Formal Verification of Embedded Systems based on CFSM Networks *

Felice Balarin, Cadence Berkeley Laboratories, USA
Harry Hsieh, Dpt. of EECS, University of California at Berkeley, USA
Attila Jurecska, Magneti Marelli, Italy
Luciano Lavagno, Politecnico di Torino, Italy
Alberto Sangiovanni-Vincentelli, Dpt. of EECS, University of California at Berkeley, USA

Abstract

Both timing and functional properties are essential to char-
acterize the correct behavior of an embedded system. Veri-
fication is in general performed either by simulation, or by
bread-boarding. Given the safety requirements of such sys-
tems, a formal proof that the properties are indeed satis-
fied is highly desirable. In this paper, we present a formal
verification methodology for embedded systems. The for-
mal model for the behavior of the system used in POLIS is
a network of Codesign Finite State Machines. This model
is translated into automata, and verified using automata-
theoretic techniques. An industrial embedded system is ver-
ified using the methodology. We demonstrate that abstrac-
tions and separation of timing and functionality is crucial
for the successful use of formal verification for this example.
We also show that in POLIS abstractions and separation of
timing and functionality can be done by simple syntactic
modification of the representation of the system.

1 Introduction

Design verification of embedded systems is typically per-
formed by prototyping and simulation. Prototyping is
clearly expensive in terms of turn-around time, and, in addi-
tion, cannot be performed until most of the detailed design is
completed. Simulation is valuable, but for complex systems,
only relatively few input patterns can be tried.

Formal verification is a set of techniques that allow for
proving mathematically that some formally specified prop-
erties are true for a design. Formal verification requires a
formal model of the behavior of a system, as well as the
properties we wish to verify. In our approach to HW/SW
codesign, we describe systems with Codesign Finite State
Machines (CFSM’s) [1], a model that is abstract enough to
include behaviors of all possible implementations. POLIS
[1, 2] is a codesign environment for embedded systems based
on this model.

*This work was partially supported by SRC Contract DC-324-028,
and by MURST under project “VLSI Architectures”.

In this paper, we show how an automata-theoretic ap-
proach to formal verification can be applied to CFSM’s. In
the automata theoretic approach [3], systems are modeled
by finite-state automata, and the language of the automaton
(i.e. a set of sequences of inputs and outputs observable at
the ports of the system) is taken to be the behavior of the
system. The task of formal verification 1s to show that all
these sequences are “acceptable”. Acceptable sequences are
specified as a language of another automaton, so the veri-
fication problem reduces to checking language containment
between two automata.

The main advantages of this approach are that it can be
completely automated, and that it allows conservative ab-
stractions to reduce the complexity of the computation. Let
A be some automaton. If A is modified (say to A’) in a
manner that can only add new sequences, but never elimi-
nate a sequence from the language, then A’ is a conservative
abstraction of A in sense that A satisfies all the properties
that A’ does (i.e. the language of A is contained in all the
languages that the language of A’ is).

Neither CFSM nor automata deal with quantitative tim-
ing issues. In fact, CFSM’s are build on the assumption
that a reaction to an event can take an unbounded amount of
time. This assumption provides an implementation-unbiased
starting point for a verification-driven design methodol-
ogy [2]. The first step in that methodology is to try to
verify the system with unbounded delays. If the verification
fails (as it most often will), the error trace is analyzed in
order to suggest timing constraints necessary to satisfy the
property. Then, the verification is attempted under the as-
sumption that timing constraints are met. If successful, the
used assumptions are recorded as constraints to be met by
the implementation. In this way, a verification tool is used
as design aid to refine the specification of the system.

The rest of this paper is organized as follows. CFSM’s
are reviewed in section 2. The original work on CFSM’s [1]
included automata-based semantics of CFSM’s, but the de-
scription was still abstract, leaving some details unspecified.
Therefore, in section 3, we present a detailed construction
of an equivalent automaton for a CFSM, which also includes
some minor semantic changes in the model that occurred
since the original work. In section 4 we present a case study:
the verification of properties of a real-life design.

2 Codesign Finite State Machines

A Codesign Finite State Machine (CFSM) is basically con-

stituted by a set of input events (each with its associated

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage, the copyright notice, the title of the publication'and its date e t
servers or to redistribute to lists, requires prior specific permssion and/or a fee.
833-9/96/0006..$3.50

by permission of ACM, Inc. To copy otherwise, to republish, to post on
AC 96 - 06/96 Las Vegas, NV, U J1996 ACM, Inc. 0-89791-

pear, and notice is given that copying is

set of values), a set of output events (each with its associ-
ated set of values and possibly with an initial value), and a
transition relation.

The transition relation describes how input events can
cause output events. It is a set of pairs of sets. The first
member of each pair is a set of valuations of input events.
The second one is a set of valuations of output events. Each
transition is triggered by the input events with the appropri-
ate values and emzts the output events with the appropriate
values. The reaction time (i.e. the time between each input
event and each output event) is unbounded and non-zero.

Formally, a CFSM is given by:

e a finite set [of input events,
e a finite set O of output events,

e a finite set V7 C {(¢,v)|¢t € I} of possible valuations of
input events, and a finite set Vo C {(o,v)|o € O} of
possible valuations of output events,

e aset R C Vo of possible initial values of (some) output
events,

e a transition relation ' C {(f1, f)|ff € V1, f© C
Vol.

The operational cycle of a CFSM goes through the follow-
ing four phases:

1. idle,
2. detect input events,

3. transition, according to which events are present and
match a transition relation element,

4. emit output events.

3 Modeling CFSM’s with Automata

We interpret CFSM’s as automata with one-place input
buffers to store incoming events, and one-place output
buffers to store events to be emitted. More precisely, for
any CFSM C we construct an automaton C' whose alphabet
consists of all possible assignments to the set of variables
containing:

o for every input ¢ € I: a binary variable #i (indicating an
occurrence of the corresponding event), a multi-valued
variable ¢ (indicating a value of the event), and an aux-
iliary binary variable aux_* t,

o for every output o € O: a binary variable xo (indi-
cating an occurrence of the corresponding event), a
multi-valued variable o (indicating a value of the event),
an auxiliary binary variable auz_* o, and an auxiliary
multi-valued variable auz_o,

e a binary variable go indicating an occurrence of a tran-
sition.

The automaton C'is built as the composition of the fol-
lowing automata:

e one “input-buffer” automaton I B; for every input ¢ € I,

e one “output-buffer” automaton OB,, and one “output-
value-buffer” OV,, for every output o € O,

o the main automaton M.

The main automaton M is a single-state automaton that
accepts only those signals which are consistent with the tran-
sition relation of the CFSM C. It communicates with other
automata through auxiliary variables, which are then appro-
priately buffered by other automata. It also sets variable go
to indicate when transitions are taken. More precisely, the
transition relation of M contains the following assignments
to alphabet variables:

e go = 0, aux_* o = 0 for all outputs o, and arbitrary
values of all other variables (these transitions model

idling),
o for every (f7,f°) in the transition relation of the
CFSM:
- go= 17

—aur_+i=1,1=vif (i,0) in 1, and auzr_*1 =0,
i arbitrary if Yo : (i,v) € f7,

— aur_xo =1, aur_o = v if (0,v) in £, and aus_*
0 =0, aur_o arbitrary if Vo : (0,v) & £°.

— ¢ for every input ¢ € I, and *o and o for every
output o € O all arbitrary.

The input-buffer automaton I B; has a single binary state
variable indicating whether an event i has occurred since
the last transition of an CFSM. When the CFSM transitions
(i.e. when go = 1), it will pass that information to the main
automaton, by assigning the appropriate value to variable
auz_*1. More precisely, the initial value of the state variable
is 0, and the transition relation is given by:

if go = 1 then {auz_* 1 := state V x1i; state := 0;}
else {auz_x1 := 0; state := state V *i; }

Note that if 2 occurs at the same time as go, then it is not
latched. Instead, it is passed to aux_* 1.

The output-buffer automaton OB, has a single binary
state variable indicating whether there is an event which
has to be emitted as a part of the previous transitions. The
event can be emitted at any time after the transition, but no
later than at the time of the next transition. Whether the
event is to be emitted is signaled at the time of transition by
the main CFSM through the variable auz_* o. The initial
value of the state variable is 1 if some initial value is spec-
ified for that event, and 0 otherwise. Formally, the initial
value is 1if (i, v) € R for some v. The transition relation of
OB, is given by:

if go = 1 then {*0 := state; state := auz_*o0;}
else choose *0 := 0;
or {x0 := state; state := 0;}

where the construct “choose A or B” indicates that either
A or B are randomly chosen to be executed.

The output value buffer automaton OV, maintains the
value of the event. When a CFSM makes a transition that
emits o, OV, stores its value in variable int (for internal),
and when the event is actually emitted, it makes that value
visible to the rest of the world by moving it to the state
variable ext (for external). More precisely, the transition
relation is:

if *0o =1 then {0 := ini; ext := int; }
else o = ext;
if auz_* o =1 then int := auzr_o

The initial value of int is arbitrary. If some initial values for
o are specified in R, then ext can initially take any of these
values. Otherwise, the initial value of ext is arbitrary.

4 A Case Study

In this section we present the verification of a shock absorber
controller [4]. The controller sets shock absorbers’ motors
to HARD, MEDIUM, or SOFT level, according to values
from a set of sensors: steering wheel, vertical acceleration,
speed, and battery voltage. The system consists of modules
that compute the horizontal speed, horizontal acceleration,
vertical acceleration, steering angle and steering speed from
the input sensors, and suggest the shock absorber level based
on the appropriate look-up table, a module that signals if the
battery voltage is out of the given range, and a module that
records current suggestions of all other modules and sets the
motors to the hardest of suggested values.

During normal operation, the output is continuously up-
dated according to input sensors. At the same time, input
modules continuously check input sensors for erroneous con-
ditions, and signal if such a condition is detected. The spec-
ification requires seven different conditions to be checked,
and appropriate actions to be taken if these are detected. In
this paper we present in detail verification of the following
condition and action:

P1: Speed parasitic(glitch): If the speed sensor indicates
impossibly high speed on more than three occasions,
the shock absorbers are to be set to HARD until the
RESET event occurs.

Since all other properties have a similar form, they are ver-
ified in a similar way. Verifying one property at a time en-
ables us to abstract events and modules not related to the
property at hand.

We now describe in detail intended behavior of the sys-
tem relevant to property at hand. The error is first de-
tected by the module called SPEED_DIAG_PAR. To under-
stand the behavior of that module more precisely, we first
need to explain how speed is calculated. The speed sensor
generates a sequence of events (called SPEED_SENS), the
frequency of which is proportional to the speed of the ve-
hicle. Speed is calculated by counting clock events (called
CLOCK_500) between any two occurrences of SPEED_SENS
events. The count is stored in variable D_TIME. Even at the
highest possible speed of the vehicle, there can be no less
than 6000 CLOCK_500 events between two SPEED_SENS
events. Thus, if D_TIME is less than 6000 when the new
SPEED_SENS event occurs, that must be a parasitic signal
(glitch). Upon detection of a glitch no immediate action is
taken. However, the number of detected glitches is recorded
(in variable MIN_TPAR_NUM), and if that number is larger
or equal than 3, then an error event (called ERR_PAR) is
emitted.

The ERR_PAR event is received by a module called
MOT_CTRL.DAMAGE. It records error events from all the
input modules (including SPEED_DIAG_PAR), and gener-
ates the DAMAGE event with a value HARD, MEDIUM, or
SOFT, as required by the specification. This error status is
stored and can only be cleared upon RESET.

The DAMAGE event is received by a module called
DRIVER. It also receives another event called COM-
MANDLIN (the suggested setting of motors computed from
look-up tables used in normal operation), stores them both,
and generates the COMMAND_OUT event with the harder
of two values.

The verification can be further simplified by decomposing
a property into “local” sub-properties that each module must

satisfy. In particular, we prove property P1 by proving the
following:

P1.1: If the speed sensors indicate impossibly high speed
at least three times and no RESET events occur, then

ERR_PAR event will be generated.

P1.2: If the MOT_.CTRLDAMAGE module receives
ERR_PAR event, and no RESET events occur, then
a DAMAGE event with a value HARD will be gener-
ated, and no DAMAGE event with some other value
will be generated before the RESET event occurs.

P1.3: If the DRIVER module receives DAMAGE event
with value HARD, then the setting of the shock ab-
sorber will be set to HARD, and the setting will not
change until either a RESET event, or a DAMAGE

event with a value other than HARD occur.

Often, properties decompose naturally into local sub-
properties, and a simple check is needed to verify that sub-
properties indeed imply the desired property, but this is not
always true. Finding a good decomposition can be a hard
task, and it cannot be completely and efficiently automated.
Also, in non-trivial cases one needs to use another formal
technique (e.g. automated theorem proving), to show that
sub-properties imply the property.

4.1 Verifying property P1.1

The precise formulation of the error condition is as complex
(and thus as error-prone) as the description of the module.
To avoid the problem of false property specification, we ver-
ify the following simple property instead:

P’1.1: If four SPEED_SENS events occur between two
CLOCK_500 events, then ERR_PAR event is generated.

This obviously covers only a small portion of the intended
behavior, but it is often the case that such simple “sanity
checks” reveal interesting bugs in the system.

The automaton obtained from the CFSM description of
the original module by the procedure described in section 3
has 141 binary latches. The formal verification tool HSIS [5]
runs out of the 480Mb of main memory before even con-
structing the internal representation.

Verification with abstracted integers

The CFSM, on closer inspection, consists mainly of two 16-
bit integers used as counters, and two comparators compar-
ing these integers to constants. However, for the property we
are interested in only one value of D_TIME is distinguished:
0, indicating that no CLOCK_500 events have occurred be-
tween two SPEED_SENS events. We can thus abstract this
counter to only two states: “0” and “> 07, and modify the
comparator and incrementer accordingly. If the input of the
incrementer is 0, the output must be > 0, and if the input
is > 0 the output is chosen non-deterministically to be > 0
or 0 (due to possible overflow). Similarly, the comparator
checking whether D_TIME is less then 6000 is modified so
that if its input is 0 the output is 1, and if its input is > 0,
the output is either 0 or 1. In a similar way, we abstract
MIN_TPAR_NUM to four distinguished values: 0, 1, 2, and
> 3. These abstraction introduces some new behaviors (e.g.
when the actual value of D_TIME is larger than 6000 but
the comparator still outputs 1), but these additions do not
affect the outcome of verification. It is important to notice

that this abstraction can be done automatically by syntactic
modification of the intermediate description of the system,
so that the size of the description is guaranteed not to in-
crease. However, deciding which abstractions are consistent
with the property is as hard as the original verification prob-
lem, so the user guidance is crucial in this step.

With these abstractions, building and verifying the model
takes less than 10 seconds. Unfortunately, the property
fails. The error trace indicates that the CFSM can react too
slowly, so SPEED_SENS events can be over-written without
being sensed by the CFSM (e.g. if it is not assigned a high
enough priority by the scheduler).

Verification under timing assumptions

Indeed, the property can be satisfied only if some timing
assumptions are made about the CFSM. We will follow the
usual methodology of separating timing and functional prop-
erties as much as possible. More precisely, we will ver-
ify the conditional property: “if the CFSM reacts to ev-
ery SPEED_SENS event, then the property holds”. Such a
property is local, i.e. it depends only on the behavior of the
CFSM. On the other hand, verifying that indeed the CFSM
reacts to every SPEED_SENS event is a separate problem
with which we will not deal here. We will just note that it
is a hard problem, because it involves the characteristics of
the hardware, of all the other tasks in the system, as well as
those of the scheduling algorithm.

Fortunately, there is a very simple way to restrict the
behavior of the system to the case where no input events are
ever over-written. It suffices to remove from the transition
relation of the input buffers IB; all elements where state
and *z are both 1. Again, this modification requires a simple
syntactic change on the intermediate description, which does
not affect its size.

The conditional property showed an error in the design.
Under the original specification, the property is not satisfied
if the error condition occurs immediately after initialization.
After correcting this error, the conditional property is veri-
fied in less than 10 seconds of CPU time.

4.2 Verifying property P1.2

The automaton modeling MOT_CTRL_DAMAGE has 81 bi-
nary latches. The tool HSIS [5] could not construct the in-
ternal representation of the module even after several hours
of computation time.

Timing assumptions and freeing variables

For the property at hand, values of all internal variables
except the one holding the value of ERR_PAR, are irrelevant.
We can thus “free” them, i.e. allow them in every execution
step to take any value from their respective domains, and
remove from the model all computation of these variables.
Again such an abstraction can be done automatically with
a single pass through the intermediate description of the
system, but deciding which variables can be freed is generally
a hard problem.

With this abstraction the verification time is reduced to
few seconds. The property is verified under the assumption
that the system cannot ignore forever an input event. Note
that this is a weaker assumption than the one requiring that

every input event is reacted to, because it still allows “over-
writing” of input events. The verification of the conditional
property takes less than a minute of CPU time.

4.3 Verifying property P1.3
The module DRIVER is simple enough that it can be verified

without any abstractions. During the verification, an error
was found: (DAMAGE event was ignored if COMMAND_IN
event was occurring simultaneously). After correcting the
description of the DRIVER module, the property is verified.

5 Conclusions

We showed how the behavior of Codesign Finite State Ma-
chines can be represented by automata with a reasonably
small increase in the size of the representation. We have
also showed on a real example how existing formal verifica-
tion tools can be used to verify properties of CFSM’s.

In course of this exercise we have observed that reactive
systems of interest often have state spaces which are too
large to handle for existing formal verification tools, thus
the use of abstraction is crucial. Typical abstractions can
often be performed automatically, by syntactic modification
of the intermediate representation of automata. However,
choosing the abstraction that is appropriate for the property
to be verified can only be done by a designer with knowledge
of the intended behavior of the system.

We have also observed that even though CFSM’s are based
on the unbounded delay assumption, most of the properties
can be verified only if some timing constraints are imposed
on the behavior of CFSM. The assumption of the CFSM re-
acting to every input events provides a convenient way to
separate timing and functional considerations. Restricting
the behavior of the system such that the assumption is sat-
isfied can also be performed by simple syntactic modification
of the intermediate representation.

References

[1] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.. Lavagno,
and A. Sangiovanni-Vincentelli. A formal specification
model for hardware /software codesign. Technical Report

UCB/ERL M93/48, U.C. Berkeley, June 1993.
[2] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.. Lavagno,

and A. Sangiovanni-Vincentelli. A formal methodology
for hardware/software codesign of embedded systems.

IEFE Micro, August 1994.

[3] R. P. Kurshan. Automata- Theoretic Verification of Co-
ordinating Processes. Princeton University Press, 1994.

[4] L. Lavagno, M. Chiodo, P. Giusto, H. Hsieh, S. Yee,
K. Suzuki, A. Jurecska, and A. Sangiovanni-Vincentelli.
A case study in computer-aided codesign of embedded
controllers. In Proceedings of the International Workshop
on Hardware-Software Codesign, 1994.

[5] T. Shiple, A. Aziz, F. Balarin, S. Cheng, R. Hojati,
T. Kam, S. Krishnan, V. Singhal, H. Wang, R. Brayton,
and A. Sangiovanni-Vincentelli. Formal design verifica-
tion of digital systems. In Proceedings of TECHCON,
1993.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

