
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

An E�cient Equivalence Checker for Combinational Circuits

Yusuke Matsunaga

FUJITSU LABORATORIES LTD, Kawasaki 211-88, Japan

Abstract|This paper describes a novel equiv-

alence checking method for combinational cir-

cuits, which utilizes relations among internal sig-

nals represented by binary decision diagrams. To

verify circuits e�ciently, A proper set of inter-

nal signals that are independent with each other

should be chosen. A heuristic based on analysis

of circuit structure is proposed to select such a

set of internal signals. The proposed veri�er re-

quires only a minute for equivalence checking of

all the ISCAS'85 benchmarks on SUN-4/10.

1 Introduction

Although equivalence checking of given two combina-
tional circuits is one of the important problems in CAD
for logic design, it is known to be a co-NP complete prob-
lem. This means there is no hope to develop a complete
algorithm that can solve any equivalence checking prob-
lem e�ciently. Therefore, developing practically good
heuristics for equivalence checking is needed.

Recently, several BDD based methods and ATPG
based methods for equivalence checking have been pro-
posed [1, 2, 3, 4, 5, 6, 7, 8]. They perform very e�-
ciently for some examples, however, for a couple of ex-
amples with thousands of gates, they fail or take hours
to verify. In this paper, we propose a more robust and
e�cient equivalent checking method for combinational
circuits, which is based on BDD manipulation. Experi-
ments of equivalence checking between ISCAS'85 bench-
marks and their non-redundant version show the robust-
ness and the e�ciency of our method. It takes only a
minute to do the whole veri�cation.

The rest of the paper is organized as follows. In
section 2, we summarize previous works on combina-
tional equivalence checking. In section 3, we describe
our method and algorithm. Experimental results are
shown in section 4. And section 5 is the conclusion.

2 Previous works

Binary Decision Diagrams(BDDs) based approach
was proposed by Bryant[1]. This utilizes canonicality
of BDDs to compare two logic functions. Fujita et al.
and Malik et al. proposed heuristics for input variable
ordering based on circuit structure[2, 3]. With these
heuristics, they successfully make BDDs for some of the
ISCAS'85 benchmark circuits' output function. Rudell
proposed a more powerful ordering heuristic, called dy-
namic reordering[4]. Although this takes much time,
good variable orderings for all the ISCAS'85 circuits ex-
cept c6288 are derived. But these methods are not ro-
bust. Like c6288, there exist circuits whose BDD size
grow exponentially to the number of inputs under any
variable orderings. Therefore, a method that represents
output functions using BDDs cannot be a core technique
of combinational equivalence checking. Actually, the
problem representing output functions using BDDs and
equivalence checking problem is not equivalent. There
are many circuits such that their output functions can-
not be represent using BDDs e�ciently, but equivalence
checking of them is easily done.

Practically, there are some similarities between two
circuits to be veri�ed in many cases. So, if we can utilize
such information, the complexity of the problem may be
lowered. Berman and Trevillyan proposed such a frame-
work of equivalence checking method[5]. For example,
suppose two circuits A and B consist of two subcircuits
A-1,A-2 and B-1,B-2, respectively. If we can verify that
A-1 and B-1 are equivalent and A-2 and B-2 are also
equivalent, we can conclude the entire circuits A and B
are equivalent. But the inverse is not true. Consider two
circuits in �gure 1. For the input parts (the left hand
of the dashed line), we can verify s1 and s2 are equiva-
lent and t1 and t2 are equivalent. For the output parts
(the right hand of the dashed line), since x1 = s1 + t1
and x2 = s2 � t2, they are di�erent. From these re-
sults, however, we can not state the two circuits are not
equivalent. Actually, the entire circuits are equivalent,
because s1(s2) and t1(t2) never be 1 at the same time.

Such a case is called false negative. In [5], Berman
only points out the false negative problem, and no con-
crete procedure is shown.

Kunz proposed a powerful indirect implication
method, called the recursive learning, and he applied it
to the equivalence checking[6]. Reddy et al. combined

B
C

A s1

t1

x1
B
C

A s2

t2

x2

Figure 1: An example of the false negative

this recursive learning technique and BDD technique[7].
But their usage of BDDs is not e�ective. In the case of
false negative, an ATPG based justi�cation procedure
is invoked. Generally, such an ATPG based technique
is e�ective for problems that have solutions, but in the
case of false negative, there is no solution, i.e. justi�ca-
tion never succeeds.

Jain et al. proposed another indirect implication
method, called the functional learning, and they also ap-
plied it to the equivalence checking[8]. The functional
learning does similar implication as the recursive learn-
ing, but it uses BDDs to get implications between signal
lines. If a proper cut line is given, the functional learn-
ing can be very e�ective. However, no heuristics on the
cut line selection are given in their paper.

Furthermore, both of the methods of Reddy et al. and
of Jain et al. only use the learning to get internal equiva-
lent pairs. Because of the limitation of the learning (i.e.
the limit of recursive level and the limit of cut line selec-
tion), an equivalent pair may not be found in their learn-
ing phase. Such loss of equivalence information may
degrade the entire performance of equivalence checking,
especially for large circuits. For example, suppose we try
to verify two circuits in �gure 2, and they consist of two
parts, circuit1(circuit1') and circuit2. And suppose cir-
cuit1 and circuit1' are functionally equivalent but have
di�erent structures.

.

.
.
.

.

.

.

.
.
.

.

.

Circuit1

Circuit1’

Circuit2

Circuit2

Prim
ary Inputs

Prim
ary O

utputs

X1

X2

Y1

Y2

Circuit1 and Circuit1’ are functionally
equivalent, but have different structure.

Figure 2: Veri�cation of large circuits

If we can verify circuit1 and circuit1' are equivalent,
we can easily verify the entire circuit, since the out-
put parts of both circuits have the same circuit struc-
ture. However, if learning technique can not prove cir-
cuit1 and circuit1' are equivalent, no equivalent pairs
are found in the output parts even though they have
the same structure, and thus we have to try to verify
the entire circuit. This seems more di�cult than to try
to verify circuit1 and circuit1'. One would say that with
enough limit given, learning can detect all the equiva-
lence pairs. But it is not practical. There is no method
to automatically decide on what may be the su�cient
for each learning. Too strict limit loses some equiva-
lence information, and too loose limit takes much time
and memory.

As shown in this section, potentially, there remains
several points to improve the e�ciency and the robust-
ness of equivalence checking algorithm.

3 The algorithm of equivalence checking

3.1 De�nitions

A Boolean network is a directed acyclic graph,
G = (V;E), representing a combinational circuit of tech-
nology independent level. A vertex v has a logic function
Fv unless v is an primary input. A vertex u that cor-
responds to an input variable of Fv is called a fanin of
v. Inversely, v is called a fanout of u in this case. A
direct edge u! v exists only among such vertices u and
v. We use FIv to represent a set of all the fanins of v,
and we use FOv to represent a set of all the fanouts of
v. Sets of vertices TFIv and TFOv de�ned in the fol-
lowing equations are called the transitive fanins and
the transitive fanouts, respectively.

TFIv = FIv [(
[

u2FIv

TFIu)

TFOv = FOv [(
[

u2FOv

TFOu)

A logic function of vertex v with respect to primary
inputs is called the global function of v, and is denoted
as Gv. Gv is calculated as follows1.

Gv = 9u 2 FIv; Fv ^ (
^

u2FIv

(u � Gu))

If the global function of v and the global function of u
is equivalent, i.e. Gv � Gu, we say v and u are equiv-
alent. A pair of mutual equivalent vertices is called
equivalent pair.

For a vertex v and a subset of its transitive fanins T ,
if any path from an primary input to v contains at least

1
In this paper, a vertex and its corresponding variable are used

interchangeably.

one element of T , such T is called a basis of v 2. A
logic function of v with respect to the vertices in T is
called the local function of v over T , and is denoted as
LTv . L

T
v is calculated in a similar way to the calculation

of Gv. Obviously, for the set of all primary inputs PI,
LPIv � Gv holds for any vertex v.

A network generated from two Boolean networks un-
der checking with connecting corresponding primary in-
puts together is called a composite network(�gure 3).
The equivalence checking problem is a problem to check
whether corresponding primary output pairs on a com-
posite network are equivalent.

Circuit1

Circuit2

Figure 3: Composite network

3.2 Overview of the veri�cation method

We use a general framework like Berman and Tre-
villyan's method[5](�gure 4).

At �rst, random pattern simulation is done on the
composite network, and the list of candidate equiva-
lent pairs(CEP-list) is generated. Next, vertices pair
(v1; v2) is extracted in breadth �rst order from primary
inputs, and veri�cation on that pair is invoked. If that
pair is veri�ed as equivalent, it is added to the list of ver-
i�ed equivalent pairs(VEP list) and reconnection about
the equivalent pair is done. An example of the reconnec-
tion is shown in �gure 5. In this case, vertex (s1; s2) and
(t1; t2) are the veri�ed equivalent pairs. All the fanouts
of s2 and t2 are modi�ed to connect to s1 and t1 in-
stead of s2 and t2, and vertices that have no fanouts
are deleted because they are useless. In this process,
there is a choice which vertex is deleted. In our current
implementation, further vertex from primary inputs is
deleted.

Finally, we check primary outputs pairs are in the
VEP-list.

3.3 Veri�cation of equivalent pairs using
BDDs

To verify a given pair of vertices is equivalent, we
use a BDD based method. As described before, an ap-

2
Exactly speaking, an element of a basis of v need not to be

a member of the transitive fanins of v. But, such an element is

useless for the local functions of v over T .

Start

Do random pattern simulation,
and form CEP list.

Are all candidate
pairs verified ?

yes

no

Verify equivalent pair
(ChkEquiv)

Check primary outputs
pairs are in VEP list.

End

Reconnect verified pair’s
fanouts, and add VEP list.

Figure 4: Flowchart of the veri�cation method

proach that represents global functions using BDDs is
not robust. Instead, we use local functions. If we can
�nd a good basis that does not cause the false negative
problem, equivalence checking is easily done by only cal-
culating local functions of two vertices. Unfortunately,
we can not always �nd a good basis, therefore, some
mechanism is needed to handle the false negative prob-
lem.

For that purpose, we introduce a functional operation
using BDDs, which is called the functional implica-

tion. As the name implies, this is similar to Jain's func-
tional learning[8]. But its purpose and usage are di�er-
ent. In this paper, we de�ne the functional implica-

tion as an operation that derives a combination of val-
ues at a set of vertices T = ft1; t2; : : : ; tng in a Boolean
network from a combination of values at another set of
vertices S = fs1; s2; : : : ; smg. For example, consider the
circuit in �gure 6. Let S = fa; bg and T = fc; d; eg.
With the functional implication we get a combination
of values at T , f(c=1,d=1,e=0),(c=0,d=1,e=1)g, from
a combination of values at S, f(a=1,b=0),(a=0,b=1)g.

Kunz's recursive learning is a kind of constant value
implication, and it does not represent a relation of more
than two vertices like the above example. Jain's func-
tional learning potentially do the same thing, however,

B
C

A s1

t1

x1

B
C

A s2

t2

x2

B
C

A s1

t1

x1

s2

t2
x2

Equivalent

Equivalent

Figure 5: Reconnection

a

b

c

d

e

Figure 6: An example for functional implication

no concrete procedure is shown in the paper. We will
describe how to choose S and T in 3.4.

The concept of the functional implication is not so
novel. If we have the relation R between S and T , the
functional implication can be done using the image com-
putation. More concretely, say FS(S) is the character-
istic function representing a combination of values on
S, and FT (T) is the characteristic function represent-
ing corresponding combination of values on T . FT (T) is
calculated as follows3,

FT (T) = 9s 2 S; (FS(S) ^ (
^

s2S

(s � LTs)))

Recall that LTs is the local function of s over T . The
above calculation is e�ciently done by compose opera-
tion proposed by Bryant[1].

The veri�cation algorithm using this functional im-
plication is shown in �gure 7.

At �rst, S is set to fv1; v2g and FS(S) is set to v1 �

v2. Then we choose a set of vertices T , and do the
functional implication. If v1 and v2 are equivalent and T
is properly chosen, FT (T) becomes �. Otherwise, there
are two possibilities, v1 and v2 are not equivalent or the

3
Through this paper, we assume any member of T is not con-

tained in the transitive fanout of S.

boole ChkEquiv(v1, v2) f
S fv1; v2g;
FS v1 � v2;
while (FS 6= �) f

if (S only consists of PIs) return FALSE;
/* Derive the next vertices Set T from S.*/
T GetT(S);
/* the Do functional implication. */
FT FuncImp(FS);
S T ;
FS FT ;

g

return TRUE;
g

Figure 7: The veri�cation algorithm using functional
implication

false negative occurs. To distinguish these two cases,
T and FT (T) become new S and FS(S), and the new
T is chosen, then the functional implication is invoked.
This iteration continues until FS(S) = � or S becomes a
set of primary inputs. If the former terminate condition
holds, v1 and v2 are equivalent. Otherwise, v1 and v2
are not equivalent.

3.4 Finding good basis

The selection of basis T is essential for e�cient com-
putation of the algorithm in �gure 7(ChkEquiv). If we
choose a set of primary inputs as T , our algorithm is
nothing but the global function based method like [2, 3].
To choose a proper set of vertices, we have the following
observations.

Property-1 If there is no vertex v in T such that v

is contained in more than one transitive fanins of
vertices in S, there is no hope that FT (T) becomes
� 4.
) A vertex that is contained in many transitive
fanins of vertices in S should be selected.

Property-2 The false negative occurs if mutually de-
pendent vertices are selected together into the same
basis.
) A set of mutually independent vertices are suit-
able for basis T .

From these consideration, we developed a heuristic to
derive a proper basis T from S(�gure 8).

In the �rst step, all the vertices in transitive fanins of
S are labeled. For each vertex v, lv records the number
of vertices in S whose transitive fanins contain v. We
want to select a vertex that has high lv value according
to Property-1. To do this, another value, denoted mv is

4
If there are vertices whose values are stuck, it is not the case.

set-of-vertices GetT(S) f
foreach s 2 S f

foreach v 2 TFIs f

lv ++;
g

g

foreach v f

Calculate mv.
g

do f
Clear mark of all vertices.
foreach s 2 S f

Search from s in depth �rst order,
and mark a vertex v such that lv = mv.

g

chg FALSE;
foreach v 2 marked vertices f

n the number of fanins without mark;
if (n � 1) f

lv 0;
chg TRUE;

g

g

g while (chg = TRUE);
return a set of marked vertices;

g

Figure 8: The heuristic to derive a set of vertices

calculated as follows.

mv = max(lv; (max
u2FI

v

mu))

Basically, a vertex v such that mv = lv is a candidate
for the basis. For any primary input v, mv = lv always
holds, therefore, a set of vertex v such that mv = lv
forms a basis.

Next, we adjust candidates according to Property-2.
To exactly know that vertices are mutually independent,
we need to construct the global functions of them. This
is not practical, so we only use structural information for
this adjustment. In general, if a vertex v is contained in
the transitive fanins of a vertex u, u depends on v. Sim-
ply speaking, such a vertex u should be excluded from
the candidates. But we may have to add compensating
extra vertices instead of u to keep the candidates to be
a basis. Because increase of vertices in T tends to dras-
tically increase the size of BDD representing FT (T), we
do not want to add extra vertices. In our current imple-
mentation, a vertex that has at most one compensating
extra vertex is excluded. Exclusion of one vertex a�ects
other vertices' exclude conditions. So, we continue this
adjustment until stable state.

Figure 9 shows an example of derivation of basis T
using this heuristic.

a

b

c
f

h

d

e

g

S

l=1,m=2

l=2,m=2

l=2,m=2

l=2,m=2

l=2,m=2

l=1,m=1

Figure 9: An example for basis selection

At �rst, the transitive fanins of a and b are labeled.
In this example, all the vertices except c and e are con-
tained in both transitive fanins, i.e. lc = le = 1; ld =
lf = lg = lh = 2. Then mv is calculated. f is a fanin
of c and lf = 2, so, mc becomes 2, not 1. For other
vertices, mv is equal to lv. Next, candidates for T is
selected. The �rst candidates are fe; f; d; hg. However,
d has fanins f and h, which are also current candidates.
If we exclude d from the candidates, we must include
g as a compensating extra vertex. Since this exclusion
does not increase the number of vertices in T , we re-
ally exclude d and add g to the candidates. The second
candidates become fe; f; g; hg. There is no dependency
among the current candidates, therefore, these candi-
dates become the �nal result.

4 Experimental results

We have implemented the proposed algorithm in
C++. The followings are the details of implementation.

� As the algorithm ChkEquiv is relatively slow, we
try to verify an equivalent pair �rst using closest
veri�ed equivalent points as a basis. If two local
functions over the basis are equivalent, further ver-
i�cation is not necessary. Otherwise, we invoke the
algorithm ChkEquiv.

� Inversely equivalent pairs (e.g. v1 = v2) are also
considered as well as (true) equivalent pairs. Veri-
�cation can be similarly done.

� Variable ordering is decided by the heuristic in �g-
ure 8 according to the order when marked.

� In the functional implication, vertices in S are
sorted according to the mutual relation that is mea-
sured by the number of common basis vertices they
have. Vertices are processed in this order. This
aims at keeping the intermediate BDD small.

With this equivalence checker, we have some experi-
ments. Table 1 shows the experimental results on SUN-
4/10(90Mbytes memory) using ISCAS'85 benchmarks
and their non-redundant versions (e.g. c432 vs. c432nr).

Table 1: Experimental results

name no. of PIs no. of POs CPU(s)
[7] Ours

c432 36 7 2.2 0.75
c499 41 32 2.17 1.23
c1355 41 32 6.73 3.37
c1908 33 25 14.54 6.21
c2670 233 139 159.3 3.93
c3540 50 22 67.64 17.38
c5315 178 123 372.8 13.96
c6288 32 32 32.74 9.12
c7552 207 108 5583.3 20.62

Similar experiments are done in [7], so we compare
the results although they do not specify what kind of
machine they used. Table 1 shows that our equivalence
checker is quite faster than other existing methods es-
pecially, for c2670, c3540, c5315, and c7552, which are
thought to be relatively di�cult to verify. We also tried
to verify the circuits in [8](FJ1 and FJ2). These two cir-
cuits are subcircuits of another circuit, so, we verify the
whole circuit(i.e. FJ1 + FJ2 + �) in the similar man-
ner to the above experiments. Our equivalence checker
takes 23.4 seconds to verify the circuit, while in [8], the
functional learning based method takes 590+23400 sec-
onds.

Through the above experiments 17244 candidate
pairs were veri�ed. For almost all pairs, the veri�cation
is trivial, i.e. the algorithm ChkEquiv is not invoked.
Only for 206 pairs, the algorithm ChkEquiv is required.
Table 2 shows internal statistics of such di�cult veri�-
cation.

Table 2: Internal statistics of the veri�cation

no. of no. of loops
pairs Ave. Max.

Success 188 1.27 5
Failure 18 2.60 5

The �rst column splits the pairs into to groups, pairs
whose veri�cation succeeded and pairs whose veri�ca-
tion failed. The second column shows the number of
such pairs. Rest of two columns are concerned with the
number of loops in ChkEquiv | the former is the av-
erage number and the latter is the maximum number.
This shows that in the case of successful veri�cation, our
basis selection heuristic in �gure 8 works quite e�ective.
About 75% of the pairs are veri�ed with only one loop.

Recall that ChkEquiv is invoked if a naive checking us-
ing closest equivalent points fails. In the case of failure,
however, any basis selection heuristics does not work
well, since FT (T) never be �. Such non-equivalent pairs
should be excluded by another heuristic.

5 Conclusion

In this paper, we propose an e�cient and robust
equivalence checking method. Our main contribution
is the veri�cation algorithm based on the functional im-
plication and the heuristic to select a set of vertices used
for a basis of the local functions. Experimental results
show the e�ciency of our method in practical �eld. Gen-
erally, BDD based algorithm like ours seems suitable
for solving co-NP complete problem unless the size of
BDDs blows up. On the other hand, verifying given
vertices pair are not equivalent is a NP complete prob-
lem. For such a problem, only one input pattern that
distingushes the two vertices is enough to prove the dis-
crepancy. So, BDD based approach does not seem to be
e�ective. In the experiments described in section 4, al-
most all non-equivalent pairs are �ltered out by random
pattern simulation. However, to make our equivalence
checker more robust, interface with ATPG or structural
based technique is necessary.

References

[1] R.E. Bryant, \Graph-based algorithms for boolean func-

tion manipulation", IEEE Transactions on Computer, C-
35(12), 1986.

[2] M. Fujita, H. Fujisawa, and N. Kawato, \Evaluation and
Improvements of Boolean Comparison Method Based on

Binary Decision Diagrams", In Proc. of ICCAD, pp. 2-5,

Nov. 1988.

[3] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-

Vincentelli, \Logic Veri�cation Using Binary Decision
Diagrams in a Logic Synthesis Environment", In Proc.

of ICCAD, pp. 6-9, Nov. 1988.

[4] R. Rudell, \Dynamic Variable Ordering for Ordered Bi-

nary Decision Diagrams", In Proc. of ICCAD, pp. 42-47,
Nov. 1993.

[5] C.L. Berman and L.H. Trevillyan, \Functional Compar-
ison of Logic Designs for VLSI Circuits", In Proc. of IC-

CAD, pp. 456-459, Nov. 1989.

[6] W. Kunz, \Hannibal: An E�cient Tool for Logic Veri-

�cation Based on Recursive Learning", In Proc. of IC-

CAD, pp. 538-543, Nov. 1993.

[7] S.M. Reddy, W. Kunz, and D.K. Pradhan, \Novel Ver-

i�cation Framework Combining Structural and OBDD
Methods in a Synthesis Environment", In Proc. of 32nd

DAC, pp. 414-419, Jun. 1995.

[8] J. Jain, R. Mukherjee, and M. Fujita, \Advanced Veri�-

cation Techniques Based on Learning", In Proc. of 32nd

DAC, pp. 420-426, Jun. 1995.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

