows. In Section 2, we
discuss the breadth-first manipulation algorithm and describe the
related work. In Section 3, we present the concepts of performing
BDD operations in a superscalar and pipelined manner. Section 4



briefly describes how superscalarity and pipelining are exploited
to obtain efficient algorithms for common BDD operations. Ex-
perimental results are presented in Section 5 and conclusions in
Section 6.

2 Breadth-First Technique for BDD Manipulation
Originally proposed by Ochi et al. [5], the iterative breadth-first tech-
nique for BDD manipulation attempts to fix the disorderly memory
access behavior of the recursive depth-first technique. Unlike the
depth-first algorithm that traverses the operand BDDs on a path-by-
path basis, the iterative breadth-first algorithm traverses the operand
BDDs on a level-by-level basis, where each level corresponds to
the index of a BDD variable. The BDD nodes corresponding to a
level are allocated from the same memory segment so that temporal
locality in accessing the BDD nodes for a specific level translates
into spatial locality.

The basic iterative breadth-first technique consists of two phases:
a top-down (from root node to leaves) APPLY phase followed by a
bottom-up REDUCE phase. The algorithm for a two operand boolean
operation is shown in Figures 2, 3, and 4. During the APPLY phase,

bf op(op,F , G)
if terminal case (op, F , G) return result;
min index = minimum variable index of (F , G)
create a REQUEST (F , G) and insert in REQUEST QUEUE[min index];
/* Top down APPLY phase */
for (index = min index; index� num vars; index++) bf apply(op, index);
/* Bottom up REDUCE phase */
for (index = num vars; index� min index; index- -) bf reduce(index);
return REQUEST or the node to which it is forwarded;

Figure 2: Breadth-First BDD manipulation algorithm

bf apply(op, index)
x is variable with index “index”;
/* process each request queue */
while (REQUEST QUEUE[index] not empty)

REQUEST (F , G) = unprocessed request from REQUEST QUEUE[index];
/* process REQUEST by determining its THEN and ELSE */
if (NOT terminal case ((op,Fx, Gx), result))

next index = minimum variable index of (Fx, Gx)
result = find or add (Fx , Gx) in REQUEST QUEUE[next index]

REQUEST! THEN = result;
if(NOT terminal case ((op,F

x
0 , G

x
0 ), result))

next index = minimum variable index of (F
x
0 , G

x
0 )

result = find or add (F
x
0 , G

x
0 ) in REQUEST QUEUE[next index]

REQUEST! ELSE = result;

Figure 3: Breadth-First BDD manipulation algorithm - APPLY

the outstanding REQUESTS are processed on a level-by-level basis.
The processing of a REQUEST R = (op, F , G), in general, results
in issuing two new REQUESTs which represent the THEN and the
ELSE cofactors of the result (F op G). Since certain isomorphism
checks cannot be performed, the result BDD obtained at the end
of APPLY phase has redundant nodes. The REDUCE phase traverses
the result BDD from the leaves to the root on a level-by-level basis
eliminating the redundant nodes.

The APPLY phase of the algorithm needs to determine the indices
of cofactor nodes in order to appropriately determine the index of
the new REQUESTs (see underlined in Figure 3). In order to preserve
the locality of references, it is important to determine the variable
index of a BDD node without actually fetching it from memory. In
particular, the routine bf apply called with index i should access
nodes only at index i. Ochi et al. [5] use Quasi-Reduced BDDs
(QRBDDs) to solve this problem. Essentially, pad nodes are intro-
duced along each path of the BDD so that consecutive nodes along
a path differ in their indices by exactly one. This solution also

bf reduce(index)
x is variable with index “index”;
/* process each request queue */
while (REQUEST QUEUE[index] not empty)

/* process each request */
REQUEST (F , G) = unprocessed REQUEST from REQUEST QUEUE[index];
if (REQUEST!THEN is forwarded to T )

REQUEST! THEN = T ;
if (REQUEST!ELSE is forwarded to E)

REQUEST! ELSE = E;
if (REQUEST!THEN equals REQUEST!ELSE)

forward REQUEST to REQUEST ! THEN ;
else if (BDD node with (REQUEST! THEN ,

REQUEST! ELSE ) found in UNIQUE TABLE[index])
forward REQUEST to that BDD node;

else
insert REQUEST to the UNIQUE TABLE[index] with key

(REQUEST THEN , REQUEST ELSE )

Figure 4: Breadth-First BDD manipulation algorithm - REDUCE

localizes memory accesses to check for duplicate requests during
the APPLY phase and redundant nodes during the REDUCE phase.
However, it is observed that the QRBDD is several times larger than
the corresponding BDD [6], which makes this approach impractical
for manipulating very large BDDs. Ashar et al. [6] use a BLOCK-
INDEX table to determine the variable index from a BDD pointer
by performing an associative lookup. Since this solution employs
BDDs (as opposed to QRBDDs), an attempt is made to preserve
the locality of reference during the check for duplicate requests and
check for redundant nodes by sorted accesses to nodes based on
their variable indices. The limitation of this approach is that it has
a significant overhead (about a factor of 2.65) as compared to a
depth-first based algorithm for manipulating BDDs which fit within
the main memory [6].

struct Bdd f
int bddIndex; /* 2 Bytes */
struct BddNode *bddNode; /* 4 Bytes */
g

struct BddNode f
struct BddNode *next; /* 4 Bytes */
struct Bdd thenBdd; /* 6 Bytes */
struct Bdd elseBdd; /* 6 Bytes */
g

Figure 5: BDD and BDD Node Data Structure

Our approach to handling variable index determination problem
differs from the works of Ashar et al. and Ochi et al. in the following
aspects:

1. A new BDD node data structure is introduced to determine the
variable index while preserving the locality of accesses (see
Figure 5. We represent a BDD using fvariable index, BDD
node pointerg tuple. Therefore a BDD node contains pointers
to THEN and ELSE cofactors as well as their variable indices.
Hence we do not need to fetch the cofactors to determine
their indices. Unlike the conventional BDD data structure that
stores its variable index in the BDD node, the new BDD data
structure stores the variable indices of its THEN and ELSE BDD
nodes. The new BDD node data structure is very compact:
on a 32-bit architecture it only requires 16 bytes, which is the
same as the memory required to represent the conventional
BDD node structure.

2. Optimized processing of REQUEST QUEUES for each level by
eliminating the sorted processing of REQUESTs during APPLY
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and REDUCE phases as proposed by Ashar et al. Empirically,
we have observed that this change does not affect the perfor-
mance of our algorithm for manipulating very large BDDs.

3. Use of a customized memory manager to allocate BDD nodes
which are quad-word aligned. The quad-word alignment im-
proves the cache performance by mapping a BDD node to a
single cache line. The customized memory allocator aligns
the BDD nodes to quad-word boundaries so that a total of 12
bits (last four bits of THEN, ELSE, and NEXT pointers) can be
used to tag important data such as complement flags, marking
flags, and the reference count. The tag bits are assigned so as
to minimize the amount of computational overheads.

Since we eliminate the overheads associated with the previous
breadth-first approaches, the new algorithms are faster than cor-
responding recursive algorithms on many examples for which the
BDDs fit in the main memory.

3 Superscalarity and Pipelining
In this section, we propose two new concepts – superscalarity and
pipelining – to optimize the memory performance of the iterative
breadth-first BDD algorithms by exploiting locality of reference
that exists among multiple BDD operations. The concepts of su-
perscalarity and pipelining have their roots in the field of computer
architecture in which superscalarity refers to the ability to issue mul-
tiple, independent instructions and pipelining refers to the ability to
issue a new instruction even before completion of previously issued
instructions. We shall see how these concepts can be applied in the
context of the breadth-first BDD algorithms to exploit the memory
system hierarchy.

To improve the performance of the basic breadth-first algorithm,
we take a closer look at its memory access pattern assuming that
the variable index can be determined without destroying the locality
of references. During the APPLY phase for a specific index, the
following types of memory accesses take place:

1. Accesses to UNIQUE TABLE BDD nodes for that index using
BDD pointers to obtain their THEN and ELSE cofactors.

2. Accesses to each of the REQUEST for that index.

3. Associative lookups in appropriate REQUEST QUEUEs to check
for duplicate REQUESTs.

During the REDUCE phase for a specific level, the following types
of memory accesses take place:

1. Accesses to THEN and ELSE BDD nodes to check for redun-
dancy.

2. Associative lookups in the UNIQUE TABLE for that index to
determine if another node with the same attributes already
exists.

For a very large BDD that exceeds the main memory capacity,
the number of page faults is dominated by the memory accesses to a
large UNIQUE TABLE. The reason for this is that the UNIQUE TABLE

pages are accessed on a level-by-level basis during the APPLY and
the REDUCE phase and the UNIQUE TABLE nodes within each level
are accessed randomly. Superscalarity and pipelining attempt to
amortize the cost of page faults for accessing UNIQUE TABLE pages
for a specific level among several BDD operations.

3.1 Superscalarity
The concept of superscalarity in the context of breadth-first BDD
algorithms refers to the ability to issue multiple, independent BDD
operations simultaneously. Two BDD operations are said to be in-
dependent if their operands are reduced ordered BDDs, i.e. the

nodes for the operand BDDs are in the UNIQUE TABLE. Perform-
ing multiple, independent BDD operations concurrently during the
same APPLY and REDUCE phase amortizes the cost of page faults
for accessing the UNIQUE TABLE entries. By issuing several inde-
pendent operations simultaneously, the number of REQUEST nodes
in the REQUEST QUEUE increases. However, the number of page
faults for accessing UNIQUE TABLE nodes for a specific index does
not increase proportionately; it increases at a lesser rate. Empir-
ically, we observe a significant performance enhancement in the
BDD algorithms by exploiting superscalarity.

Another major advantage of superscalarity is complete inter-
operation caching of intermediate BDD results. A breadth-first
algorithm for a single BDD operation provides complete caching
of intermediate results during the operation by virtue of the RE-
QUEST QUEUE. However, it is not possible to have inter-operation
caching in the breadth-first algorithm without expending additional
memory resources to store the cached results and additional com-
puting resource to manage the complex caching scheme since the
contents of a REQUEST node are destroyed after it is processed in the
APPLY phase and correct result is unavailable until the REQUEST is
processed in the REDUCE phase. Superscalarity provides complete
inter-operation caching for the set of independent BDD operations
that are issued simultaneously, thereby enhancing the performance
of the breadth-first algorithm even further.

3.2 Pipelining
The concept of pipelining in the context of breadth-first BDD al-
gorithms refers to the ability to issue multiple, dependent BDD
operations simultaneously. A BDD operation op1 is said to be de-
pendenton anotherBDD operation op2 if the result BDD ofop2 is an
operand of op1. The pipelining algorithm issues several dependent
operations simultaneously using unprocessed requests to represent
operands for the dependent operations. The result BDDs for these
requests are obtained by a single APPLY and REDUCE phase that
amortizes the cost of page faults for accessing the UNIQUE TABLE

entries.
We make the following three observations that allow us to process

a set of dependent requests in a single APPLY and REDUCE phase.
The first observation is related to the nature of the breadth-first
iterative algorithm. There is a one-to-one correspondence between
requests processed and the nodes in the unreduced BDD created
during the APPLY phase. In fact, a processed request with THEN

and ELSE pointers pointing to newly issued requests corresponds to
the BDD node in the unreduced BDD obtained at the end of the
APPLY phase. The second observation is related to manipulating
unreduced BDDs. If bi; i = 1; : : : ; n are unreduced BDDs, then
result BDD b obtained by performing a boolean operation with
operands bi is an unreduced BDD. The important point here is that
operand BDDs for a boolean operation can be unreduced. The third
observation is related to processing of requests in the APPLY phaseof
the breadth-first algorithm. In general, while processing a REQUEST,
two new requests are issued. Each of the new request corresponds
to cofactors of the operands that constitute the request. This implies
that we need THEN and ELSE pointers only for the operand with the
minimum index. From these observations, we state the following
theorem without proof.

Theorem 1 Correctness of pipelining: Given REQUEST R1 =
(op1, F1, G1) and REQUEST R2 = (op2, F2, G2) and REQUEST

R = (op, R1, R2), the breadth-first algorithm with modified APPLY
and REDUCE phases, which process the REQUESTS in level-by-level
orderwhile maintaining the partial order implied by the dependence
of REQUESTS for that index, correctly computes the reduced BDDs
corresponding to the REQUESTS R1, R2, and R.

The concept of pipelining improves the performance of the
breadth-first algorithm by amortizing the cost of page faults across
dependent BDD operations. However, pipelining results in opera-
tions on unreduced BDDs. Hence, there is an increase in the size
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of the working memory required and corresponding increase in the
amount of computation. If the increase in the working memory is
large, the number of page faults will increase.

Pipelining will improve the amount of caching, since the inter-
mediate BDDs in the dependent operation can use the cached result
of all operations on which the current REQUEST depends directly
or indirectly. However, it introduces the penalty of performing as-
sociative lookups in several REQUEST QUEUEs, which offsets the
potential gain due to improved caching.

3.3 Application
Superscalarity and pipelining find their applications whenever a
set of dependent and/or independent BDD operations needs to be
performed. In this section we describe how these techniques are
used in creating output BDDs of a circuit.

In many logic synthesis and verification applications we need to
compute the BDDs for the outputs of a circuit. Given a network
representing a circuit, we try to compute the function of the outputs
in terms of the primary inputs. This requires computing the function
of nodes of network starting from the primary inputs to primary
outputs. Pipelining and superscalarity can be employed to compute
the output BDDs in several ways. Our algorithm is as follows:

1. Decompose the given network into two input NAND nodes.

2. Levelize the nodes of the new network.

3. Create the BDDs for nodes belonging to a particular level
concurrently (using superscalarity), or

4. Create the BDDs for nodes belonging to two or more levels
using pipelining.

The motivation behind decomposing the network into NAND nodes
is to obtain as much superscalarity as possible. In Section 5 we
provide experimental results indicating the effect of superscalarity
and pipelining on creating the output BDDs.

4 Optimized BDD Algorithms
We have incorporated iterative breadth-first technique, superscalar-
ity, and pipelining into a comprehensive set of high performance
BDD algorithms for boolean operations such as AND, OR, XOR,
NAND, NOR, XNOR, ITE, COFACTOR, RESTRICTION, COMPOSI-
TION, SUBSTITUTION, EXISTENTIAL QUANTIFICATION, UNIVERSAL
QUANTIFICATION, RELATIONAL PRODUCT, and VARIABLE SWAP-
PING. Each of these new algorithms raises specific issues which
must be addressed to obtain a high performance BDD package. In
Section 5.4, we demonstrate the performance of our algorithms. In
this section we describe one of these algorithms.

Existential Quantification: EXISTENTIAL QUANTIFICATION of
a function f with respect to a variable x is given by 9xf =

fx + fx0 . EXISTENTIAL QUANTIFICATION of a function f with
respect to a set of variables X = fx1; x2; : : : xng, is given as,
9X f = 9xn (9xn�1 � � � (9x1f)). The conventional depth-first algo-
rithm for EXISTENTIAL QUANTIFICATION is given in Figure 6. One

df exist(F )
if (terminal case(F )) return result;
if (computed table has entry(F )) return result;
let x be the top variable of F ;
T = df exist(Fx);
if (x is to be quantified andT == 1) return 1;
E = df exist(F

x
0 );

if (x is to be quantified) return df or(T , E);
else result = find or add in the unique table (x, T , E);
return result;

Figure 6: Depth-First Algorithm for Existential Quantification

salient feature of the algorithm for QUANTIFICATION is that only one

cofactor needs to be processed in some cases. As seen in Figure 6,
if the top variable of the function is quantified, then we need not
process the negative cofactor if the result of the positive cofactor is
the constant 1 (as underlined in the figure). This feature is distinct
from most of the other BDD operation algorithms. However, this
optimization requires traversing the BDD on a path-by-path basis.
A straight forward breadth-first implementation that processes both
the cofactors in the APPLY phase will incur the overhead of unnec-
essary computations. Hence, it is imperative to adopt a strategy
which benefits not only from the regular memory access due to the
level-by-level manipulation of the BDDs, but also minimizes the
overhead of unnecessary computations.

We propose a new mixed breadth- and depth-first approach to
overcome this problem. In this approach, we process the REQUESTs
differently depending upon whether the corresponding variable in-
dex is quantified or not. For REQUESTs belonging to quantified
variables, we process both the cofactors. However, for REQUESTs
belonging to remaining variables, we do a path-by-path traversal,
i.e., we process just one of the cofactors. In the REDUCE phase,
we process the REQUESTs belonging to the indices which are not
quantified in the same manner as given in bf reduce (Figure 4).
However for variable indices which are to be quantified, we process
the REQUESTs differently. If the result of the positive cofactor is the
tautology then that node is forwarded to the constant One. Other-
wise, we proceed to find the result of the other cofactor and take the
“OR” of the results of the two cofactors. We employ superscalarity
in finding the “OR” of the cofactor results for nodes belonging to a
particular level.

5 Experimental Results
We integrated our package with the synthesis tool SIS [7]. In ad-
dition to using standard ISCAS and MCNC benchmark examples
for the set of experiments, we use a series of sub-networks of the
MCNC benchmark C6288 in order to systematically analyze the
performance of our algorithms as BDD size increases. These artifi-
cially created examples have the property that the number of BDD
nodes needed to represent the BDDs corresponding to the outputs
are roughly multiples of one million. This enabled us to illustrate
the gradual change in various performance metrics with the change
in example size. These examples are denoted as “C6288 iM.blif”,
implying that the total number of BDD nodes in the manager after
computing the BDDs for the outputs of C6288 iM.blif is i millions.

For each of the benchmark examples, we create the BDDs for
the outputs of the circuit using “dfs-ordering” in SIS to order the
variables. We use these output BDDs as argument BDDs in our
experiments. For instance, to compare the performance of the AND
operation, we iteratively select random pairs from the output BDDs
and compute the AND of the pair. Similarly, to compare the perfor-
mance of QUANTIFICATION operation, we select one of the output
BDDs randomly and also randomly select a set of variables to be
quantified. Functions and the variables selected are the same for
both the packages.

We made “black box” comparison with best reported BFS algo-
rithm [6] on Sun Sparc2 workstation with 40MB main memory. Our
approach is faster by a factor of 4.4 (geometric mean) for creating
output BDDs for C6288 subcircuits with one to seven million nodes.
The performance improvement is mainly due to new implementa-
tion technique, superscalarity, and pipelining. Unfortunately, it was
impossible to eliminate the difference in variable ordering, which
may have some effect on performance, since we did not have access
to their source code.

The following experiments were performed on a DEC5400 with
128KB processor cache, 64MB main memory and 1GB of disk
storage.

5.1 Creating Output Bdds For Circuits
In Table 1 we present the performance comparison for creating
output BDDs for large examples. We observe that when the number
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Effect of Example Size on Number of Page Faults
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Figure 7: Variation of Elapse Time and Number of Page Faults with Example Size

CPU Time Elapsed Time # Page Faults
Example # Nodes A B A B A B

C6288 1M 1,001,855 112 98 127 110 0 0
C6288 2M 2,066,878 273 215 403 306 0 0
C6288 3M 3,123,327 491 347 21281 1218 502059 17800
C6288 4M 4,273,510 820 490 106110 2433 2661738 42509
C6288 5M 5,337,005 t.o. 631 – 4140 – 80621
C6288 6M 6,381,496 – 804 – 6295 – 126977
C6288 7M 7,489,064 – 981 – 8454 – 168794
C6288 9M 9,193,222 – 1147 – 10864 – 213976

Table 1: Performance comparison for creating output BDDs: Long’s
BDD package (A) vs. our package (B)
t.o:Process killed after 21.5 hours of elapsed time.

of BDD nodes becomes too large to fit in the main memory, the
number of page faults and the elapsed time increase drastically for
Long’s package [8]. In Figure 7, we show the number of page faults
and the elapsed time as a function of example size. We observe
that for Long’s package, an increase in the BDD size beyond the
main memory size results in a sharp increase in the number of page
faults and hence excessive elapsed time. This is in contrast to the
page fault behavior of our package which increases linearly with an
increase in the example size.

Table 2 gives the performance of our package on building very

Example # Nodes Elapsed Time # Page Faults

C3540 2:76� 106 25 mins 26603
C2670 10:40� 106 4 hrs 4 mins 58 secs 357005
C6288 12M 12:80� 106 6 hrs 39 mins 54 secs 719697
s38417 23:15� 106 8 hrs 49 mins 26 secs 868442

Table 2: Performance metrics for creating output BDDs for some
very large examples

large BDDs for some benchmark examples. We observe that we
have been able to build BDDs with more than 23 million nodes in
less than nine hours.

5.2 Performance Enhancement Due to Super-
scalarity

We demonstrate the power of superscalarity on three different appli-
cations: creating output BDDs, ARRAY AND, and QUANTIFICATION.

CPU Elapsed # Page Faults
Example w/o SS w SS w/o SS w SS w/o SS w SS

C6288 4M 485.82 436.94 2214 2452 53261 63272
C6288 5M 630.37 602.50 5333 4648 172205 137004
C6288 6M 815.91 724.99 18354 7840 712868 252323
C6288 7M 956.89 831.30 24747 10267 970192 328086

Table 3: Performance improvement using superscalarity for creating
output BDDs

We described in the section 3.3 how superscalarity can be ex-
ploited for creating output BDDs. In Table 3, we show the per-
formance improvement achieved by employing superscalarity. We
observe that in all the cases employing superscalarity results in bet-
ter performance. Also in all the casesexcept C6288 4M, we observe
that the number of page faults decreases with the use of superscalar-
ity and we achieve a better performance by a factor of more than
2.

In Table 4, we present the results on how superscalarity affects

BDD Operation
Array And Quantify

Example CPU Elapsed CPU Elapsed
W X W X Y Z Y Z

C1355 134.03 119.41 137 123 13.40 12.30 13 12
C6288 1M 411.35 403.90 847 740 5.02 4.27 5 5
C6288 2M 290.55 283.41 595 581 18.17 16.16 18 17
s1423 35.39 18.02 37 18 20.63 19.13 31 30
C6288 3M 682.57 655.21 21005 7178 12.60 11.59 13 12
minmax10 810.32 679.88 19304 1619 66.0 55.8 91 81

Table 4: Performance improvement using superscalarity for ARRAY
AND and QUANTIFICATION BDD operations.
W: ARRAY AND performed iteratively.
X: ARRAY AND performed in superscalar manner.
Y: In REDUCE phase of QUANTIFICATION, OR operations performed one be one.
Z: In REDUCE phase of QUANTIFICATION, OR operations performed in superscalar
manner.

the performance of ARRAY AND and QUANTIFICATION. In ARRAY

AND we are given an array of operand BDD pairs and we need
to compute the AND of each of the operand pair. These operands
were randomly chosen from the set of output BDDs of the circuit.
For the quantification operation, we perform OR operations one at a
time during its reduce phase, to illustrate the effect of superscalarity.
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Effect of Pipedepth on Elapsed Time
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Effect of Pipedepth on Number of Page Faults
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Figure 8: Variation of Elapse Time and Number of Page Faults with Pipedepth in Creating Output BDDs

For small circuits, superscalarity improves the performance due to
inter-operation caching. For large circuits, superscalarity improves
the performance due to increased locality to the memory access,
resulting in less page faults. We observe from Table 4 that for ex-
amples which can fit in the main memory, superscalarity helps with
improved CPU time. For large examples we observe a performance
improvement of upto a factor of 10.

5.3 Performance Enhancement Due to Pipelining
We demonstrate the effect of pipelining on the performance of creat-
ing BDD for outputs. We have described in Section 3, how pipelin-
ing technique can be exploited. Figure 8, depicts the effect of
pipedepth on the elapsed time and the number of page faults for
a series of C6288 sub-examples. The pipedepth refers to number
of levels of dependencies. As pipedepth is increased, we see a de-
crease in the number of page faults (hence the decrease in elapsed
time). However, the memory overhead increases with increase in
pipedepth since we are working with unreduced BDDs. Hence,
after a certain value of pipedepth, the decrease in page faults due
to pipelining is offset by the increase in page faults due to memory
overhead. We observe that a pipedepth of four is optimum in most
cases.

5.4 Performance Comparison For Various BDD
Operations

One of our objectives was to provide a comprehensive set of algo-
rithms for all BDD operations. We compare the performance of
some of our algorithms with those of Long’s package for small and
medium sized examples.

All examples considered in small size category have less than
7000 BDD nodes. This implies that with a processor cache size of
128KB, it is possible that all the nodes can reside in the cache if
node addresses are properly aligned. Since our node data structure
is quad word aligned, the node address does not overlap across cache
lines. Hence we can expect a significant cache hit rate during BDD
manipulations. Long’s package,however, doesnot provide the word
alignment and hence it is likely that the BDD node addresses could
overlap across cache lines. We ran experiments to compare the
performances of various BDD operations. We observed a perfor-
mance ratio of 1.92 across all small sized examples and four BDD
operations.

1SwapVars(f;x; y) is a functionobtained from the functionf by replacing variable
x by y and vice-versa.

In Table 5 we provide the performance comparison between pack-
ages for medium size examples. Since the number of nodes are of
the order of tens of thousands to hundreds of thousands, the cache
effect seen for the small size examples is not dominant in this
case. However, in most of the cases, we observe a performance
improvement over Long’s package. Overall performance ratio over
all medium sized examples and across four BDD operations given
in the tables, is about 1.5. The most significant is the relative perfor-
mance on SUBSTITUTE. We observe that on many examples, Long’s
package could not finish the SUBSTITUTION in 10,000 CPU seconds
whereas our package took just about 1000 CPU seconds to com-
plete. This substantiates the significant performance enhancement
using superscalarity as mentioned in Section 4. We notice that
for QUANTIFICATION operation our package consistently performs
worse than Long’s package by up to a factor of 0.6 due to inevitable
managementoverheads of mixed depth-first breadth-first technique.

6 Conclusions and Future Work
We have presented new techniques targeting the memory access
problem for manipulating very large BDDs. These include 1) an
architecture independentcustomized memory managementand new
BDD data structures, 2) performing multiple BDD operations con-
currently (superscalarity), and 3) performing a BDD operation even
when the operand(s) are yet to be computed (pipelining). A com-
plete package consisting of the whole suite of BDD operations
based on these techniques has been built. We demonstrate the per-
formance of our packageby 1) comparing with state-of-the-art BDD
package [8], and 2) performing a comprehensive set of experiments
to substantiate the capability of our approach. We show that our
package provides competitive performance on small examples and
a performance ratio of more than 100 on large examples.

We are in the process of extending the breadth-first manipulation
technique to exploit the memory and computing resources of a
network of workstations efficiently.
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