
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Domain-Speci�c High-Level Modeling and Synthesis for
ATM Switch Design Using VHDL

Mike Tien-Chien Lee, Yu-Chin Hsuy, Ben Chen�, and Masahiro Fujita

Fujitsu Laboratories of America yDept. of Computer Science �Fujitsu Ltd.
3350 Scott Blvd., Bldg. #34 Univ. of California 1015, Kamikodanaka Nakahar-Ku
Santa Clara, CA 95054, USA Riverside, CA 92521, USA Kawasaki 211, Japan

Abstract: This paper presents our experience on
domain-speci�c high-level modeling and synthesis for Fu-
jitsu ATM switch design. We propose a high-level design
methodology using VHDL, where ATM switch architec-
tural features are considered during behavior modeling,
and a high-level synthesis compiler, MEBS, is prototyped
to synthesize the behavior model down to a gate-level
implementation. Since the speci�c ATM switch archi-
tecture is incorporated into both modeling and synthesis
phases, a high-quality design is e�ciently derived. The
synthesis results show that given the design constraints,
the proposed high-level design methodology can produce
a gate-level implementation by MEBS with about 15%
area reduction in shorter design cycle when compared
with manual design.

1 Introduction
ATM (Asynchronous Transfer Mode) has been con-

sidered by telecommunication industry the ultimate so-
lution to the networking requirement for Broadband
ISDN [1]. Among the major components of ATM hard-
ware, the core technology is the ATM switches, which
are capable of sending ATM packets from one end to
the other in a communication network when connected
in a speci�c topology. Due to its short product life cycle
and various demands from di�erent market segments,
current gate or lower level design methodology can no
longer satisfy the stringent time-to-market requirement
for ATM switch design. It has become necessary to ex-
ploit a higher-level methodology which can specify and
synthesize the design from an abstraction level higher
than logic gates. High-level synthesis [2], which takes
an algorithmic speci�cation as input and automatically
generates a register-transfer (RT) level architecture, is
hence considered by Fujitsu ATM switch designers a
promising CAD technology to boost design quality and
shorten development cycle.

There exist several successful high-level synthesis
tools from system companies such as HIS [3] of IBM
and CALLAS [4] of Siemens, and commercial products
such as Behavioral Compiler from Synopsys [5, 6]. But
these tools may not be easily adapted to Fujitsu internal
ATM switch design environment.

Furthermore, in practice, most high-level synthesis
tools are not able to automatically derive a high-quality
ATM switch architecture if the target synthesis domains
are either too general, or too speci�c for another design
style (e.g., DSP �lter). Besides, an arbitrary behav-
ioral model without considering important architectural
features, such as partitioning and pipelining, is also dif-
�cult for general-purpose high-level synthesis to obtain
satisfactory results. It has been observed that although
the design details of ATM switches may change with
the speci�cations, they share similar control-dominated
architectures which contain a simple datapath for bu�er-

ing/transferring high-speed packets and a complex con-
trol path for managing concurrent events in the system.
Therefore, it is essential to exploit such architectural
features to develop a good behavior model for synthesis,
and incorporate these features into high-level synthesis,
which can hence focus on a more speci�c design space
to produce high-quality architectures e�ciently.

This paper reports our experience on VHDL model-
ing and synthesis of Fujitsu ATM switch using high-level
synthesis methodology. We propose a high-level design
methodology by developing a VHDL behavior modeling
scheme suitable for the target ATM switch design, and
prototyping a domain-speci�c high-level synthesis com-
piler to synthesize the developed behavior model. Im-
portant VHDL modeling techniques for the ATM switch,
such as system partitioning for e�cient synthesis, clock
rate conversion for multiple clockings, process communi-
cation using appropriate protocols, and arbitrator pro-
cesses to sequence concurrent signal updates, are dis-
cussed in the paper.

A VHDL high-level synthesis system, called MEBS,
is proposed for domain-speci�c ATM switch synthe-
sis. MEBS synthesizes the developed mixed-level
VHDL model down to a gate-level netlist by perform-
ing scheduling, allocation, and RTL synthesis. It pro-
vides several features which are very useful for our
ATM switch synthesis, such as design space exploration
for multiple processes, module function implementation
for subprograms, and high-level incremental synthesis.
Experimental results show that given the design con-
straints, the proposed high-level design methodology is
able to produce a gate-level implementationusing MEBS
with about 15% area reduction in shorter design cycle
when compared with manual design methodology.

2 ATM Switch Architecture Speci�cation

The system-level architecture of a 2-channel ATM
switch is illustrated using the block diagram in Figure
1. Its major function can be stated as follows: a packet
of words, called a cell, received from one of the two in-
put highways iHW0 and iHW1 is stored in the cell FIFO
at �rst, and will be switched to one of the two output
highways oHW0 and oHW1 according to the routing in-
formation in the cell's header �eld. A cell consists of 27
16-bit words, where the �rst 3 words are the header �eld
containing information of routing, transmission priority,
congesting control, etc., while the remaining words are
the payload �eld for data.

The switch system has two main channels for cell
switching, i.e., two input highways (iHW0, iHW1) and
two output highways (oHW0, oHW1), all operating at a
global highway clock rate HW clk. In order to reduce de-
sign cost, the internal switch core for cell processing, as
shown inside the dotted square in Figure 1, operates at a
slower switch clock rate sw clk, which is only a fraction
of HW clk. Therefore, each cell arriving at the input port

RAF0

RAF1

WAF

cell counter
wBC

copy cell
flag ccf

control
write read

control

p/ss/p
iHW0
iHW1

exHW0 exHW1

s/p

oHW0

oHW1
cell FIFO

switch core

control flow data flow

HW_clk sw_clk

Figure 1: 2-channel ATM switch architecture.

iHW0 or iHW1 �rst takes serial-to-parallel (S/P) conver-
sion to reduce to the slower processing rate sw clk. This
received cell is then written into a cell FIFO for bu�er-
ing, and will later be switched to an appropriate output
highway based on the routing information contained in
the header �eld of the cell. When a cell is ready to be
sent out, parallel-to-serial (P/S) conversion is performed
at the output port to re-match the faster highway clock
rate HW clk.

When the received cell is written into the cell FIFO
for bu�ering, its FIFO address is determined by Write
Control WC and Write Address FIFO WAF. Namely, WC
obtains from WAF the the next available address of the
cell FIFO where a new cell can be written. Then, based
on the destination of the cell, this address is kept in a
Read Address FIFO RAF0 or RAF1, where the switch can
later �nd the address of the cell to be sent out. The
address is kept in RAF0 if the cell is switched to oHW0, or
in RAF1 if the cell is switched to oHW1, or in both if the
cell is a copy cell switched for both output highways.

To send a cell from the cell FIFO to the output high-
way oHW0 (or oHW1), Read Control RC is instructed by
a read-out signal received from the extended highway
exHW0 (or exHW1) to get the top cell address stored in
RAF0 (or RAF1). The corresponding cell is then retrieved
from the cell FIFO, and sent to oHW0 (or oHW1). After
this cell is read out, the used address can be recycled to
WAF, which is used later to store other cell received at
iHW0 or iHW1.

The switch core also has a cell counter wBC to monitor
the available capacity of the cell FIFO. If the switch
attempts to write a cell to the cell FIFO which is full, an
alarm signal is sent to notify a central switch controller,
which is not included in the switch design, to handle such
exception. Furthermore, to keep track if a cell written
into the cell FIFO is a copy cell, a 1-bit copy cell
ag
ccf is associated with each location in the cell FIFO.

3 ATM Switch Behavioral Modeling

Developing a behavior model with consideration of
target design features is essential to achieving success-
ful high-level synthesis. This section discusses the ma-
jor issues associated with modeling the ATM switch for
high-level synthesis. The behavior model of the entire
ATM switch design is then developed, which consists of
26 communicating processes in about 1500-line VHDL
codes.

3.1 System Partitioning and Modeling

The ATM switch is a complex design which consists
of a number of components operating concurrently for
the highways to access and update the cell FIFO, ad-

ce
ll

ce
ll

behavior1

behavior2

ce
ll

ce
ll

behavior2behavior1

process2process1

process

partition
latency < m+n

latency m+n

latency m+n

latency m latency n

latency n

latency m

(a)

(b)

Figure 2: (a) two concurrent behaviors serialized in a
single process with total latency m+ n; (b) partitioned
into two processes in a pipeline fashion with latency
smaller than m + n (note that process 2 can start even
before process 1 �nishes).

dress FIFOs, cell counter, and copy cell
ag. To develop
a behavioral model good for high-level synthesis, this
complex design needs to be partitioned �rst into subsys-
tem, or modules, to reduce complexity such that each
module can be modeled and synthesized e�ciently. This
has been reported recently as well in a separate study by
Vahid et al. [7] which shows the advantage of partition-
ing in terms of faster synthesis time and better overall
design quality.

Each module in the partition can be modeled as a
process in VHDL. In VHDL, a process executes concur-
rently with other processes, but only sequential state-
ments are allowed inside a process, which can undergo
scheduling and allocation by high-level synthesis. There-
fore, to model the entire partitioned system, multiple
communicating processes are needed with frequent in-
teractions among them.

Two major criteria are exploited for partitioning the
ATM switch system. The �rst criterion is based on clock-
ing (sw clk or HW clk) and functionality. One common
limitation in current synthesis is that only one single
clock signal can be used for each process. So, clocking,
as well as functionality of each component as illustrated
in Figure 1, are exploited to obtain an initial partition.

The second criterion is based on pipeline throughput
requirement of the two main channels. In the above ini-
tial partition, if modules WC and RC are each modeled
by a single process, the concurrent behavior inside WC
and RC has to be temporally serialized. Such serializa-
tion can impose longer delay than the maximal latency
constrained by pipeline processing of the cell words in
the switch core. This situation is illustrated in Figure
2. So, despite the lack of detailed circuit information for
scheduling at this level of abstraction, a coarse partition-
ing of WC and RC into pipeline stages can be performed
to derive a behavior model with higher pipeline concur-
rency.

3.2 Multiple Clocking

Di�erent clocks for internal processing (by sw clk)
and external transmission (by HW clk) draw a clocking
boundary in the design, as shown by the dotted square
in Figure 1. On either side of this boundary, processes
are designated to model functionalities clocked by either
sw clk or HW clk. Therefore, when a cell being pro-
cessed moves across the clocking boundary, a protocol
for clock rate conversion to synchronize operation rates
needs to be devised and modeled. Without such mech-
anism, cell words could be missed or misaligned from

iHW0

48b

16b

48b 48b 48b

reg0 reg2reg1

selectMUX

(at HW_clk)

switch core
(at sw_clk)

(at sw_clk)

Figure 3: Bu�ering mechanism for clock rate conversion
from HW clk to sw clk (= HW clk/3).

0,1,2 3,1,2 3,4,2 3,4,5 6,4,5 6,7,50,1

idle 0,1,2 3,4,5

5idle 0 1 2 3 4 6 7 8

0idle

idle 0,1,2 3,4,5

0,1,2 3,4,5

(shift)

(shift)

sw_clk
synchronized to

(muxed from buffer register reg1)

HW_clk

iHW0_new_cell

iHW0

reg0

reg1

reg2

reg0_ready

reg1_ready

reg2_ready

sw_clk

to switch core

Figure 4: Timing diagram for HW clk-to-sw clk synchro-
nization at iHW0.
correct clock cycles. The protocols of clock rate conver-
sions from HW clk to sw clk by S/P and from sw clk
to HW clk by P/S are discussed below. For illustration
purpose, we assume that sw clk is clocking at 1=3 the
rate of HW clk for the rest of the paper.

3.2.1 HW clk-to-sw clk Conversion by S/P

To convert from HW clk to slower sw clk, a mecha-
nism of bu�ering the cell words received at the input
highways is needed such that they can become synchro-
nized to the slower clock rate when they move into the
switch core. Figure 3 depicts the schematic of such
bu�ering mechanism, where 3 48-bit bu�er registers
(reg0, reg1, reg2) are connected in a shift-register man-
ner. Its behavior at iHW0, as listed below, is modeled
by the three processes iHW0 SP reg0, iHW0 SP reg1 and
iHW0 SP reg2 clocked by HW clk, and the one process
iHW0 to FIFO clocked by sw clk.

iHW0_SP_reg0: process -- protocol for s/p
begin -- conversion at reg0 of iHW0

wait until (HW_clk'event and HW_clk='1');
reg0_ready <= '0'; -- reset
if iHW0_new_cell='1' then -- new cell arrives

-- store 3 words (48 bits) in reg0
iHW0_reg0(15 downto 0) <= iHW0;
wait until (HW_clk'event and HW_clk='1');
iHW0_reg0(31 downto 16) <= iHW0;
wait until (HW_clk'event and HW_clk='1');
iHW0_reg0(47 downto 32) <= iHW0;
reg0_ready <= '1';

end if;
end process;

iHW0_SP_reg1: process -- protocol for s/p

begin -- conversion at reg1 of iHW0
wait until (HW_clk'event and HW_clk='1');
reg1_ready <= '0'; -- reset
if reg0_ready='1' then

iHW0_reg1 <= iHW0_reg0; -- shift to reg1
reg1_ready <= '1';

endif;
end process;

iHW0_SP_reg2: process -- protocol for s/p
begin -- conversion at reg2 of iHW0

wait until (HW_clk'event and HW_clk='1');
reg2_ready <= '0'; -- reset
if reg1_ready='1' then

iHW0_reg2 <= iHW0_reg1; -- shift to reg2
reg2_ready <= '1';

endif;
end process;

(a) clocked by HW_clk

iHW0_to_FIFO: process -- sync cell words by
begin -- sw_clk and send them to cell FIFO

wait until (sw_clk'event and sw_clk='1');
if reg0_ready='1' then

cell_3words <= iHW0_reg0;
elsif reg1_read='1' then

cell_3words <= iHW0_reg1;
elsif reg2_read='1' then

cell_3words <= iHW0_reg2;
end if;
-- cell words get sync to sw_clk
-- ready to send to cell FIFO

end process;
(b) clocked by sw_clk

Process iHW0 SP reg0 receives a 16-bit cell word of
iHW0 every HW clk cycle when a new cell arrives. This
word is packed in reg0 with other two consecutive words
from the same cell to prepare a 48-bit word for inter-
nal switch core processing. Once reg0 is �lled with
three 16-bit words from iHW0, its content is shifted to
the next register reg1 in the next HW clk cycle (by pro-
cess iHW0 SP reg1), and then shifted to reg2 (by pro-
cess iHW0 SP reg2). Since sw clk is one third frequency
of HW clk, sw clk must have a rising edge within three
consecutive HW clk cycles. This rising edge enables the
multiplexer in Figure 3 to select the 48-bit word from
the correct bu�er register. Such multiplexing is per-
formed by process iHW0 to FIFO. Clock synchronization
to sw clk is therefore achieved.

Since the packed 48-bit word is shifted in the
three bu�er registers, the three signals reg0 ready,
reg1 ready, and reg2 ready are needed to keep track in
which bu�er register the packed word is located upon the
rising edge of sw clk. An example of timing diagram to
illustrate synchronization during the clock rate conver-
sion is shown in Figure 4, where signal iHW0 new cell is
high when iHW0 is receiving a new cell. In this example,
reg1 is selected by the multiplexer to send the packed
48-bit words to the switch core, because reg1 ready is
high on the rising edge of sw clk.

3.2.2 sw clk-to-HW clk Conversion by P/S

Conversion from sw clk to higher frequency HW clk
can be done by sequentially selecting at HW clk rate each
of the three 16-bit cell words by a multiplexer.

3.3 Process Communication
The communication between processes in the ATM

switch behavior model is described using either hand-
shaking protocol or cycle-�xed protocol:

Communication by hand-shaking occurs between two
processes if the protocol schedule cannot be determined
statically.

In the case of protocol for S/P or P/S conversion or
for memory access, exact cycle-by-cycle behavior to be

access process1

access process
i

access process2

arbitrator

cell FIFO

access process1 access process i

access process2
access signal

access REQ

(b)

cell FIFO

access signal

(a)

Figure 5: (a) direct concurrent accesses to the cell FIFO
causing multiple drivers for the access signals; (b) con-
current access requests sequenced by the arbitrator pro-
cess to resolve the multiple driver con
ict for the access
signal.

modeled is prede�ned by the protocol schedule. Such
protocol schedule is called cycle-�xed schedule. This
cycle-�xed protocol makes the communication simpler.

3.4 Concurrent Update of Global Signal
Memory modules such as the cell FIFO, RAF0, RAF1,

WAF, ccf, and wBC are concurrently updated by global
access signals, such as cell FIFO write enable, when
the switch receives or transmits cells. In VHDL, how-
ever, assignments to a global signal in di�erent processes
can cause the con
ict of multiple drivers for this signal,
which needs to be resolved by a resolution function such
as wired-and, wired-or, or a tri-state gate. Figure 5(a)
depicts such con
ict due to direct accesses to the cell
FIFO by multiple concurrent processes.

For these global memory access signals in the ATM
switch model, de�ning resolution functions is not trivial.
So, it is necessary to devise an arbitrator process for
each memory module to sequence the concurrent access
requests based on some prede�ned priority. Figure 5(b)
shows such a scheme for concurrent accesses to the cell
FIFO through an arbitrator process.

3.5 Mixed-Level Model with Subprogram
Since some parts in our ATM switch model have

cycle-�xed behavior, as discussed in Section 3.3, the de-
sign is best described in a mixed style of algorithmic
level and FSM with datapath level.

Algorithmic description has the highest level of ab-
straction which speci�es purely circuit behavior with
no machine states assigned. The design behavior is ex-
pressed in VHDL using sequential assignments for data
transfer, control constructs for conditional branch, and
loop statements for iterative execution. Describing de-
sign behavior algorithmically in VHDL is very similar
to writing software programs in a standard imperative
programming language.

After a schedule is assigned to an algorithmic descrip-
tion, its cycle-by-cycle behavior is determined, where for
each cycle a machine state is de�ned with the datapath
operations executed in the cycle. So, after scheduling,
the algorithmic description is translated into a �nite
state machine (FSM) integrated with word-level data-
path operations. Such description is an extension of
traditional bit-level �nite state machine, and is called
FSM with datapath (FSMD) model. FSMD is suitable
to model cycle-�xed behavior with word-level opera-
tions, for which bit-level FSM description can be awk-
ward. The VHDL statement wait until clock'event

algoritmic-level VHDL

scheduling

allocation

module generator
(datapath)

logic synthesis
(controller)

RTL synthesis

h
u

m
an

 in
te

rf
ac

e
an

d
V

H
D

L
 s

im
u

la
ti

o
n

design

constraints

technology

library

FSMD-level VHDL

RT-level VHDL

gate-level VHDL

change optimization strategy

simulation/refinement

Figure 6: MEBS synthesis
ow.

and clock='1' is used to de�ne a new machine state,
and is referred to as wait until clock statement in
this paper for short.

A subprogram is a VHDL construct which de�nes a
sequence of operations that is frequently used in dif-
ferent locations of a program. Subprograms are used
intensively in the ATM switch model, such as checking
the cell's header �eld by the processes of the two input
highways. So, e�cient implementation of a subprogram
is essential for our ATM switch synthesis, which will be
discussed in Section 4.2

4 High-Level Synthesis for ATM Switch
We prototyped MEBS to synthesize the mixed-level

ATM switch description down to a gate-level netlist.
MEBS is a high-level synthesis system targeted towards
control dominated application. Unlike circuits for DSP
application which are datapath dominated, circuits for
control dominated application usually contain very sim-
ple data path, and perform certain prede�ned sequences
of operations according to protocols or external events
from the environment. Most processes in the ATM
switch model are control dominated that perform condi-
tion test and branch operations, simple arithmetic/logic
operations, and I/O operations. Since execution delay
of such operations is usually small, operations with de-
pendencies can be chained into a single clock cycle by
MEBS.

4.1 MEBS System Component
The synthesis
ow of MEBS is depicted in Figure 6,

which takes a mixed-level VHDL description and synthe-
sizes it into a gate-level netlist for FPGA or standard-cell
implementation. The input design description can con-
tain multiple communicating processes, each of which
is at algorithmic level, FSMD level, RT level, or gate
level. The major system components of MEBS include
a scheduler, an allocator, and an RTL synthesizer. The
scheduler converts an algorithmic-level description into
an FSMD-level description. Given resource constraints,
a list-based scheduling algorithm is used to schedule the
algorithmic design into a state machine. Two scheduling
modes are supported: super-state mode and cycle-�xed
mode. For hand-shaking communication, the operations
between two wait until clock statements in the pro-
cess are allowed to be scheduled into several states. This
is provided by super-state mode for scheduling
exibil-
ity. For communication such as with memory in �xed
cycles, the operations between two wait until clock
statements are not allowed to be separated into di�er-
ent states. In this case, cycle-�xed mode is used. These

two scheduling modes are also recognized important and
provided by Synopsys Behavior Compiler [5].

The allocater converts an FSMD-level description
into an RT-level description, where the datapath with
word-level operations and the control path with sym-
bolic FSMs are separated. The allocation algorithm
binds variables to registers, operations to function units,
and data transfers to multiplexers and interconnections.
The datapath is �rst constructed heuristically, and then
re�ned by rip-up and re-binding [8] using branch-and-
bound method.

The RTL sythesizer translates an RT-level descrip-
tion containing datapaths and control units to a netlist
of gates for a speci�c technology library. A datapath el-
ement such as adder, multiplexer, multiplier, compara-
tor, etc. is generated by a module generator, while the
control logic is optimized by logic synthesis tools.

4.2 MEBS Synthesis Feature
Features of MEBS that were found especially useful

during our ATM switch synthesis are highlighted as fol-
lows:

� Design space exploration:

Compared with most other behavior synthesis ap-
proach which estimates area and performance based
on RT-level implementation [9], MEBS explores the
design space by synthesizing the ATM switch model
down to gate level and estimates them at gate level.
MEBS uses a fast logic synthesis tool incorporated
with the module generator for RTL synthesis. Es-
timating design quality at gate level provides the
user with realistic measure of the design implemen-
tation.

Exploring the design space is an iterative and in-
teractive process. Each iteration consists of the fol-
lowing three steps:

1. Interactively make selection of synthesis pa-
rameters for design constraints, such as func-
tion units, types, and clock period.

2. Perform scheduling, allocation, and RTL syn-
thesis.

3. Report timing and area. If the result is not
satisfactory, go back to step 1 and modify the
synthesis parameters.

For the ATM switch design containing multiple pro-
cesses, we can specify and change the synthesis pa-
rameters for one process at a time to obtain the de-
sign curve for each process. For multiple processes
that are driven by the same clock, the total area
is the summation of the estimated areas of the pro-
cesses, while the clock cycle time is the maximumof
the estimated clock periods of the processes. Such
area and clock period estimation over multiple pro-
cesses is calculated by combining the design space
curves of the processes to derive a new design space
for the overall circuit. This can be done in linear
time in terms of the total design points of the pro-
cesses.

� Module function implementation:

For subprogram construct, the most common syn-
thesis method is in-line expansion, where the sub-
program body is expanded into the main program
wherever it is invoked. In-line expansion, how-
ever, can su�er from program size explosion if too
many copies of subprogram bodies are expanded.
So, MEBS provides another synthesis method called
module function implementation, in addition to in-
line expansion.

In module function implementation, each subpro-
gram is synthesized as an independent module, and
is treated as a function unit. It is shared by all the
calls to the subprogram in the same way as an adder
or a multiplier module is shared. Experimental re-
sult in Section 5 shows that for our ATM switch
model, module function implementation reduces the
circuit size and the synthesis time drastically when
compared with in-line expansion.

� Incremental synthesis:

Incremental synthesis was extensively used for the
ATM switch design because the behavior model
was incrementally developed. Furthermore, modi�-
cations due to bugs or speci�cation changes were
often localized in certain modules of the design.
Without incremental synthesis, each local modi�ca-
tion would require complete resynthesis, which was
time-consuming and would abandon good synthesis
result even though it had already satis�ed design
constraints.

MEBS supports the following features for incremen-
tal synthesis:

1. Process-by-process synthesis: A user can syn-
thesize one process at a time, while leaving the
other processes intact. This is useful when we
concentrate on critical design parts �rst. The
synthesis result of a process can be easily re-
moved if it does not meet design constraints.

2. Source-in and source-out: After each step
of scheduling, allocation, and RTL synthesis,
MEBS can output the result in synthesizable
and simulatable VHDL. This enables the user
to simulate the design at each level to verify
the synthesis results.

3. Signal name preserving: Furthermore, signal
names are preserved in each step of the syn-
thesis
ow. This is also helpful for debugging
purpose, because the same testbench can be
easily applied to verify the correctness of the
synthesis result at di�erent stages of the design

ow.

5 Experimental Result

This section reports the synthesis result of the ATM
switch model by MEBS using Fujitsu CS35 0.8um
standard{cell library.

5.1 Design Space Exploration

Three processes are used to illustrate the de-
sign space exploration results: WAF hptr update,
RAF0 hptr update, and RAF2 hptr update, all driven
by the same clock sw clk. Initially, these processes were
synthesized using the minimum resource constraints,
i.e., 1 addr subtract unit for each process. The result-
ing clock cycle time was about 51 ns. If the number of
add subtract units for each process was increased to 2,
the clock cycle time was reduced to about 26 ns, which
gave better performance but larger area.

Table 1 shows the experimental data of design space
exploration for these three processes. The area is given
in terms of the number of basic cells (or inverters) in
CS35 library. The total area is 508 basic cells and the
delay is 50.48 ns when the total resource was set to be 3
add subtract units. If the resource was increased to 6
add subtract units, the total area was increased to 620
basic cells but the delay was reduced to 25.56 ns.

Table 1: Design space exploration by MEBS for three
processes (clocked by sw clk) in the ATM switch design.

resource area delay
process (add subtract) (basic cell) (ns)

WAF hptr update 1 170 50.48
2 208 25.56

RAF0 hptr update 1 169 50.48
2 206 24.96

RAF2 hptr update 1 169 50.48
2 206 25.56

Table 2: Comparison of area, delay, and synthesis time
of the ATM switch by two methods of subprogram im-
plementation.
of area delay synthesis
calls method (basic cell) (ns) CPU time (s)
18 in-line 14161 45.11 1181.0

module function 10797 39.21 396.5

5.2 Module Function Implementation
Both in{line expansion and module function imple-

mentation were used to synthesize the subprograms in
the ATM switch description. The result for the entire
switch is shown in Table 2, given the resource constraint
of 6 add subtract units for the three processes discussed
in Section 5.1. There are totally 18 subprogram calls in
the design description. The experiment shows that by
implementing subprograms as module functions, the re-
sulting design's area, delay, and synthesis time are better
than that by using in{line expansion.

5.3 Synthesis Result
For CS35 technology library, the switch clock

(sw clk) cycle time constraint was set to 42 ns, and
the highway clock (HW clk) cycle time constraint was
therefore set to 14 ns. The resource constraint for the
three processes in Section 5.1 was set to 6 add subtract
units. Given these design constraints, MEBS was able
to synthesize the complete ATM switch behavior model
down to a gate{level netlist.

Table 3 shows the number of lines in the VHDL de-
scription synthesized by MEBS at each level of abstrac-
tion. It indicates that it is much simpler to describe the
design at the initial mixed levels than at RT level or gate
level. Therefore, it will be much easier to maintain and
modify the design at the initial mixed levels.

Table 4 shows the statistics of the synthesized result.
It lists the numbers of I/O ports, nets, library cells of
the �nal implementation. It also gives the total area and
delay. The total area is the summation of the areas of
latches,
ip{
ips, and combinational logic.

It is di�cult to accurately compare our synthesis re-
sult with the manual design, because some extra func-
tions, such as communication with the central switch
controller, were added in the manual design, which are
not described in the switch architecture speci�cation.
Besides, these functions are not easy to be separated
from the remaining circuitry of the manual design. How-
ever, since the implementation of these extra functions
is considered a small part of the entire switch, we esti-
mated conservatively that the size of our synthesis result
is about 85% of the manual design in terms of the gate{
level basic cells. Furthermore, our high{level modeling
and synthesis approach took about 4 man{weeks, while
the manual design took several man{months.

6 Conclusion
This paper presented our experience on domain-

speci�c high-level modeling and synthesis for Fujitsu
ATM switch design. We proposed a high-level design
methodology which considers the target ATM switch ar-

Table 3: Number of VHDL lines in the ATM switch
model at each level of abstraction.

level #line
initial mixed levels 1500
FSMD level 1800
RT level 3581
gate level 12869

Table 4: Statistics of the synthesized ATM design using
CS35 technology library (bc: basic cell).

#port 118
#net 6143
#cell 5946

latch area 432 bc

ip{
op area 4942 bc
combinational logic area 5423 bc
total 10797 bc

delay 39.21 ns

chitectural features during behavior modeling, and ap-
plies a prototyped control-dominated high-level synthe-
sis compiler, MEBS, to generate the gate-level imple-
mentation from the behavior model. Since the speci�c
ATM switch architecture was incorporated into both
modeling and synthesis phases, a high-quality design was
e�ciently derived. The synthesis results showed that
given the design constraints, the proposed high-level de-
sign methodology was able to produce a gate-level im-
plementation by MEBS with about 15% area reduction
in shorter design cycle when compared with manual de-
sign.
Acknowledgment: The authors would like to thank
Masami Yamazaki of Fujitsu Ltd. for interesting discus-
sion on ATM Switch design, and Fur-shing Tsai, Ta-
Yung Liu, and Shi-Zheng Lin at UC Riverside for tech-
nical support of MEBS. The management assistance by
Fumiyasu Hirose and Mitsuru Kuga of Fujitsu Ltd. is
highly appreciated as well.

References
[1] M. D. Prycker. Asynchronous Transfer Mode: Solution

for Broadband ISDN. Ellis Horwood Limited, 1993.
[2] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Syn-

thesis: Introduction to Chip and System Design. Kluwer
Academic Publishers, 1992.

[3] R. A. Bergamaschi and A. Kuehlmann. \A system for
production use of high-level synthesis". In IEEE Trans.
VLSI Systems, pages 233{243, Sept. 1993.

[4] J. Biesenack, et al., \The Siemens high-level synthesis
system CALLAS". In IEEE Trans. VLSI Systems, pages
244{253, Sept. 1993.

[5] D. Knapp, T. Ly, D. MacMillen, and R. Miller. \Behav-
ioral synthesis methodology for HDL-based speci�cation
and validation". In Proc. DAC, pages 286{291, 1995.
Francisco, June 1995.

[6] T. Ly, D. Knapp, R. Miller, and D. MacMillen. \Schedul-
ing using behavioral templates". In Proc. DAC, pages
101{106, 1995.

[7] F. Vahid and D. Gajski. \Clustering for improved
system-level functional partitioning". In Proc. Int. Symp.
System Synthesis, pages 28{33, 1995.

[8] F.-S. Tsai and Y.-C. Hsu. \STAR: a system for hardware
allocation in data path synthesis". In IEEE Trans. CAD,
pages 1053{1064, Sep. 1992.

[9] C. Ramachandran, et al., \Accurate layout area and
delay modeling for system level design". In Proc. ICCAD,
pages 355{361, 1992.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of contents
	Session Index
	Author Index

