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Abstract
We present a technique  for rapidly calculating printed
circuit board (PCB) interconnect delays.  Because of
ringing, plateaux, and other signal integrity effects, delay
estimation with low order macromodels is more difficult
for PCB nets than for VLSI interconnect.  A moment
matching method  for interconnect trees is described in
which moments are computed by a tree traversal algo-
rithm using ABCD matrices.  Moment contributions from
distributed transmission lines are calculated directly.  This
is a simplification compared to  methods which must first
approximate the line as a lumped RLC ladder; it also
makes time of flight extraction trivial. Order descent is
used to ensure stability.  When applied to a real PCB de-
sign, the method was accurate and impressively fast--588
nets, or 4496  delays, in 12 seconds on a PC!

Introduction 1

Interconnect delay estimation plays an important role in
timing verification and  performance driven layout.  Be-
cause interconnect is taking up more and more of the clock
budget, the ability to calculate interconnect has become an
important computer aided design problem.

But interconnect on  printed circuit boards (PCBs) is fun-
damentally different from interconnect on integrated cir-
cuits (ICs).  Whereas IC interconnects are highly damped;
PCB nets usually are not.  In the former, R dominates; in
the latter, L. In the one, signals propagate by diffusion of
charge, described by a 'heat' equation; in the other, signals
propagate by traveling waves, described by a wave equa-
tion.  ICs tend to have monotonic waveforms; PCB nets
have ringing, plateaux, and other signal integrity prob-
lems.
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Accordingly, PCBs and ICs present distinct delay estima-
tion problems.  In the IC domain, formulas for estimating
the delay--the Elmore delay [Elmore] or the Rubinstein,
Penfield and Horowitz bounds [Rubinstein]--have  been
used liberally.  The Asymtotic Waveform Evaluation
method (AWE) has also been applied successfully to ICs.

For PCBs, quick delay estimation has been more elusive.
One popular way of estimating delay (especially across
backpanels) is the loaded time of flight formula [Baxter,
Blood],

t L C Cpd o o d= +( ) (1)

but its applicability is unjustified for topologies other than
the daisy chain (and even then, it applies only for first-
incident switching).  To fill the void of formulas for inter-
connect performance on PCBs, precharacterized curve fits
of SPICE delays have been proposed [Mehrotra].

When time allows,  SPICE or behavioral simulators based
on the method of characteristics can be used for accurate
delay numbers [Branin].   Losses can be handled by convo-
lution of the impulse response [Djordjevic]; ladder meth-
ods have also gained popularity, especially when attempt-
ing to model the skin effect [Kim].

What we seek is a method midway between very rough
formulas like (1) and the more accurate but also more time
consuming calculations of delays from SPICE.

To this end, we describe in this paper an AWE method
that has proved effective in practice for quickly estimating
delays of printed circuit board interconnect.  The method
is based on a tree traversal algorithm that computes mo-
ments using ABCD matrices and, as in [Sriram], truncated
polynomial arithmetic.  A key asset of the method, which
distinguishes it from some other AWE methods [Pillage,
Ratzcliff], is that it is not limited to lumped RLC nets; it
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Figure 1.  Representative node in a tree network.



can treat distributed transmission lines directly, without
substituting iterated ladder networks (see also [Liao]).

We restrict our discussion  to tree networks with branches
that are either transmission lines or ladders of lumped
RLGC components.  We also include in our formulation an
admittance G sCv v+ at each node to model pin parasitics.

Background
 The AWE method begins by computing the initial terms
of the Maclaurin series for the transfer function from the
driver to each receiver of interest:
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The coefficients in this expansion are related to the  mo-
ments of the impulse response h(t):

m
k

h t t dtk

k
k= − ∞

∫( )

!
( )

1
0

(3)

which is why the method is often described as a moment
matching method.   The AWE approximates H(s) by a fi-
nite rational function whose coefficients a aM1, ,Λ  and

b bL0 , ,Λ  are chosen to match the first L+M+1 moments

of H(s):
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The Pade approximation [L,M] leads to a finite pole mac-
romodel for the transfer function.  The elegance of the
method is somewhat tempered by the fact that unstable
poles often crop up in the denominator in (4), rendering
the approximation useless.

AWE methods differ in the way the moments are calcu-
lated, and in their method of taming the stability problem.
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Figure 2. Definition of ABCD matrix

Moments Using ABCD Matrices
For a tree topology, moment expansion (2) can conven-
iently be calculated by doing two traversals of the tree:
first,  a postorder traversal to calculate the admittance Yv

looking into the subtree rooted at each node v (see Fig. 1),
then, a second traversal to do a  preorder calculation of the
transfer functions from the driver to each node.   These
calculations are done in terms of the  ABCD matrices of

the two port networks composing the branches of the tree
(see Fig. 2).
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Step 1.  Input Admittance Y
From (5) we get the operation ⊗ which relates the admit-
tance at the input to the admittance at the output of an
ABCD matrix:
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≡ .   We use transformation

(6) to compute the input admittance at a node v of a tree
network in terms of the input admittances of v’s children
u up1, ,Λ  (see Fig. 1):

For i=1,...,p
Compute Y(ui )

Y(v)=sum(ABCD[v, ui ]⊗Y( ui )) 

+ +G sCv v (7)

This calculation requires the input admittance Y( )ui  of

each child be known before Y(v) of the parent node can be
computed; hence, Y is a synthesized attribute computed by
depth-first traversal of the interconnect tree.

Step 2.  Transfer Function Propagation
From (5), we also get a relation between the input and out-
put voltages of an ABCD network, once the load admit-
tance at the output port is known (from Step 1):

V TV A BY V1 2 2 2= ≡ +( ) (8)

Given the transfer function H(v) from the source to a node
v, we can compute the transfer function  from the source to
v's children u up1, ,Λ :

Compute H(v)
For i=1,...,p

Compute H(ui )=H(v)/T[v, ui ] (9)

This calculation requires H of the parent to be known be-
fore calculating H for the children; hence, it is done during
a preorder traversal.  A slight simplification, and better



stability properties [Sriram], is had by computing 1/H in-
stead of H in (9).

Iterated Ladder and Transmission
Line Expansions
All calculations in equations (6)-(9) are done with trun-
cated polynomial arithmetic; that is, all the factors in
equations (6)-(9) are to be regarded as polynomials
(truncated power series) of some order q, which are added,
subtracted, multiplied, or divided  to produce another trun-
cated series of order q.  These calculations require us to
know the moment expansions for the elements of the
ABCD matrices.  We limit our discussion to iterated lad-
der networks and distributed transmission lines, these be-
ing the most important in practice.

Uniform RLGC Ladders

The ABCD matrix of a ladder of 2p  π sections, each
composed of a series impedance Z(s) flanked by a shunt
admittance Y(s)/2 on each side, is readily computed by:
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If the expansions of Z and Y are known and we do trun-
cated polynomial arithmetic up to m terms,  the ABCD

matrix of the ladder can be computed in about O pq( )8 2

real multiplications if expansions to order q are used.  For
a lumped approximation of a transmission line, we would
set
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where R, L, G and C are the resistance, inductance, con-
ductance, and capacitance of the line per unit length, and d
is the length of the line.  This iterated product method,
while quite efficient, still leaves us guessing as to how
many sections we need to accurately model the line.  Di-
rect expansion of the ABCD matrix of a transmission line
obviates this consideration, and is discussed next.

Distributed Transmission Line
The ABCD matrix for a transmission line of length d
[Ghausi] is
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where the impedance and propagation constant are given,
respectively,  by
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and

γ ≡ + +( )( )R sL G sC (14)

Using the method of undetermined coefficients, the ex-
pansions of Zo and γd in powers of s is readily computed:
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Then, using composition of power series, the expansion for
γd is  substituted into the well known Taylor series for
cosh(x) and sinh(x).   So that this process terminates, we
must first isolate the constant term in γd:
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Then substitution of x s sq
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is evaluated by Horner's method, requiring only O q( / )3 3

real multiplications for each series if care is taken to com-
pute intermediate results only to as many terms as re-
quired.  The expansion for cosh(γd) gives A and D.  The
expansion for sinh(γd) multiplied by the expansion for Zo
gives B, and divided by the expansion for Zo gives C.

A slightly different formulation is required when R or G is

zero, to avoid getting powers of s .  But here again di-
rect moment expansion of the ABCD matrix for a trans-
mission line is possible and efficient.

Stability Tactics
From the moment expansion of the transfer function H(s)
we next compute a Pade approximation that matches the
first N moments and can be used as a reduced order mac-
romodel of the system.  The sticky point in the process is



T f

d

Unit Step Input

Step
Response

Figure 3. Assumed form of step response.
avoiding unstable poles in the Pade approximation.

The waveform at a receiver of a transmission line network
will generally have a step response that consists of a delay
Tf , a step d, and additional ringing or exponential move-

ment (see Fig. 3).

The transfer function corresponding to such a response has
the form
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The number of poles k required depends on the feature
complexity of the response;  using too many poles can be
as bad as too few.  The intuition behind our strategy is that
the Pade approximation will tend to be stable if the as-
sumed functional form fits the actual waveform reasonably
well.  Since (18) is expected to fit common responses that
occur in practice (provided k is chosen to be the correct
order), we expect such a Pade fit to be stable.  This conjec-
ture has been born out in our tests.

Specifically, our methodology is

1) Compute T L Cf j j= ∑ , where the sum is over all

transmission lines on the path from the source to the re-
ceiver in question.
2) Remove the transport delay Tf  from the moment ex-

pansion (1) by computing
∃( ) ( ) ∃ ∃ ∃H s e H s m m s m s
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3)  Set k=(q-1)/2, where q is the highest power of s in (2).

4) Attempt a  Pade approximation of ∃( )H s  with denomi-

nator and numerator both of degree k.  An improper Pade
form (numerator of same degree as denominator)  is cho-
sen to include the direct transfer term d.
5) As long as the Pade approximation from step (4) is un-
stable,  reduce the order of the approximation by 1 (set
k=k-1) and try step (4) again.  This process is guaranteed
to stop at k=0, if not sooner, since a Pade approximation of
order 0 has no poles and therefore is trivially stable--it is
just the multiplicative constant d.
6) The plant described by the Pade approximation is
simulated numerically (a rational function in s can be

viewed as a system of first-order linear constant coefficient
differential equations) to get the delay Tplant  of the plant.

The delay of the interconnect network, finally, is given as
t T Td f plant= +  (20)

We do not recommend looking for Pade approximations
whose numerators are of a different degree than the de-
nominator ([L,M] with L≠M).  Our argument is twofold.
On the one hand, physical reasoning leads us to expect the
direct transmission term d normally to be present.   Sec-
ondly, choosing L=M allows us to match the maximum
number of moments for a given order of plant.

Our experience shows that the combined strategies of ex-
tracting time of flight and descending to the correct order
for the plant together result in a very stable method.

Accuracy and Speed
It is traditional in a paper like this to demonstrate the ef-
fectiveness of a new method by applying it to several test
circuits;  we are particularly interested, however,  in the
method when applied to circuits en masse.  In this section,
therefore, we give delay results for an entire PCB design.
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Figure 4.  Comparison of delays by two methods

The test case we choose was a rather large (14"x16")
multilayer PCB that had a mix of ECL, ABT, and CMOS
components comprising a total of 588 nets--including
clock nets, tri-state busses, memory banks, ASICS, and
glue logic.  The large dimensions of the board and the fast
switching speeds (1-3ns) ensured that transmission line
effects, inductance, propagation delays, ringing, and re-
flections would be significant.  The signals would be
traveling waves, not voltage from charge diffusion through
an RC network.



The accuracy of the AWE method can be judged from the
scatter plot of Fig. 4.   Delays computed by the AWE
method are plotted along the ordinate against correspond-
ing delays computed by a transmission line simulator
based on the cascaded method of characteristics
(CMC)[Kim].  Delays for the rising edge are plotted as
positive numbers (1st quadrant), delays for the falling edge
as negative numbers (3rd quadrant). For signals with mul-
tiple timing-threshold crossings, delays are computed as
the first threshold crossing (predicting last threshold
crossing is considerably more difficult).

For both the AWE and comparison simulations, device
drivers were modeled behaviorally with IBIS non-linear

devices models2.  10 moments  (e.g., terms up to m s10
10

in (2)) were used in the AWE calculations.  Trial-and-
error convinced us that using few moments significantly
degraded accuracy while carrying more moments gave
diminishing returns.  It seems that at least 5 poles are
needed to describe adequately the variety of waveforms
seen on PCBs.

A histogram of delay discrepancies for the same design is
shown in Fig. 5.
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Figure 5. Histogram of  delay errors

The AWE method simulated the entire board--588 nets,
4496 individual delays--in 12 seconds on a Pentium
90MHz PC.  This does not count the time to load and
parse the file describing the design and write the results to
disk; with the overhead of these supporting tasks, the
simulation took about 1 min 20 sec.  The cascaded method

                                                       
2 IBIS, or IO Buffer Information Spec., is an industry standard
for describing buffers using IV curves, rise/fall times, and other
behavioral data that does not reveal vendor processes.

of characteristics simulations took 5 min 20 sec, not
counting supporting tasks.

Conclusion
The moment matching method described in this paper is
very fast.  Its speed qualifies it for use in performance-
driven layout systems that may require repeated evaluation
of layout alternatives.

One and two moment analytic delay models [Sriram2],
while they may have some validity when applied to ICs,
seem inadequate for predicting PCB delays.  Our studies
indicate that at least 4 or 5 pole macro-models are required
to capture the complexities of PCB waveforms (ringing,
plateau, etc.).

References
M. A. Baxter and E. P. Sayre, "Futurebus+ Backplane Imped-
ance", Interconnection Technology, pp. 22-25, Oct. 1992.

W. R. Blood, MECL System Design Handbook, 4th ed., pp. 129-
130, 1983.

F. H. Branin, Jr., "Transient analysis of lossless transmission
lines", Proc. IEEE, vol 55, p. 2012, 1967.

A. R. Djordjevic, T. K. Sarkar, and R. F. Harington, "Analysis of
Lossy Transmission Lines with Arbitrary Nonlinear Termination
Networks", IEEE Trans. Microwave Theory Tech., vol. mtt-34,
pp. 660-666, 1986.

W. C. Elmore, "The Transient Response of Damped Linear Net-
works with Particular Regard to Wideband Amplifier",  J. Appl.
Phys., vol. 19, no. 1, pp. 55-63, 1948.

M. S. Ghausi, J. J. Kelly, Introduction to Distributed Parameter
Networks, p. 7, Holt, Rinehart, and Winston, New York, 1968.

H. Liao, W. W. Dai, R. Wang, and F. Y. Chang, "S-Parameter
Based Macro Model of Distributed-Lumped Networks Using
Exponentially Decayed Polynomial Function", Proc. 30th
ACM/IEEE Design Automation Conf., pp. 726-731, 1993.

S. Mehrotra, Paul Franzon, and Michael Steer, "Performance
Driven Global Routing and Wire Rule Generation for High
Speed PCBs and MCMs", Proc. 32th ACM/IEEE Design Auto-
mation Conf., pp.381-387, 1995.

L. T. Pillage, and R. A. Rohrer, "Asymptotic Waveform Evalua-
tion for Timing Analysis", IEEE Trans. on CAD, vol. 9, no. 4,
pp. 352-366, April 1990.

S. Y. Kim, et. al. "An Efficient Methodology for Extraction and
Simulation of Transmission Lines for Application Specific Elec-
tronic Modules", AMC/IEEE ICCAD-94, pp. 58-65.

C. L. Ratzlaff, and L. T. Pillage, "RICE:  Rapid Interconnect
Circuit Evaluation Using AWE", IEEE Trans. on CAD, vol. 13,
no. 6, pp. 763-776, June 1994.

J. Rubinstein, P. Penfield, and N. A. Horowitz, "Signal Delay in
RC Tree Networks", IEEE Trans. on CAD, 2(3) (1983) pp. 202-
211.



M. Sriram, and S. M. Kang,  "Fast Approximation of the Tran-
sient Response of Lossy Transmission Line Trees", Proc. 30th
ACM/IEEE Design Automation Conf., pp. 691-696, 1993.

M. Sriram, and S. M. Kang, "Performance Driven MCM Routing
Using a Second Order RLC Tree Delay Model", Proc. IEEE Intl.
Conf. on Wafer Scale Integration, pp. 262-267, Jan. 1993.


	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of contents
	Session Index
	Author Index


