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Abstract

We reduce the state explosion problem in automatic verification of
finite-state systems by automatically collapsing subgraphs of the
state graph into abstract states. The key idea of the method is to
identify state generation rules that can be inverted. It can be used
for verification of deadlock-freedom, error and invariant checking
and stuttering-invariant CTL model checking.

1 Introduction

Formal verification methods that rely on state enumeration are very
effective in catching errors in designs. However, such methods
suffer from the state explosion problem: the vast number of possi-
bilities cannot be explored within available time and memory. The
number of possibilities usually grows exponentially with number of
components in the system.

Although many techniques (e.g. BDDs [1, 3]) have been de-
veloped to tackle the state explosion problem, a lot of practical
designs are still too complicated for automatic verification, espe-
cially for high level systems or protocols [8]. In this exposition, we
identify certain regularities in the state space of a typical message-
passing protocol and use them to generate a reduced state space for
verification. The reduced state space can be explored using any
conventional verification algorithms, such as explicit state enumer-
ation or symbolic model checking. In particular, we use the explicit
state enumeration algorithm in the Mur' verifier [4] to generate the
results presented.

The new method converts a state space to a reduced state space
by firstly identifying a subset of state generation rules as reversible
rules, and then collapsing every subgraph connected by the re-
versible rules into an abstract state. The abstract state is represented
by a unique state of the subgraph, called the progenitor of the sub-
graph.

The properties of the reversible rules make sure that every state in
a subgraph can be generated from the progenitor via the reversible
rules, and each state can be mapped back to the progenitor by
reverse execution of the reversible rules. Compared to conventional
abstraction [7], our method does not require the user to provide a
suitable abstract domain and does not produce false negative results
as one often found with badly chosen abstract domains. It can be
used for the verification of deadlock-freedom, error and invariant
checking, and stuttering-invariant CTL model checking (c.f. [11]).
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Our main goal is to reduce the amount of memory used in storing
the examined states. In several message-passing protocols, the
reductions of state space sizes are from 30% to more than 90%. Less
time is used for most of the protocols, also. Our new method also
complements the symmetry reduction strategy [9, 2, 5], allowing
for additional reductions when the two methods are combined.

2 An Example

In this section, we illustrate our method through a cache coher-
ence protocol [12]. Cache coherence is a way of implementing a
shared-memory abstraction on top of a message-passing network.
Whenever a processor wants to load a cache entry into its cache, it
sends a request to the memory, which keeps track of which proces-
sors have read-only copies or writable copies of the cache entry, as
well as the associated data.
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Figure 1: A Motivating Example

Lets take a look at a typical state graph of such a protocol, as
shown in Figure 1. In subgraph A, the second processor has an
invalid cache entry and no outstanding requests (processor state I),
and it has two options: to issue a request for a read-only copy
(processor state a) or a writable copy (processor state b). Such
transitions are legal regardless of what the other processors and the
memory are doing (processor state c).

These transition rules also lead to state explosion: in subgraphB,
9 states are generated from two processors in state I . In general, 3k

states are generated from the state with k processors in the processor
state I . If we collapse these subgraphs into abstract states, we can
obtain a smaller state graph for verification.

In order to do so, we take advantage of the reversible property
of these transition rules: the information in the next state and the
transition rule is sufficient to reconstruct the original state. This
reversible property allows us to reverse execute the rules to find the
progenitor.

3 Background

In this section, we summarize the background for automatic formal
verification using state space exploration.
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A state graph (a Kripke structure) represents the behavior of a
system by capturing all possible sequences of system states. In its
simplest form, it is a quadruple hQ;Q0;∆; errori, where Q is a set
of states, Q0 � Q is a set of initial states, error 2 Q is a unique
error state, and ∆ � Q �Q is a transition relation such that error
transits only to error.

A state graph can be definedimplicitly by a set of transition rules,
T , where each rule maps a state to a successor state. Formally, for
all q1; q2 2 Q, we have (q1; q2) 2 ∆ if and only if there exists t 2 T

such that q2 = t(q1).
We usually denote (q1; q2) 2 ∆ as q1 �! q2, denote q2 = t(q1)

as q1
t

�! q2, and denote qn = tn(:::t1(q0):::) as q0
t1:::tn
�! qn. A

finite sequence of states q0; : : : ; qn is called a path if and only if
q0 �! q1 �! ::: �! qn. A state q is reachable from p if and only
if there exists a path p; :::; q.

Because of limited space, we state theorems for error and invari-
ant checking only: the system contains an error if and only if error
is reachable from the initial states. If the reversible rules preserve all
atomic propositions in a CTL formula, the reduced state space can
be used for stuttering-invariant CTL model checking. To check for
freedom from deadlock, every state in the subgraph generated from
a progenitor has to be checked explicitly to see if it is a deadlock
state.

4 The Abstract State Space

First of all, we define the reversible rule set as follows:

Definition 1 (reversible rule set) Given a state graph
hQ;Q0;∆; errori generated by the transition rules T , the subset
U � T is a reversible rule set if and only if

� For all q 2 Q; r 2 U , if q 6= error, then r(q) 6= error.

� For all r 2 U , there exists a function r� such that for all q 2 Q,
if there exists a unique q0 2 Q such that q0 6= q ^ r(q0) = q,
then r�(q) = q0. Otherwise, r�(q) = q.

� For all q 2 Q and r1; r2 2 U , we have r�1 (r
�

2 (q)) =
r�2 (r

�

1 (q)). There exists an integer n such that for all q 2 Q

and r 2 U , we have (r�)n+1(q) = (r�)n(q).

For every state, the properties of the reversible rules allow us to
“undo” the effect of the reversible rules until we reach the progenitor,
in which nothing can be undone:

Definition 2 (progenitors) Given a state graph hQ;Q0;∆; errori
generated by transition rules T , and a reversible rule setU � T , a
state q 2 Q is a progenitor if and only if for everyr 2 U; r�(q) = q.
A progenitor q is a progenitor of a state q0 if and only if there exist
r1; :::; rn 2 U , such that q

r1;:::;rn
�! q0 .

For example, in a cache coherence protocol, if every reversible
rule generates a new request message, a state with no request in the
network is a progenitor. The properties of the reversible rules allow
us to find the progenitor easily:

Theorem 1 (uniqueness of progenitor) Given a state graph
hQ;Q0;∆; errori generated by transition rules T , a reversible rule
set U = fr1; :::; rng � T , and an integer n such that for all q 2 Q

and r 2 U , (r�)n+1(q) = (r�)n(q), we have that for all q 2 Q,
the unique progenitor for q is �(q) = (r�m)n(:::((r�1 )

n(q)):::).

We use the progenitor �(q) to represent the set of states reachable
from �(q) via the reversible rule set:

Definition 3 (reduced state graph by progenitors) Given a state
graph A = hQ;Q0;∆; errori generated by transition rules T ,
and a reversible rule set U � T , the reduced state graph
AU = h�(Q); �(Q0); �(∆); errori is defined as

� �(Q) = f�(q)jq 2 Qg and �(Q0) = f�(q)jq 2 Q0g

� (q1; q2) 2 �(∆) if and only if there exist q 2 Q and t 2 T n U
such that �(q) = q1 and �(t(q)) = q2 .

The on-the-fly reduction algorithm for error and invariant check-
ing is shown in Figure 2. Every state in the subgraph represented
by a progenitor is generated using a local search in the procedure
Local Search(). The next states of each state are generated using
the rules in T n U , and they are converted to the corresponding
progenitors for comparison and storage. The changes from a con-
ventional search algorithm are highlighted by a left vertical bar or
an underline.

Algorithm 1() f
Reached = Unexpanded = f �(q) j q 2 Q0g

While Unexpanded 6= ; Do
Remove a state s from Unexpanded
Local Search(s) g

j Local Search(state s) f
j Local Reached = Local Unexpanded = fsg
j While Local Unexpanded 6= ; Do
j Remove a state s from Local Unexpanded
j Generate Original Next States(s);
j For each transition rule r 2 U Do
j Let s0 = r(s) in
j If s0 is not in Local Reached then
j Put s0 in Local Reached and Local Unexpandedg

Generate Original Next States(state s) f
For each transition rule t 2 T nU Do

Let s0 = t(s) in
If �(s0) = error then stop and report error
If �(s0) is not in Reached then

Put �(s0) in Reached and Unexpanded g

Figure 2: Algorithm 1

Algorithm 1 is similar to a state space caching algorithm [10], in
which some of the original states generated are not stored in the hash
table. However, we discard the states only when it can be determined
from the existing states in the hash table that those discarded states
have already been examined. Therefore, our method never expands
a state more than once.

In the subsequent lemmas and theorems, we use (subscripted)
q to represent a state in Q, (subscripted) r to represent a rule in
U , (subscripted) t to represent a rule in T n U , and (subscripted)
k to represent a non-negative integer. Furthermore, we denote a

transition in the reduced state graph as q1
t

=) q2 if there exists
q 2 Q such that �(q) = q1 and �(t(q)) = q2.

Lemma 1 Given a state graphA= hQ;Q0;∆; errori generated by

transition rules T , and a reversible rule setU � T , if q0
r1;:::;rk ;t
�! q

is in A, then �(q0)
t

=) �(q) is in AU .

Theorem 2 (soundness) Given a state graph
A = hQ;Q0;∆; errori generated by transition rules T , and a re-
versible rule setU � T , if error is reachable from the initial states
in A, error is also reachable from the initial states in AU .
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In the remainder of this section we show that under an extra
condition, called the essential properties, the reduction is also com-
plete. The essential properties imply that for every state pair q; q0

and every essential rule r such that r(q) = q0 , if q0 is reachable
from the initial states, q is also reachable from the initial states.

Definition 4 (essential rule set) Given a state graph
hQ;Q0;∆; errori generated by transition rules T , the rule setU �

T is an essential rule set if and only if

� for all q 2 Q0, we have �(q) 2 Q0.

� for all r 2 U , t 2 T n U , if there exist distinct q0; q1; q
0

1 6=

error such that q0
t

�! q1 and q01
r
�! q1, then there exists

q00 2 Q such that q00
r
�! q0 and q00

t
�! q01.
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Lemma 2 Given a state graph A = hQ;Q0;∆; errori generated
by transition rulesT , and a reversible and essential rule setU � T ,

if q0
t

=) q1 is in AU , there exist r1; :::; rk 2 U such that

q0
r1;:::;rk ;t
�! q1 is in A.

Theorem 3 (completeness) Given a state graph
A = hQ;Q0;∆; errori generated by transition rules T , and a re-
versible and essential rule setU � T , if error is reachable from the
initial states in AU , error is also reachable from the initial states
in A.

The same reduced state graph and the same algorithm shown in
Figure 2 can be used for verification using a reversible and essential
rule set.

5 Speeding up the Generation of the Abstract
State Space

In the previous section, we have discussed how we can reduce the
number of states stored. However, every originally reachable state
is visited during the local search phase of the algorithm, and the
time required to generate the reduced state graph would be longer
than the time required to generate the original state graph. In this
section, we present a condition which allows great reductions in the
amount of local search required to generate the same reduced state
graph.

Consider the state graph in Figure 1. There are redundant tran-
sitions between subgraph A and subgraph B: the transition t was
fired twice, once from hb; Ii and once from hb; bi. In this case,
it is not necessary to consider hb; bi to generate the reduced state
graph: every transition from hb; bi has a corresponding transition
from hb; Ii or hI; bi.

The intuition is that the result of a transition often depends only
on the immediate execution of at most one reversible rule. For ex-
ample, considera message-passingprotocol in which each transition
checks and removes at most one message from a network, and that
every reversible rule generates at least one message. If a transition t
depends only on the message generated by a reversible rule r1, an-
other reversible rule r2 can be executed or reverse executed without
affecting the execution of t. We call this the singularity property of
r1 and r2. With this property, it is sufficient to apply the transition
rules only to the progenitors and their immediate successors.

Formally, the singularity property is defined as:

Definition 5 (singularity) Given a state graph hQ;Q0;∆; errori
generated by transition rules T , and a reversible rule set U � T ,
the rule set U is singular if and only if for all distinct q1; q2; q3; q4

such that q1
r1
�! q2

r2
�! q3

t
�! q4, we have either q1

r1;t;r2
�! q4 or

q1
r2;t;r1
�! q4 .

Therefore, for a state q that is neither a progenitor nor an im-
mediate successor of a progenitor, no transition from q needs to be
searched:

This rule does not need
to be executed.

r1

r2

t

t

r2

Lemma 3 Given a state graph A = hQ;Q0;∆; errori generated
by transition rules T , and a singular reversible rule set U � T ,

if q
r1;:::;rk ;t
�! q0 , then there exists rj such that q

rj ;t

�! q00 and
�(q00) = �(q0).

Theorem 4 (fast reduced state graph generation) Given a state
graph hQ;Q0;∆; errori generated by transition rules T , and a
singular and reversible rule set U � T , we have (q1; q2) 2 �(∆) if
and only if there exists t 2 T n U such that �(t(q1)) = q2 or there
exists r 2 U such that �(t(r(q1))) = q2.

Hence, the algorithm can be speeded up to the one shown in
Figure 3 if we are not checking for deadlock-freedom. In this
algorithm, the number of states examined in the local search is
greatly reduced. As shown in Table 1, the practical results for an
industrial cache coherence protocol (ICCP) confirmed that many
fewer states were examined and the verification finished in a much
shorter time.

Algorithm 2() f
Reached = Unexpanded = f �(q) j q 2 Q0g
While Unexpanded 6= ; Do

Remove a state s from Unexpanded
Local Search(s) g

Local Search(state s) f
j Local Reached = fsg
j Generate Original Next States(s)
j For each transition rule r 2 U Do
j Let s0 = r(s) in
j If s0 is not in Local Reached then
j Generate Original Next States(s) g

Generate Original Next States(state s) f
For each transition rule t 2 T nU Do

Let s0 = t(s) in
If �(s0) = error then stop and report error
If �(s0) is not in Reached then

Put �(s0) in Reached and Unexpanded g

Figure 3: Algorithm 2

While the singularity property and partial order reduction [13, 6]
seem to have superficial similarity, there are applications that one
does better than the other and neither method dominates the other.
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ICCP: 4 processors states stored states examined time
Original (with
(unordered network) 247,565 247,565 205s
Alg. 1 34,005 247,565 338s
Alg. 2 34,005 123,197 128s

ICCP: 5 processors states stored states examined time
Original (with > 6,500,000 states
unordered network)
Alg. 1 492,075 6,568,279 4 hours
Alg. 2 492,075 2,206,135 66 mins

Table 1: Comparison of Different Reduction Algorithms

6 Reversible Rules and Symmetry

Reduction using reversible rules is orthogonal to the reduction using
symmetry. Symmetry can be defined as an automorphism on the
state graph and the transition rules [9]. States p; q are symmetric if
there is an automorphismh such thath(p) = q. In order to combine
symmetry and reversible rules to obtain an even smaller state graph,
the reversible rule set must also be symmetric:

Definition 6 (symmetric rule set) Given a state graph
hQ;Q0;∆; errori generated by transition rules T , and a set of
automorphismsH , a rule set U � T is symmetric if and only if for
all r 2 U and h 2 H , we have h(r) 2 U .

Theorem 5 A set of automorphismsH on the state graphA is also
a set of automorphismsonAU if U is both symmetric and reversible.

7 Practical Results

For the results here, the reversible rules were identified manually.
However, although not implemented in our verifier yet, these re-
versible rules can be automatically detected by a combination of
programming language design and static analysis of the description
of the system, similar to the one in [9].

The verification results for the following protocols are presented
in Table 2:

� an industrial directory-based cache coherence protocol
(ICCP);

� the Stanford DASH multiprocessor cache coherence protocol
(DASHC) and lock protocol (DASHL) [12];

� distributed linked-list protocols (LIST1,LIST2).

For these protocols, a processor typically issues a request on the
network, and becomes blocked until a message arrives from the
network. Since the messages in the network are received one by
one, these transition rules form a symmetric, singular, reversible
and essential rule set.

For ICCP, there are five reversible rules for each processor; the
space and time reduction obtained are therefore very large. For
LIST1 and LIST2, there are two reversible rules for each processor;
the space reduction obtained are still quite large. DACHC and
DACHL have fewer reversible rules, and the reductions are not as
large as the other applications.

The results shown are for systems with a small number of pro-
cessors only, because we need to be able to generate the original
state graphs for comparison purposes. In fact, using the reduction
with reversible rules allows us to verify these systems for a much
larger size, and also other systems of much higher complexities.

ICCP LIST1 LIST2 DASHC DASHL
(p4) (p4) (p4) (p3) (p3)

Original size 247,565 301,029 329,601 26,925 55,366
Size (r) 34,005 112,784 162,736 15,751 36,728
Size (s) 11,814 13,044 13,959 4,575 9,313
Size (s/r) 1,760 4,926 6,894 2,672 6,170

Original time 205s 87s 250s 114s 188s
Time (r) 128s 72s 239s 85s 213s
Time (s) 28s 13s 24s 63s 96s
Time (s/r) 13s 11s 22s 50s 96s

ICCP p4 p5 p6 p7 p8
Original size 247,565 > 6,500,000 states
Size (s) 11,814 68,879 358,078 > 1,500,000 states
Size (s/r) 1,760 6,021 18,118 49,045 121,302
Original time 205s – – – –
Time (s) 28s 349s 3,762s – –
Time (s/r) 13s 98s 615s 3,283s 12,801s

s : Symmetry Reduction
r : Reversible Rules Reduction
phni : n-processor system

Table 2: Practical Results
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