
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Techniques for Verifying Superscalar Microprocessors

Jerry R. Burch
Cadence Berkeley Laboratories

Abstract

Burch and Dill [3] described an automatic method for
verifying a pipelined processor against its instruction
set architecture (ISA). We describe three techniques for
improving this method. We show how the combination
of these techniques allows for the automatic verifica-
tion of the control logic of a pipelined, superscalar
implementation of a subset of the DLX architecture.

1 Introduction

Burch and Dill’s [3] method for verifying microprocessor control
circuitry is based on a logic (known as the quantifier-free subset
of first-order logic with equality and uninterpreted functions) that
allows for the abstraction of datapath values and operations. That
is an advantage over propositional logic, which requires that indi-
vidual bits be modeled explicitly.

Jones, Dill and Burch [10] extended this work by developing a
faster validity checking algorithm. The resulting method is more
powerful (when applied to processor verification) than other auto-
matic methods [1, 5] and is more automatic than methods based on
theorem provers [4, 6, 9, 12, 13].

This paper has four major contributions. The first is a method
for splitting up the verification into parts, as described in section 3.
This split makes the logical formulas that need to be checked simpler
than they would otherwise be. It is also easier for the user to reason
about how to keep the implementation and the specification “in
sync” during verification.

The second contribution is a way of constructing abstraction
functions that are smaller and easier to check (abstraction functions
are described in section 2). This involves making a small mod-
ification to implementation by adding extra control inputs so that
flushing the processor can be controlled or scheduled (see section 4).
The abstraction function is made simpler because any variability of
instruction flow during flushing (due to interlocks, etc.) is removed.

The third contribution is a new simplification algorithm that
makes it easier to check the validity of the formulas constructed
during verification (see section 5). This simplification algorithm
combines ideas from logical rewrite rules and from the use of ob-
servability don’t cares in logic synthesis. When combined with the
above two techniques, it can simplify most of the relevant formulas
to be identically true. Also, it has complexity polynomial in the size
of the input DAG of the expression being simplified. In practice,
the CPU time needed grows roughly linearly in the DAG size.

hformulai ::= ite(hformulai; hformulai; hformulai)

j :hformulai

j (hformulai _ � � � _ hformulai)

j (htermi = htermi)

j hpredicate symboli(htermi; . . . ; htermi)

j hpropositional variablei j true j false

htermi ::= ite(hformulai; htermi; htermi)

j write(htermi; htermi; htermi)

j read(htermi; htermi)

j hfunction symboli(htermi; . . . ; htermi)

j hterm variablei:

Figure 1: Abstract syntax of our subset of first-order logic.

The final contribution is an empirical result showing how the
combination of the above techniques allows for the automatic ver-
ification of the control logic of a pipelined, superscalar implemen-
tation of a subset of the DLX architecture (see section 6). To our
knowledge, this is the first time a superscalar processor model has
been formally verified against its instruction set architecture, using
either manual or automatic methods.

2 Preliminaries

This section gives a brief overview of the method of Dill et al. for
verifying processors [3, 10].

Quantifier-free, first-order logic with equality and uninterpreted
functions is more expressive than propositional logic but less ex-
pressive than full first-order logic. An example of a formula in the
logic is:

ite(f(a) 6= f(b); (a 6= b); true):

The operator ite stands for “if-then-else”. The symbol f is an
uninterpreted function because we do not have in mind a particular
meaning for f . The above formula is valid, that is, it is true for
every possible assignment of a function to f and values for a and b.

The abstract syntax of the logic is given in figure 1. The ite

operator may be used to construct a formula (returning a Boolean
value) or a term. The ite operator together with the truth constants
true and false is sufficient for representing all Boolean operators.
However, logical negation and disjunction are included because
they allow for more efficient simplification and validity checking
algorithms on the logic.

It is helpful when verifying processors to be able to reason about
stores (memories) such as register files, caches, or main memory. A
store is modeled as a function from an address to the data stored at
that address. The operations read and write are used to manipulate

stores. The expression read(s; a) is the value of store s at address
a. The expression write(s; a; d) is the store that has the value d at
address a, and the same value as s for any other address.

This model of stores is very abstract. A store contains no
information about the sizes of its addresses or values. If a design
can be proved correct under this model, then it is correct for any
actual implementation with a known memory size.

When expressions in the logic are manipulated by the verifica-
tion tool, they are all represented with a single, multi-rooted ex-
pression DAG. Common subexpressions are included only once in
the DAG, so pointer comparison is sufficient to check whether two
expressions are syntactically identical. Typically the expression
DAGs are several orders of magnitude smaller than the correspond-
ing expression trees. Rewrite rules are used to simplify expressions,
but the expressionsare not put into a canonical form. For this verifi-
cation method, letting the structure of the system be reflected in the
structure of the expressions that are constructed is more beneficial
than using a canonical form for expressions.

In Burch and Dill’s method, the user provides behavioral de-
scriptions of the implementation and specification. For processor
verification, the specification (the instruction set architecture) de-
scribes how the programmer-visible parts of the processor state are
updated when one instruction is executed every cycle. The imple-
mentation description should be at the highest level of abstraction
that still exposes relevant design issues, such as pipelining.

Each description is automatically compiled into a transition
function, which is encoded as a vector of symbolic expressions
with one entry for each state variable. Any HDL could be used
for the descriptions, given an appropriate compiler. Our prototype
verifier used a simple HDL based on a small subset of Common
LISP. The compiler translates behavioraldescriptions into transition
functions through a kind of symbolic simulation.

We write FImpl to denote the transition function of the imple-
mentation, and we write FSpec to denote the transition function of
the specification. By using appropriate control inputs, almost all
pipelined processors can be made to continue execution of instruc-
tions already in the pipeline while not fetching any new instructions.
This is typically referred to as stalling the processor. We define
FStall to be a function from implementation states to implementa-
tion states that represents the effect of stalling the implementation
for one cycle.

All instructions currently in the pipeline can be completed by
stalling for a sufficient number of cycles. This operation is called
flushing the pipeline. We use the function FFlush to model the act of
flushing the pipeline. For some sufficiently large integer k,

FFlush = F
k

Stall;

where F
k

Stall denotes k applications of the function FStall. It is
possible that an incorrectly designed processor may not flush no
matter how many cycles it is stalled. It can be shown that such
a processor will not satisfy the correctness criteria given below,
however, so the bug would be caught.

Intuitively, the verifier should prove that if the implementation
and specification start in any matching pair of states, then the re-
sult of executing any instruction will lead to a matching pair of
states. The primary difficulty with matching the implementation
and specification is the presence of partially executed instructions
in the pipeline. Various parts of the implementation state are up-
dated at different stages of the execution of an instruction, so it is
not necessarily possible to find a point where the implementation
state and the specification state can be compared easily.

This problem is solved by defining an abstraction function h

that maps an implementation state to a specification state. The
function h is given by

h(QImpl) = proj (FFlush(QImpl));

�
�
�
�

�
�
�
�

-FImpl

-
F
m

Spec

?

h

?

h

Figure 2: Commutative diagram for the correctness criteria.
Squares designate implementation states; circles designate speci-
fication states.

where the function proj converts an implementation state to a spec-
ification state by simply stripping off all but the programmer-visible
parts of the implementation state.1

Using the abstraction functionh, the correctness criteria is given
by

8QImpl 9m [h(FImpl(QImpl)) = F
m

Spec(h(QImpl))]: (1)

The integer m is needed to keep the implementation and the spec-
ification “in sync”. For example, if the processor does not fetch
an instruction in state QImpl (due to a load interlock, say), then m

would be zero. For a superscalar processor, m can be greater than
one. The correctness condition is represented diagrammatically in
figure 2. The diagram in figure 2 is said to commute if and only
proposition 1 holds.

Recall that each of the functions in proposition 1 is represented
by a vector of expressions in quantifier-free first-order logic. The
existential quantification is handled by requiring the user to define
a synchronization function that maps QImpl to an appropriate value
for m. Thus, checking the correctness criteria is reduced to check-
ing the equality of two vectors of quantifier-free expressions (the
universal quantification overQImpl can be made implicit), where the
vectors have one entry per specification state variable. Burch and
Dill [3] described a validity checking algorithm that can be used to
check this equality. Jones, Dill and Burch [10] described ways of
significantly speeding up the validity checking algorithm.

In some cases, it may be necessary during verification to restrict
the set of implementation states quantified over in proposition 1. In
this case, an invariant could be provided. It must be checked that
the invariant is closed under the implementation transition function,
which can be done automatically.

3 Splitting the Commutative Diagram

Our method for splitting the verification task into parts requires that
the user provide an additional function, called FSneak, that maps
implementation states to implementation states. The function is
intended to model the effect of a sneak fetch: the fetching of one
instruction into the processorwithout having any previously fetched
instructions flow down the pipeline. In our experience, the only
implementation state variables changed by a sneak fetch are the
instruction queue and the fetch PC, so FSneak is much simpler than
FImpl . If their is no room for a newly fetched instruction in the
current state, then FSneak does not change the state. If there is an
error in the description of FSneak, then a false negative verification
result can occur but not a false positive.

Instead of directly checking the commutative diagram in fig-
ure 2, we check the three diagrams in figure 3. We also check

1As a technical matter, we require that h be surjective. Automatically checking
this is not computationally demanding; the necessary CPU time is included in our
empirical results.

flushed

�
�
�
�

�
�
�
�

-FSneak

-
F
i

Spec

?

h

?

h

(a)

�
�
�
�

-FSneak

?

FStall

-
F
i

Sneak
@
@Rh ?

h

(b)

�
�
�
�

-FImpl

?

FStall

-
F
m

Sneak
@
@Rh ?

h

(c)

Figure 3: Checking that these diagrams commute is a computa-
tionally easier way to check the commutativity of figure 2. The
variable i ranges over f0; 1g and m ranges from zero to the max-
imum number of instructions the implementation can fetch in one
cycle.

that
8QImpl [h(FStall(QImpl)) = h(QImpl)]:

We assume that the user has given a predicate that defines when
the pipeline is in a flushed state, and has used the validity checker
to verify that FFlush always returns a flushed state. Due to space
limitations, we do not provide a proof that this check implies that
figure 2 commutes.

Computationally, the check of the diagram in figure 3(a) is easy
because the initial state is flushed and because the fetching and
execution of at most one instruction is involved. The diagrams of
figure 3(b) and figure 3(c) are more difficult to check. Even so, they
can be much easier to check than figure 2, for the following reason.

Typically, the two implementation states on the right of side of
figure 3(c) have the same values for most of their state variables.
Thus, after the abstraction function h is applied, the expressions

that then need to be checked for equality have similar structure.
This structure can be exploited by the validity checker. Similar
intuition applies to figure 3(b). However, in that diagram many of
state variables of the lower right implementation state differ from the
upper right implementation state becauseof the application ofFStall:
the stall cycle causes instructions to have flowed down the pipeline
more in one state than in the other. But since the abstraction function
h is constructed usingFStall, this difference is largely removed after
h is applied. So, as in figure 3(c), the expressions that are checked
for equality have similar structure.

4 Constructing Abstraction Functions

Burch and Dill [3] described how to construct an abstraction func-
tion automatically by flushing the processor. This section describes
a refinement of that method that constructs much simpler abstraction
functions while requiring only a little more human intervention.

Figure 4 shows how a standard 5-stage pipeline is flushed as
described by Dill et al. [3, 10]. In step (b), whether there is in an
instruction or bubble in the id or ex stages depends on whether
there was a load interlock in step (a). This variability of whether or
not an instruction is present is passed down the pipe and ultimately
appears in the abstraction function that is constructed. While the
extra complexity that results is not great in this case, it is much worse
in a superscalar processor, such as the one described in section 6.

The first step in reducing the complexity of the abstraction
function is to add an extra control input (called force stall) to the
implementation model. When force stall is negated, the processor
behaves just as before. However, when force stall is asserted, the
instruction in the id stage is not allowed to be issued to the ex stage,
regardless of whether a load interlock would have occured.

By choosing when force stall is asserted, the flushing of the
pipeline can be scheduled so that there is no variability in how
instructions flow through the pipeline (see figure 5). This results in
simpler expressions for the abstraction function, making it easier to
check the commutative diagrams in figures 2 or 3.

Since we modified the processor by adding the force stall in-
put, there might be some concern that this could lead to erroneous
verification results if a mistake was made. Notice, however, that the
modified version of the processor is only used when constructing
the abstraction function. Thus, a mistake can only lead to a false
negative result, not a false positive.

There is a non-trivial amount of human intervention involved in
modifying the processor, and devising a flushing schedule. How-
ever, the extra effort is more than justified by the increasedcomplex-
ity in the processor models that can be verified. There are a couple
of simple rules to follow to make it easier to use this technique. At
any stage where an instruction can be stalled in the pipeline, add a
control input that can be used to force the stalling of that instruction.
Then, schedule the flushing so that one of these control inputs is
negated only if the corresponding instruction is guaranteed not to
stall.

5 Simplification Algorithm

Applying a rewrite rule to an expressione involves finding a subex-
pression of e that matches the left hand side of the rewrite rule, and
then replacing that subexpression with the right hand side of the
rule. Thus, there is a certain locality to applying rewrite rule: only
a small part of e is involved in the rewrite. This locality can limit
the power of rewrite rules.

We have developed a method for simplifying expressions that
avoids this locality, and thereby overcomes some of the limitations
of rewrite rules. It is related to logic synthesis methods that use ob-
servability don’t cares [7, 11]. Consider the expression ite(p; x; y).

wb

mem

ex

id

��
��
��*

��
��
��*

��
��
��*

-

mem

ex

ite(:p; id;

bubble)

ite(p; id;

bubble)

��
��
��*

��
��
��*

��
��
��*

ex

ite(:p; id;

bubble)

ite(p; id;

bubble)

��
��
��*

��
��
��*

ite(:p; id;

bubble)

ite(p; id;

bubble)
��
��
��*

ite(p; id;

bubble)

6 6 6 6 6

(a) (b) (c) (d) (e)

Figure 4: Flushing a pipeline in the straightforward manner.

wb

mem

ex

id

��
��
��*

��
��
��*

-

mem

ex

id

��
��
��*

��
��
��*

ex

id ��
��
��* id ��

��
��* id

6 6 6 6

(a) (b) (c) (d) (e)

Figure 5: Scheduled pipeline flushing. In step (a), an added control input is used to force a load interlock. In the other steps, the control input
is negated and an interlock cannot occur because either the id stage or the exe stage contains a bubble. As a result, there is no variability in
the flow of instructions and the abstraction function that is constructed is simpler than it would otherwise be.

Because the subexpression y cannot be observed when p is true, p
is called an observability don’t care of y. We would like to be able
to simplify y using the don’t care set p. It is easy to produce rewrite
rules that can simplify the top level of y, for example:

ite(p; x; ite(p; y1; y0)) �! ite(p; x; y0):

However, we want to be able to use p to efficiently simplify subex-
pressions deep inside y, regardless of how large y is.

The algorithm in figure 6 describes how this is done. The pro-
cedure simplify does the actual simplification. It takes an argument
u, which is the expression to be simplified, and a care set b, which
can be used when simplifying. When simplify is used during pro-
cessor verification, b is typically the universal care set (that is, the
don’t care set is empty). In that case, the simplification of u comes
completely from using local care sets that are constructed for each
subexpression of u. The procedures update queue and build result
are auxiliary procedures used by simplify (see figure 7). For clarity,
the algorithm is a simplified version of the one used for processor
verification. Instead of handling arbitrary expressions in the logic,
it only handles boolean expressions that are constructed using true,
false, boolean variables and the ite operator.

In the algorithm, variables of type care set can be represented
with expressionsor by some other symbolic method. To understand
the algorithm, it is easiest to think of care sets as expressions. The
functions disjoin and conjoin perform the appropriate operations on
care sets. These operations can be approximate; the algorithm is

sound as long a care set is never underestimated, but care sets can
be overestimated. The procedure provably empty returns true if the
expression representing a care set can be shown to be tautologically
false. This can also be approximated; it is okay for provably empty
to return false even if its argument is an empty care set. The
procedure call build ite expr(p; x; y) constructs the expression
ite(p; x; y) and then applies basic rewrite rules (such as constant
folding, etc.) before returning the expression.

The heart of the algorithm is the while-loop in simplify. A
subexpressionv is pulled off the queue in biggest-first order, which
is analogous to using reverse topological order when processing an
acyclic circuit netlist. If v is of the form ite(p; v1; v0), then it is
determined whether the care set c of v allows v to be replaced by
v0 or v1. If so, this information is recorded in subst table where it
is used by build result to construct the final result.

The procedures disjoin, conjoin and provably empty can be
made approximate in a way that allows them to require only con-
stant time and to still be accurate enough to give good simplification
results. In this case, simplify requires time linear in the size of the
DAG representing u.

Observability care sets have been used is logic synthesis [7,
11]. Since our full algorithm handles a subset of first-order logic,
rather than just boolean netlists, it is an extension of these methods.
Also, although observability care sets have been applied to formal
verification [2], they have not previously been applied to logical
transformations of symbolic expressions.

set of (expr � care set) queue;
/* priority queue for processing exprs in biggest-first */
/* order, and for recording the care set of each expr */

set of (expr � expr) subst table;
/* hash table that maps an expr to a safe replacement */

set of (expr � expr) result table;
/* hash table that maps an expr to the expr it is */
/* replaced by in the result, effectively the transitive */
/* closure of subst table */

expr simplify(u, b);
expr u;
care set b;

/* simplify u using b and using observability don’t cares */
/* for subexprs of u */
f

expr v, p, v0, v1;
care set c, c0, c1;

queue = ;;
subst table = ;;
result table = ;;
update queue(u, b);
while (queue 6= ;) f

choose (v; c) 2 queue such that
there does not exist (v0

; c
0) 2 queue

where v0 is a proper subexpression of v;
remove (v; c) from queue;
if (v is of the form ite(p; v1; v0)) f
c1 = conjoin(c, p);
c0 = conjoin(c, :p);
if (provably empty(c1)) f

/* p is replaceable by false in c, so v is */
/* replaceable by v0 */
add (v; v0) to subst table;
update queue(v0, c0);
g

else f
update queue(v1, c1);
if (provably empty(c0))

/* p is replaceable by true in c, so v is */
/* replaceable by v1 */
add (v; v1) to subst table;

else f
update queue(p, c);
update queue(v0, c0);
g;

g;
g;
/* else v is atomic, so no further processing */

g;
return build result(u);
g

Figure 6: Simplification algorithm.

6 Superscalar Example

In this section, we describe empirical results for applying our veri-
fication techniques to a pipelined, superscalar implementation of a
subset of the DLX processor instruction set [8].

The subset of the DLX that we verified has the same six instruc-
tion classes as used by Burch and Dill [3]: store word, load word,
unconditional jump, conditional branch (branch when the source
register is equal to zero), 3-register ALU instructions, and ALU

void update queue(u, b);
expr u;
care set b;

/* update queue to reflect that u must be processed and */
/* the care set of u contains b */
f

care set c, c0;

if ((u; c) 2 queue for some c) f
remove (u; c) from queue;
c
0 = disjoin(b, c);

add (u; c0) to queue;
g

else add (u; b) to queue;
g

expr build result(u);
expr u;

/* use info in subst table to build simplified u, */
/* memoize results in result table */
f

expr v, w, p, u0, u1;

if ((u; w) 2 result table for some w)
return w;

if ((u; v) 2 subst table for some v) f
w = build result(v);
add (u; w) to result table;
return w;
g;

if (u is of the form ite(p; u1; u0))
w = build ite expr(build result(p),

build result(u1),
build result(u0));

else w = u;
add (u;w) to result table;
return w;
g

Figure 7: Routines used by the simplification algorithm.

immediate instructions. The specifics of the ALU operations are
abstracted away in both the specification and the implementation.
Thus, our verification covers any set of ALU operations, assuming
that the combinational ALU in the processor has been separately
verified.

Instructions are loaded, two per cycle, into the instruction queue.
If not enough instructions move out of the queue to make room for
two instructions to be fetched, then no instructions are fetched. Up
to nine instructions can be in the processor at one time.

The caches and the memory system are not modeled in any
detail. Instead, instruction memory is treated as a black box: the
processor outputs the PC and, after a non-deterministic delay, re-
ceives the instruction from the memory location corresponding to
the PC. Modeling and verifying the interactions of the processor
pipeline, caches and memory system is an area for future research.

The implementation uses a simple assume-branch-not-taken
prediction strategy. As a result of the way it handles branches,
this processor speculatively fetches and queues up instructions, but
it does not do speculative execution.

Checking the commutative diagrams in figures 3(b) and 3(c)
requires keeping the two sides of the diagrams “in sync” by hav-
ing the user construct functions from implementation states to the
integer variables i and m. For this processor, the desired function
sets i = 0 if in the current state there is a branch taken or there is

no room to sneak fetch an instruction; otherwise, i = 1. Similarly,
m = 0 if in the current state there is a branch taken or no instruc-
tions are fetched; otherwise,m = 2. The user need not worry about
the details of when branches are taken or instructions are fetched,
this information can be derived by using the symbolic simulator
to compute expressions for the appropriate control signals in the
implementation. An error by the user or a bug in the processor can
cause the resulting synchronization function to be wrong, but this
can lead only to a false negative verification result, never a false
positive.

If we directly checked the commutative diagram in figure 2,
rather than the one in figure 3(b), then the synchronization function
would have to be much more complicated. Instead of only having
to consider a taken branch during the current cycle, it would have
to handle instructions being squashed by branches potentially being
taken during the next several cycles. Thus, the use of the commu-
tative diagrams in figure 3 not only reduces CPU time needed for
validity checking, it reduces manual effort, as well.

For this processor, scheduling the flushing of the implementa-
tion as described in section 4 requires adding two control inputs to
the implementation. This gives us three modes for the processor:
normal operation, allow no instructions to be issued, and allow at
most one instruction to be issued. Using these modes, flushing the
pipeline is scheduled as follows. First, allow no instructions to be
issued for enough cycles that all previously issued instructions are
guaranteed to be drained. Second, for one cycle, let one instruction
be issued. Then, keep repeating these two steps until the proces-
sor is completely flushed. Following this schedule, rather than
just flushing the processor without using the extra control inputs,
produces much simpler expressions for the abstraction function.

When verifying this processor we made use of a number man-
ually produced case splits. These were derived from a few simple
concepts such the number of instructions in the queue or how many
instructions were issued in a given cycle. They do not require an
understanding of the expressions constructed when checking the
commutative diagrams. These manual case splits were only needed
for checking the commutative diagrams in figures 3(b) and 3(c);
they were not needed for figure 3(a).

In summary, the verification procedure had the following steps.
First, symbolically simulate the implementation and the specifi-
cation descriptions to derive their transition functions. The user
provides synchronization functions and a flushing schedule. Next,
the verifier automatically uses the commutative diagrams to con-
struct expressions that need to be checked for validity. A total
of 28 manual case splits were used to simplify these expressions.
Finally, the resulting expressions are processed by a simplification
algorithm based on the one in section 5. For all of the expressions,
the simplification algorithm returned the identically true expres-
sion. Thus, it was not necessary to use an automatic case splitting
algorithm as in previous methods [3, 10]. The total CPU required
for verification of this superscalar processormodel was less than 30
minutes on a Sun 4.

7 Conclusion

We have extended the verification method of Burch and Dill [3]
to enable the formal verification of a superscalar processor model
against its instruction set architecture. Some of these extensions
add to the manual effort that was already required with Burch and
Dill’s method. Thus, in some ways, our method is less automatic
than many of the verification methods in the literature. However,
our empirical results suggest that we have achieved an effective
balance between automation and manual effort.

Of the three techniques described in this paper, the method
for constructing abstraction functions (section 4) appears to have
been the most important for verifying our processor model. In

this model, from zero to two instructions can be issued per cy-
cle and instructions wait in a fetch queue before being issued, so
the latency of an instruction can vary significantly depending on
the state of the pipeline when the instruction is fetched. Such
variable latency is not present in other verified processors in the
literature [1, 3, 4, 6, 9, 10, 12, 13], but it is a common property of
modern commercial microprocessors. Without our technique for
constructing abstraction functions, the Burch and Dill method [3]
could not efficiently handle processors with such variable latency.

As described in the paper, errors in some of the manual inputs to
the verification process can lead to false negative verification results,
but never false positives. The impossibility of false positives is a
consequence of well known properties of verification methods that
use abstraction functions [1, 4, 6, 9, 12, 13]. If the user does make
this kind of error, then the verification tool can be used to debug the
user’s inputs. Once the inputs are correct, then the verification and
the debugging of the processor itself can begin.

REFERENCES

[1] D. L. Beatty. A Methodology for Formal Hardware Verifica-
tion, with Application to Microprocessors. PhD thesis, School
of Computer Science,Carnegie Mellon University,Aug. 1993.

[2] D. Brand. Verification of large synthesized designs. In Intl.
Conf. on Comp. Aided Design, 1993.

[3] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In D. L. Dill, editor, Conference on
Computer-Aided Verification, volume 818 of Lecture Notes in
Computer Science. Springer-Verlag, June 1994.

[4] A. J. Cohn. A proof of correctness of the Viper microproces-
sors: The first level. In G. Birtwistle and P. A. Subrahmanyam,
editors, VLSI Specification, Verification and Synthesis, pages
27–72. Kluwer, 1988.

[5] F. Corella, M. Langevin, E. Cerny, Z. Zhou, and X. Song.
State enumeration with abstract descriptions of state ma-
chines. In Correct Hardware Design and Verification Methods,
CHARME ’95, Oct. 1995.

[6] D. Cyrluk. Microprocessor verification in PVS: A methodol-
ogy and simple example. Technical Report SRI-CSL-93-12,
SRI Computer Science Laboratory, Dec. 1993.

[7] M. Damiani and G. D. Micheli. Observability don’t care sets
and boolean relations. In Intl. Conf. on Comp. Aided Design,
1990.

[8] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1990.

[9] W. A. Hunt, Jr. FM8501: A verified microprocessor. Tech-
nical Report 47, University of Texas at Austin, Institute for
Computing Science, Dec. 1985.

[10] R. B. Jones, D. L. Dill, and J. R. Burch. Efficient validity
checking for processor verification. In Intl. Conf. on Comp.
Aided Design, 1995.

[11] H. Savoj and R. K. Brayton. The use of observability and
external don’t cares for the simplification of multi-level net-
works. In 27th ACM/IEEE Design Automation Conference,
1990.

[12] M. Srivas and S. P. Miller. Applying formal verification to a
commercial microprocessor. In Computer Hardware Descrip-
tion Languages, Aug. 1995.

[13] P. J. Windley. Formal modeling and verification of micropro-
cessors. IEEE Trans. Comput., 44(1):54–72, Jan. 1995.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

