Combined Control Flow Dominated and Data Flow Dominated
High-Level Synthesis

E. Berrebi'® P. Kission' S. Vernalde? S. De Troch?
J.C. Herluison® J. Fréhel® A.A. Jerraya' I. Bolsens?
L TIMA 46, av. Félix Viallet 38031 Grenoble, France

2 IMEC Kapeldreef 75 B-3001 Leuven, Belgium
? SGS-Thomson Microelectronics 850, rue Jean Monnet, BP16 38921 Crolles, France

Abstract

This paper presents the design of a Videophone Coder-
Decoder Motion Estimator using two High-Level Synthesis
tools. Indeed, the combination of a Control Flow Domi-
nated part (complex communication protocol) with a Data
Flow Dominated part (high throughput computations) makes
this circust difficult to be synthesized by a single HLS tool.

The combination of two HLS tools for the high-level de-
stgn of this operator required the definition of a sophisticated
design flow allowing mized-level and multi-language simula-
tions. When compared to design starting from RTL specifi-
cations, HLS induces only a negligible area overhead of 5%,
and provides gain in description length (divided by 5), design
time and flexibility.

1. INTRODUCTION

In video-transmission, for instance, the rapid evolution
of the standards, with an increasing complexity, rises dra-
matically the number of transistors on chips and the corre-
sponding design-time. To meet time to market constraints,
electronic industrialists have to gradually increase the pro-
ductivity. Hence, the design flow of digital circuits have to
start at gradually higher abstraction levels. Today, design-
ers begin to apply Behavioral (or High Level) Synthesis. But
the lack of maturity of existent tools and methodologies sets
limitations.

This paper presents the High-Level Synthesis (HLS)
of a complex operator (the Motion Estimator) of a chip
(SGS-Thomson-Microelectronics H261 Videophone Coder-

Decoder) in an industrial environment.

1.1 Design Flow

Figure 1.a presents different abstraction levels used for
circuit design and the corresponding translation steps. Fig-
ure 1.b shows the RTL design process commonly applied in
industry. Figure 1.c shows the High-Level Synthesis based
methodology.

Current RTL-based DESIGN FLOW High-Level
methodology eaton evel Synthesis based
specification level methodology
manual PARTITIONING manual

I

behavioral level

ARCHITECTURAL 0
manual SYNTHESIS pi " automatic
-_anﬁlr nE
pipelining

2y
is

register transfer level

({77~ [RILHERARCHICAL SYNTHESS]
avomatic - \\ X\ |OPTIMIZATION CONSTRAINTS :D automatic
e gate level
b a c

Figure 1: Design Processes

From the initial specification level, the circuit is parti-
tioned manually for both methodologies and described at
the behavioral level. This description is simulated to check
the functionalities and protocols with external processes.

Then, the architectural synthesis is done manually in the
RTL-based methodology (figure 1.b), whereas it is automat-
ically generated in the high-level synthesis based methodol-
ogy (figure 1.c). The automation of this step allows: gain
in design time, flexibility towards modifications of the spec-
ifications, architectural exploration and automatic pipeline
stage introduction.

Once validated, the generated RTL description is then
synthesized, optimized and constrained with an RTL and
logic synthesizer resulting in a gate level description to be
placed and routed.

Section 5 compares the results of the Motion Estimator
design obtained: with the RTL-based methodology and with
the proposed High-Level Synthesis based methodology.

1.2 Taxonomy of High-Level Synthesis Designs

The basic function of HLS is the mapping of a behavioral
description of a digital system onto an RTL design consisting
of a data path and a control unit [4]. The main steps exe-
cuted by HLS are scheduling and allocation. Most existing
HLS tools are specialized for a restricted class of applica-
tions. According to Gajski [4], hardware designs may be
classified in three categories:

e control dominated designs represented by Control Flow
Graph;

e data dominated designs represented by Data Flow Graph;
e control-data dominated designs represented by Control-

Data Flow Graph.

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage, the copyright notice, the title of the publication'and its date e t
servers or to redistribute to lists, requires prior specific permssion and/or a fee.
833-9/96/0006..$3.50

by permission of ACM, Inc. To copy otherwise, to republish, to post on
AC 96 - 06/96 Las Vegas, NV, U J1996 ACM, Inc. 0-89791-

pear, and notice is given that copying is

1.2.1 Control Flow Dominated Circuits

A typical Control-Flow Dominated design consists of a
large control unit, possibly with a small data path. In this
case, a behavioral description consists generally in a sequen-
tial process. This model describes computation steps sepa-
rated by synchronization statements (e.g. wait statements in
VHDL). The most critical step when synthesizing this type
of circuit is scheduling.

Examples of tools dedicated to Control-Flow synthesis
are CALLAS-VOTAN [8], HIS [2], YSC [1], CAMAD [15],
Olympus [13], and Amical [10].

1.2.2 Data Flow Dominated Circuits

A typical Data-Flow dominated design has minimal con-
trol but a large data path to perform operations. In this
case a behavioral description is composed of parallel data
flow operations. The most critical step when synthesizing
this kind of circuit is allocation, i.e. resource sharing.

Examples of tools dedicated to Data-Flow synthesis are

AWRB [16], Phideo [12], and Cathedral-2/3 [7].

1.2.3 Control-Data Flow Dominated Circuits

A Control-Data-Flow dominated design consists of a large
control unit with a large data path to perform operations.
The HLS of this kind of circuits requires the capabilities of
both above tools.

The Motion Estimator is an example of a Control-Data
Flow dominated circuit. Indeed, it has both a DSP-like
computation feature and a complex control communication
with the rest of the CODEC. This combination of a Control
Flow Dominated (CFD) part and of a Data Flow Dominated
(DFD) part makes the Motion Estimator difficult to be syn-
thesized by one single HLS tool.

Today, none of the existing tools is able to synthesize
efficiently such a circuit starting from a true behavioral de-
scription. Some existing tools such as in [11] are able to
handle such a design, partially. But in this case, several
parts of the Motion Estimator would have to be written at
the Register Transfer Level.

1.3 Mixed CDFD HLS

When analyzed, the ME function can be decomposed eas-
ily into two separate main sub-functions: a Control-Flow
dominated part and a Data-Flow dominated part. Starting
from such a decomposition the idea is to use two separate
tools allowing to combine their respective advantages with-
out any restriction.

This paper presents the High-Level Synthesis of the Mo-
tion Estimator circuit, combining two HLS tools: a ?CFD?”
compiler, Amical [10], with a ”DFD” compiler, Cathedral-
2/3 [7]. To evaluate the cost of the ”high-level” methodol-
ogy against the ”RTL” one, we applied the same industrial
conditions and used the same cycle-based test-bench for the
verification at the behavioral and RT levels.

Several industrial experiments are reported in the HLS
literature [3, 5]. However, to our knowledge, no such ex-
periment, using the results of different HLS tools, has been
carried out. The use of more than one HLS tool implies the
definition of a sophisticated design flow with the integration
of the results of different compilers, mixed-level and possibly
multi-language simulations in particular at the behavioral
level.

This paper is organized as follows: section 2 presents

the Video-CODEC Motion Estimator and section 3 the tool
set used for this experiment. Section 4 describes the new

methodology, section 5 shows its application to the studied
example and the corresponding results, section 6 analyzes
the benefits of HLS and section 7 gives some conclusions.

2. THE MOTION ESTIMATOR

The considered Motion Estimator is part of the Video-
phone CODEC chip [6]. The CODEC chip codes and de-
codes sequences of pictures through a pipeline of 12 oper-
ators, communicating through a command bus and a data
bus (figure 2). The coding part may also compress sequences
of pictures without significant deterioration of the quality,
avoiding redundancies. The coding efficiency depends on
the Motion Estimator results. Therefore this operator is a
bottleneck with consequences on the whole chip efficiency.

All the operators of the CODEC share the same Video-
RAM. Access conflicts to this RAM are managed by a spe-
cific memory controller. Each operator has its local memory.

Transfers between the VRAM and the local memories are
made through a complex asynchronous protocol.

Bit-stream in Pictures in Bit-stream out

l l T

RECONSTR. MOTION CODING vic/
-1
UNFRAMER VLC -1 -1 GRABBER DCT ,Q
Q.peT ESTIMATOR| | (o0 i FRAMER
t t t Command Bust t t t
Data Bus
Prgm MSQ DISPLAY o| wost
(internal controller -
ROM microproc. interface controller interface

I

Display Controller

t

Data Address Host Bus
VRAM

Figure 2: Videophone CODEC Architecture

The purpose of the Motion Estimator is to determine the
motion vector of a moving part of a picture by comparison of
the current frame and the previous one, stored in the VRAM
(figure 2).

According to the H261' CCITT? algorithm [18], a picture
is cut into 99 macro-blocks to allow parallelism between the
different operators. The search window of the motion vec-

tor is limited to scan 16 horizontal vectors and_16 verti-
cal vectors in the previous picture. The Motion Estimator

calculates the ”distance” or distortion between the current
macro-block and the 256 existing possible positions of the
macro-blocks in the search window.

The function of the Motion Estimator is mainly a DFD
operation. However, it also involves a quite complex Con-
trol Flow. Indeed, because of the distributed architecture of
the CODEC, it includes two local memories that are filled
using a complex external protocol. Besides it communicates
with the MSQ (sequencing the overall operations of the chip)
through a well defined protocol.

3. HLS TOOL SET USED

This section describes the design-flow of the HLS tools
used for this experiment: Amical and Cathedral-2/3. It also
draws up their differences and complementarity.

3.1 The CFD tool : Amical

Amical is based on a flexible target architecture model
allowing hierarchy and design re-use [10]. Tt is composed of a
top controller, a set of functional units and a communication
network (figure 3). These last two constitute the data path.

Istandard for the coding of moving picture information
?International Telegraph and Telephone Consultative
Committee

The communication network (between functional units,
and with the external world) is composed of buses, switches,
multiplexers and registers.

The top controller sequences the operations executed
(possibly in parallel) by the functional units and the com-
munication network. It is generated automatically during
the synthesis process.

Functional units are used as black boxes. They may cor-
respond to already existing blocks (memory, I/O unit,...) or
a processor performing a specific function that has to be
synthesized using Amical, Cathedral-2/3 or any other spe-
cific HLS tool. These FUs may communicate directly with

external buses or with other FUs.
The different steps involved in the Amical design-flow are:

scheduling, allocation and architecture generation (figure 3).

Behavioral (VHDL)
Description

Functional Unit Library
(Operations, Timing, Protocals,...)

while (i<j) loop High-Level Design
mread(adr,A); FU:ram FU:i_dct || FU:alu
o . Scheduling ’ - :
B:=DCT(A,..);
mwrite(adr,B); Allocation 4—‘ @ ®
[Architecture Generation ©
end loop;

Existing Hardware (VHDL)

Architecture
controller + datapath

Figure 3: Amical design-flow

3.2 The DFD tool : Cathedral-2/3

Cathedral-2/3 is a software environment for synthesiz-
ing Digital Signal Processing (DSP) algorithms into Appli-
cation Specific Integrated Circuits (ASICs) [7]. To target
high throughput DSP applications such as video and image
processing (critical parts speed-up, more area-efficient map-
pings), Cathedral-2/3 is well tuned for the synthesis of Data
Flow Processors (DFP).

Allocation, Memory, Assignment

Behavioral (Silage)
CATHEDRAL-2/3 Directives

Description

a bo od ot
\d Code Generation assign(main(_,_,_,_,)\a+b).bfp.0)
Functional Building Blocks
% + Lib rary
! DFP Synthesis
Data Fow Graph D
DFP Optimisation D D

T|m|ng Specifications

DFP Architecture
DFPinstructions ~ externa signals|
¥ +

Local Controller]
Flags FU modgs

=8

n N . —
= Arithmetic Corg_out]

DFP

Figure 4: Cathedral design-flow

A DFP consists of an_arithmetic core and a local con-
troller. The local controller performs instruction decoding

and local decision making. No limits are imposed on the
complexity of the DFP.

The different steps involved in the DFP synthesis process
are: memory organization, code generation, DFP definition
and DFP optimization (figure 4).

The entry to the silicon compiler is an algorithmic de-
scription given in Silage. Silage is an applicative language
especially suited to describe DSP functions [17].

3.3 Complementarity of the tools

Table 1 draws up the main features of the considered HLS
tools. It stands out their complementarity. This section
details why Amical is rather suited for CFD circuits and
Cathedral-2/3 for DFD circuits.

According to this table it is clear that the high-level syn-

thesis of the Motion Estimator needs the combination of
oth styles, as it includes DFD and CFD parts

Indeed Amical is not suited for the synthesis of the whole
circuit: to reach the requested high throughput, a manual
description of the whole data path pipelining structure would
be necessary. This would come to write the RTL description
of the initial design process for the high-throughput calcu-
lation part.

Moreover Cathedral-2/3 is not suited for the synthesis of
the whole circuit: for example, there is no procedural IF-
THEN-ELSE or WHILE statement in Silage. Additional
control signals and loop counters would be defined. This
would come to write the finite state machine.

Features Amical Cathedral-2/3
Communication Unrestricted :
and protocol handshaking stream oriented
Data dependent loops]
Loops + fixed-length loops Fixed-length loops
Pipelining Control pipelining* Unrestricted

data-path pipelining

Input description VHDL description Silage algorithm

RT or gate

RTL VHDL level VHDL

Output description

* possible insertion of a pipeline stage between the control part and the data-path

Table 1: Comparison of Amical and Cathedral features

4. METHOD

Here is presented the design process and the verification
stages for the HLS of a circuit with a complex control part,
by the "CFD” compiler Amical, and a complex calculation
part, by the ”DFD” compiler Cathedral-2/3.

4.1 Design process

The design method proceeds in a hierarchical way [10]
(figure 5). The decomposition of a system specification into
a global controller and (e.g. DFD) sub-systems performing
specific tasks, allows to handle very complex design through
hierarchy with the dedicated HLS tools. Of course the inte-
gration of the results of different compilers must be possible.
Here follows the description of the different steps (figure 5).

4.1.1 The manual partitioning

A high-level specification of a complex system needs only
to describe the sequencing of the tasks to be executed by
the sub-systems. From the specifications, the designer has
to determine which tool will synthesize each task. It consists
in partitioning the circuit into a CFD part and a DFD part
taking into account the easiest way to describe them (Silage

MANUAL PARTITIONING

CONTROL FLOW
DOMINATED PART

DATA FLOW
DOMINATED PART

beh VHDL

Amical
CFD HLS

beh Silage

Cathedral-2/3
DFD HLS - -,

RTL VHDL

DFP abstraction file
protocol and interface
modeling

RTL VHDL

RTL HIERARCHICAL SYNTHESIS

SENS

OPTIMIZATION - CONSTRAINTS

VHDL netlist

Figure 5: New design process used in the experiment

or behavioral VHDL), the way they will communicate before
and after synthesis and in particular the ability to abstract
the DFP for its re-use as a functional unit.

4.1.2 Cathedral-2/3 synthesis

Once the tasks to be synthesized by Cathedral-2/3 are
defined, they are described in Silage. After code generation
and DFP definition, the critical path is calculated. If it does
not satisfy the timing requirements, one or more pipeline
stages can be added to increase the throughput.

4.1.3 Abstraction and design re-use of the DFP

The DFD system produced by Cathedral-2/3 needs to be
abstracted in order to be re-used for the design of the full
system [9, 10]. This step consists in defining the communica-
tion protocol between the Top Control and the component.
Each Functional Unit (FU) can be specified at three differ-
ent abstraction levels. Starting from the implementation of
the DFP (figure 6(a)), we produce a conceptual view (figure
6(b)). The object DFP is able to execute a set of functions
(start, stop...). This abstraction will be used to produce the
behavioral model of the components (figure 6(c)). These
operations will hide the implementation details during the
re-use of this component.

1 i
control_in
start stop
data_in data_out

(a) IMPLEMENTATION VIEW

Component DFP
(control_in, data_in: in integer;
control_out, data_out: out integer);
Procedure start;
Procedure stop;
(c) BEHAVIORAL VIEW

(b) CONCEPTUAL VIEW
Figure 6: The three abstraction levels

This solution allows parallelism with other FU activity.
The protocol consists in selecting the DFP mode of process-
ing, and to wait for an output control signal meaning the

end of the calculation and that the results are available. An
encapsulation of the component inside a VHDL RTL archi-

tecture may ease the protocol.

4.1.4 Amical synthesis

It starts with two kinds of information required for syn-
thesis: a behavioral specification and a functional unit li-

brary. The use of complex sub-systems is made through
procedure and function calls. For each procedure or func-
tion used, the library must include at least one functional
unit able to execute the corresponding operation. The sys-
tem will select automatically the "best” solution according
to an allocation/binding heuristic [19].

To allow DFP allocation [10], Amical needs a dedicated
abstraction file including the interface (specifying the control
signals), its call-parameters (corresponding to the operation
parameters), the operation set as well as the parameter pass-
ing protocol for each operation.

4.2 Verification and mixed-level simulations

The validation of the specifications and the different syn-
thesis steps is a critical stage when different tools, with dif-
ferent input languages, at different levels of abstraction are
involved.

In order to verify that the global behavior of the circuit is
the same whatever the level of abstraction, a unique VHDL
RTL test-bench is used during the whole synthesis process
to validate: the behavioral specifications, the RTL specifica-
tions produced by HLS and finally the netlist produced by
RTL synthesis.

Figure 7 sums up different cases of co-simulation [14] and
the role they play. None of these is useless. Each may point
out some problems and detect errors on specifications and
synthesis process. The simulation ’1° adjusts the behav-
ioral descriptions. The co-simulations ’2’ (resp. ’3’) vali-
date Cathedral-2/3 synthesis (resp. Amical synthesis). 4’
validates the synthesis of the DFP activation protocol and
checks delays. ’5” and ’6’° validate each RTL and logic syn-
thesis. And finally °7’ validates the complete design-process.

TIME CONCEPT CFD PART DFD PART
CFD part DFD part @)

control step; time frame
Amical Cathedral-2/3

CFDHLS DFDHLS
clock cycle

RTL and logic RTL and logic

Synthesis Synthesis
delay

Figure 7: Mixed-level simulations

5. RESULTS

This section presents how the methodology has been ap-
plied to the example of the Motion Estimator and its results
[14]. To compare the new methodology with the "RTL”
one, constraints were imposed on the frequency, memories

and external communications: .
e To follow some of the external protocols described at the

clock cycle level: an external data-bus updates these RAMs
using a handshake protocol between the motion estimator,
the CODEC Master Controller (MSQ in figure 2) and the
VRAM controller, organizing the traffic of the required data.
e The chip frequency is 13.5MHz, but the distortion cal-
culation must be processed three times more rapidly, at
40.5MHz, for a throughput of 15 images/sec implying 97.3
million operations/sec;

e For macro-block and search window storing, the use of two
hardwired RAMs with setup time details was imposed.

5.1 Partitioning

The high-level synthesis of the Motion Estimator begins
with the partitioning of the circuit into a CFD part and
a DFD part to be processed respectively by Amical and
Cathedral-2/3.

5.1.1 The main tasks

Figure 8 illustrates the sequencing of the main tasks in-
volved in the Motion Estimator computation. In order to
reach the required speed, the algorithm is organized in such
a way that computations can be performed in parallel. In
this case, these computations include the processing and the
search cache updating.

After the initialization step, the current cache filling be-
gins the process loop. For each current macro-block, the
complete calculation of the motion vector is divided into
two halves: the ”1st half processing” and the ”2nd half pro-
cessing”. During each half of the processing, a part of the
search cache must be updated in order not to waste time for
the next macro-block.

For this example, the partitioning between Amical and
Cathedral-2/3 works, is guided by the parallelism and the
frequency requirement: it stood out that the tasks at 40.5
MHz (distortion calculation and pixel fetching) would be en-
sured by a DFP and that the rest of the circuit (instructions
sequencing, management of the memories and the commu-
nications) would be synchronized by the 13.5 MHz clock.

initialization

current cache filling

+
‘ search cache updating ‘ ‘ 1st half processing ‘

i

‘ search cache updating ‘ ‘ 2nd half processing ‘

position incrementation

I

‘Iask frequency: l3.5MHZ‘ ‘lask frequency: 40.5MHz

Figure 8: Specifications

5.1.2 Circuit architecture

The global architecture (figure 9) of the resulting circuit
is made of a set of cooperative FUs ("ALU”, ’DFP”, "search
cache”, ”current cache”) controlled by a Top Controller.

The ALU computes the address calculation for writing.

The DFP is activated through a mechanism of ”protocol-
encapsulation”; defined in [10]. The goal of encapsulation
is to reduce the number of actions to be performed by the
global controller in order to use a given FU. This is achieved
by adding an extra controller to the FU and a definition
of a set of high-level primitives for the communication with
the FU, (procedure call and wait statement until the ”end
signal”).

We decided to encapsulate the RAM containing the
search window, adding a local controller and to activate it
through another ”protocol-encapsulation”. Indeed, it is used
four times in the main process (twice in the initialization
step), and the sequence of the address calculations is quite
complex for this memory.

As the RAM containing the current macro-block is filled
only once in the loop processing, and as the address cal-
culation needs a simple increment, we just instantiated it
without encapsulation. The protocol is flattened in the Top
Controller.

The Top Controller works at 13.5 MHz whereas the DFP
works at 40.5 MHz. As stated above the global architecture
is generated by Amical. This is almost the same organiza-
tion as the one made by the designer for RTL methodology.
As shown in (figure 9), the architecture needs three kinds

of communication. The communication between the data
path and the controller is handled by Amical. The inter-FUs
communications and the interaction of FU with the external
world are not synthesizable by Amical, but preserved and

included in the RTL model.

global circuit
data-path
fﬂ communication network 13.5MHz ‘
top T T
controller et search cache
135MHz DEP
RAM 40.5MHz RAM
I b Lo 31 paoswe b1
1 t I ¥
| external bus 1 | R 1

by Amical
777777 communications internal to the data-path explicitly specified for connections

— = = - communications between data-path and controller, or exteral world, explicitly specified,

Figure 9: Global architecture of the circuit

5.2 Synthesis Results

We used the same commercial synthesis tool for the RTL
synthesis and the technology mapping applied for the pre-
vious design of the motion estimator. The circuits of both
methodologies have been implemented using a specific li-
brary of standard cells (0.5pm CMOS technology).

RTL synthesis produced the results presented in table
2. These results (number of VHDL or Silage lines, num-
ber of standard cells and registers, area, critical path) are
compared to those of the manual methodology described in
section 1. Separate comparisons are done for the Data Flow
part, the Control Flow part and the overall circuit.

To reach the required frequency, we applied retiming and
one level of pipelining for the DFP with Cathedral-2/3 and
we pipelined the control part and the data path with Amical.
These results are analyzed in the next section.

Parameters ‘ #lines ‘# logic cells | # Flip-Flops area(um) critical pe&g)l
DATA FLOW PART

manual 1381 3153 551 |1174525 22.0

Cathedral-2/3 300 2630 877 1220000 224

overhead -78% -17% +59% +4% +2%
CONTROL FLOW PART

manual 668 1146 82 299640 65.90

Amical 136 1039 133 320650 62.44

overhead -80% -9% +62% +7% -5%

whole circuit | -79% | -15% [+60% | +5% |

Table 2: Synthesis results of the ”HLS” methodology com-
pared to the ”RTL” one

6. ANALYSIS

The advantage of this experiment is obviously the au-
tomation of the passage to the RT Level from a behavioral
specification, the flexibility towards architectural modifica-
tions, without significant area increase! Here follows a
detailed analysis of the results in table 2.

A very reasonable area overhead on the whole cir-
cuit of 5%: 7% for the CFD part and to 4% for the DFD
part. It is due to the pipe stages introduced. In this case,
when compared to the total chip area [6] this represents less
than one tenth of a percent overhead!

The reduction of design-time is one of the major advan-
tages of this methodology. It is due to several reasons:

e The behavioral description is flexible due to its short-
ness (length divided by 5).

e High-level synthesizers are less time-consuming
than manual translation.

Amical synthesis time amounts to a few minutes. The
adjustment of the functional units abstraction files may need
a few iterations through Amical.

Cathedral-2/3 synthesis time amounts to a few minutes
for the high-level synthesis part. The pipelining and gate
level optimizations take another hour. Reiterating with dif-
ferent numbers of pipeline stages takes 10 minutes.

The gate level optimizations can also be done by com-

mercially available logic synthesis tools.
e The number of RTL to netlist synthesis iterations
is reduced because of the automated generation of the
VHDL description. Besides, it depends only on the adjust-
ment of the functional units RTL descriptions. One iteration
amounts to many hours. The synthesis script adjustment is
otherwise the same as in the methodology starting from the
RT level.

A disadvantage of this method is that the debug stage is
tricky and hierarchical for this methodology, beginning with
the validation of the sub-systems. In this case this issue was
simplified by the use of a single test-bench for all the design
steps.

7. CONCLUSIONS

The successful high-level synthesis of the Motion Estima-
tor by Amical and Cathedral-2/3 pointed out that compared
with the methodology starting from the Register Transfer
Level, the gain in description length (divided by 5) is very
appreciable, design time and flexibility, in particular versus
the standards in video transmission and technology evolu-
tions. The cost of this automated step is negligible with an
area increase of 5% on the whole circuit, but it needs more
registers.

Consequently, to perform the High-Level Synthesis of
complex industrial circuits, it is possible to call for the most
adapted combination of a CFD tool and a DFD tool if the
circuit consists of a CFD part and a DFD part. In this case
the designer must consider that the partitioning between
these parts is critical, and that the verification needs mixed-
level and possibly multi-language simulations with a unique

test-bench. The most comfortable solution would be to use
a unique environment that supports both types of HLS tool,

but no such industrial development is reported in the present
state-of-the-art, and is still an open challenge.

Acknowledgments

This design would not have been possible without the
great help of the TIMA/SLS and IMEC/VSDM teams. We
would also like to thank especially Michel Harrand and
the following persons from SGS-Thomson Microelectronics:
Jean-Pierre Moreau, Pierre Paulin and Jean-Pierre Schoel-
lkopf for their discussions and suggestions regarding this
work, and in particular Joseph Borel for his encouragements.

References

[1] R.K. Brayton, R. Camposano, G. de Micheli, R.H.J.M. Ot-
ton, and J. Van Eijndhoven. Silicon Compilation, chap-
ter The Yorktown Silicon Compiler System, pages 204-310.
Addison-Wesley Publishing Company, D.D. Gajski edition,
1988.

[2] R. Camposano, R.A. Bergamaschi, C.E. Haynes, M. Payer,
and S.M. Wu. Trends in High-Level Synthesis, chapter The
IBM High-Level Synthesis System. Kluwer Academic Pub-
lishers, 1991.

[3] T.E. Fuhrman. Industrial Extensions to University High-
Level Synthesis Tools: Making It Work in the Real Work. In
Proc. of 28th ACM/IEEE Design Automation Conference,
1991.

[4] D.D. Gajski and L. Ramachandran. Introduction to High-
Level Synthesis. IEEE Design and Test of Computers, pages
44-54, 1994.

[5] Mark Genoe, Paul Vanoostende, and Gert Van Wauwe. On
the use of VHDL-based behavioral synthesis for telecom
ASIC design. In Proc. of 8th International Symposium on
System Synthests, pages 96—101, September 1995.

[6] M. Harrand, et al. A Single Chip Videophone Video En-
coder/Decoder. In Proc. of IEEE International Solid-State
Circuits Conference, pages 292—293, February 1995.

[7] IMEC. Cathedral-2/3 Silicon Compiler for Real Time Signal

Processing.

[8] M. Koster, et al. J. Biesenack. The Siemens High-Level Syn-
thesis System, CALLAS. In 6th Intl. High-Level Synthesis
Wkshop, November 1992.

9] A.A. Jerraya, et al. A Pragmatic Approach to Behavioural
g
Synthesis. Electronic Engineering, 1995.

[10] P. Kission, H. Ding, and A. A. Jerraya. Structured Design
Methodology For High-Level Design. In Proc. of 81st Design
Automation Conference, San Diego, USA., June 1994.

[11] D. Knapp, T. Ly, D. MacMillen, and R. Miller. Behav-
ioral Synthesis Methodology for HDL-Based Specification
and Validation. In Proc. of 82nd Design Automation Con-
ference, pages 286-291, June 1995.

[12] P.E.R. Lippens, J.L.. van der Werf, and W.F.J Verhaeg et al.
PHIDEO, A Silicon Compiler for High-Speed Algorithms. In
Proc. of EuroDAC/Euro VHDL, Amsterdam., March 1991.

[13] G. De Micheli, D.C. Ku, F. Mailhot, and T. Truong. The
Olympus Synthesis System. In IFEFE Design and Test, pages
37-53, October 1991.

[14] P. Paulin, et al. High-Level Synthesis and Codesign Meth-
ods: An Application to a Videophone Codec. In Proc. of
FEuroDAC/Euro VHDL, Brighton, U.K., September 1995.

[15] Z. Peng. Synthesis of VLSI Systems with the CAMAD De-
sign Aid. In Proc. of 28rd Design Automation Conference,
San Diego, USA., June 1986.

[16] D.E. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A.
Nestor, and R.L. Blackburn. The system Architect’s Work-
Bench. In Proc. of 25th Design Automation Conference, San
Diego, USA., June 1988.

[17] S. Vernalde, P. Schaumont, I. Bolsens, H. De Man, and
J. Fréhel. Synthesis of high throughput DSP ASICs using
Application Specific Datapaths. DSP & Multimedia Tech-
nology, June 1994.

[18] Adrian Wise. Introduction To Motion Picture Coding and
the CCITT Algorithm., December 1989.

[19] W. Wolf, et al. Architectural Optimization Methods For
Control Dominated Machines. In R. Camposano and W.
Wolf, editor, High Level VHDL Synthesis. Kluwer Academic
Publishers, 1991.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

