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Abstract

We present a general and, in the limit, exact approach to compute the
time-domain response for finite-length RC lines under ramp input, by
summing distinct diffusionsstarting at either end of theline. Wealso ob-
tain analytical expressionsfor the finite time-domain voltage response
for an open-ended finite RC line and for a finite RC line with capacitive
load. Delay estimates using our new method are very close to SPICE-
computed delays. Finally, we present a general recursive equation for
computing the higher-order diffusion components due to reflections at
the source and load ends. Future work extends our method to response
computations in general interconnection trees by modeling both reflec-
tion and transmission coefficients at discontinuities.

1 Introduction

Estimating delayson VL S| interconnectsisakey element intiming ver-

ification, gate-level simulation and performance-driven layout design.

Becauseof their highly resistivenature, interconnectsare generally mod-
eled asdistributed RC lines. Theanalysisof finite RC transmissionlines
with step input is widely discussed in the literature, e.g., [20, 1, 19].

The standard approachisto first calculatethe transfer function; then, by

approximating the transfer function both transform-domain and time-

domain responses are obtained for different configurations of the finite
RClinewith stepinput. Usingdifferent approachesto invert the Laplace
transform of the response, [16, 12, 13, 18] have all obtained the exact
time-domain responsefor afinite-length open-ended RC line. The most

recent of theseworks, by Rao[18], also extendsthetraditional transform-
domain analysis to calculate the time-domain response for a finite RC

linewith capacitiveloadimpedance. A direct solution of the open-ended
finite RC line response, i.e., directly in thetime-domain asan infinite se-

ries, was first given by Kaufman and Garrett [10]. Kahng and Muddu

[12, 13] calculated the time-domain responsein afinite distributed RC

line with source and load impedances; the total response was shown to

be equal to aninfinite sum of diffusion equation solutions with each dif-

fusion starting at either the source or load end of the line.

None of these previous works gives an understanding of the inter-
connectresponsewhen theinput signal hasnonzerotransitiontime. Itis
more reasonableto model theinput signal from driver to interconnect as
afinite ramp. Figure 1 showsthe substantial difference in the response
for step versus ramp input. Kaupp [9] analyzed RC interconnections
under finite ramp input by assuming infinitely long transmission lines.
Extending this work, [3] approximated the transfer function of a semi-
infinite line using a linear function, and proposed a model for RC lines
under ramp input. Recently, [17] proposed a methodology for RC inter-
connect synthesis under ramp input using the first few moments of the
transfer function. However, no analytical solution for the time-domain
finite ramp response of afinite distributed RC line with source and load
impedancesunder finite ramp input has been obtained in the literature.

*Thiswork was supported by NSF Young Investigator Award MIP-9257982.

1The definition of EImore delay for step input [7] can be used to compute the analytical
delay formulaunder ramp input, i.e., Tp = VLo Jo tVoy (t)dt where Vi (t) is the derivative
of the output response under finite ramp input. This definition implies that the ramp input
delay is equal to thefirst moment of the derivative of the response. Inthe transformdomain,
thisimpliesthat the ramp input delay is equal to the first moment (or coefficient of s) of the
functions- Vo (). Therefore, an analytical expression for ramp input delay is

Ti Ti
To= = +b—ai= = +Teo

2 2

where Tr is the rise-time of the ramp input and Tgp is equal to the EImore delay for a step
input or the first moment of the transfer function. Other analytical definitionsof delay such
as, fo*(1—Vou (t))dt [15] lead to the same expression for delay.

In this paper, we analyze finite distributed RC lines under ramp input,
using a new technique based on solving the diffusion equation and ap-
plying the method of images[12, 13]. Using this new technique, we are
ableto analytically obtain the transient time-domain response of afinite
RC line for different cases of source and load impedances. Our contri-
butions are the following.
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Figure 1. Responseof semi-infinite line with step and finite ramp in-
puts. Rise-time and position time constant RyCx are both 15 ps.

¢ We obtain thetime-domain responseof asemi-infinite RC linefor
both infinite and finite ramp inputs by solving the diffusion equa-
tion with appropriate boundary conditions. This result matches
that givenin [9].

¢ We provide a general approach to compute the time-domain re-
sponse for finite RC lines by summing distinct diffusions which
each start at an end of the line and can be viewed astraveling ei-
ther forward or backward along the line in analogy with reflec-
tions. In the limit, this approach is exact; only a few reflections
are needed to achieve accurate response computations.

¢ We obtain the analytical expressionsfor the time-domain voltage
response under ramp input for an open-ended finite RC line and
for afinite RC linewith capacitiveload. To the best of our knowl-
edge, there is no previous literature on this subject. We compare
delay estimates from our approach and from SPICE with URC
(Uniform Distributed RC) model for RC lines: using only the first
few reflected diffusion componentsin the voltage response, our
delay estimates are very close to SPICE-computed delays. Fi-
nally, we present a general recursive equation for computing the
higher order diffusion componentsdue to reflections at the source
and load ends of the interconnect line.

2 Semi-Infinite RC Line Analysis

Consider the semi-infinite distributed RC line shown in Figure 2. The
voltage and current on a uniform distributed RC line are governed by
the diffusion equation

V) 0v(x,1)
ot ox2
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Figure 2: Semi-infinite distributed RC line, and position x on theline.

where r and c are resistance and capacitance per unit length. The so-
lution to the diffusion equation under various boundary conditions has
been well studied [11]. The work of [12] showed that the time-domain
response of afinite-length RC line with step input was equal to an infi-
nite sum of diffusion eguation solutions, with each diffusion starting at
either the source or the load end of the line.
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Figure 3: A ramp input function: (a) finite ramp with rise time Tg,
and (b) finite ramp decomposed into two shifted infinite ramps.

We wish to calculate the response for a finite RC line under finite
rampinput. Wewill first solvethe abovediffusion equationfor the semi-
infinite line, then represent the total voltage responseon thefiniteline as
the sum of incident and reflected diffusion components. Theinitial and
boundary conditions for the semi-infinite line under finite ramp input
(seeFigure 3) are

IC: v(x,0) =
BCL: v(0,t)

0,x>0
Vin(t) = R U1 — (t-TRU(t-Tr)] , 1> 0

where T is the rise-time of the finite ramp input and U (t) denotes the
step function. We will also consider an infinite ramp input since any fi-
nite ramp can be expressed as the sum of two shifted infinite ramps (see
Figure 3); the time-domain response for a finite ramp can be derived
from the infinite ramp response by a change of time variable. Using
u(x,t) to represent the responsefor an infinite ramp input, the diffusion
equation and new boundary conditions are:2

ou(x,t)  02u(x,t)

rc =
ot Ox2

IC: uxx0 = 0 forallx>0

BC1: u(0t) Botu) foralt>0

The diffusion equation for step input has a boundary condition that is
constant with respect to time. For aramp input this boundary condition
isafunction of time, so it is difficult to derive the solution in the same
way asfor a step input. However, differentiating the diffusion equation
in time and using the variablew(x,t) = %a’t"tl, we again obtain adiffu-
sion eguation

aw(x,t)  8%w(x,t)

" ~ ox2

2In the transform and time domains, we respectively use U(x,s) and u(x,t) to indicate
the response for the infinite ramp input, and V(x,s) and v(x,t) to indicate the response for
the finite ramp input.

with initial and boundary conditions obtained by taking thetime deriva-
tive of the boundary conditionsof u(x,t). Theinitial condition remains
the same, but the boundary condition for the new diffusion equation be-
comes constant in time, i.e., similar to that for a step input:

IC: w(x0 = 0 foral x>0
BCL: w(0t) = ¥U(t) foralt>0

The solution for the diffusion equation under step input can be obtained
using the parabolic substitution of the variablen = x,/% [12] as

n _¢
W(Tl)zcl/o e zdy+C;

Theinitial condition|CimpliesCy = — \/%cz. The boundary condition

BC1, that at positionx = O the derivative of voltageis constant and equal

to \TLF‘: foralt > 0, impliesC, = V. Therefore,
wixt) = L[t er (L)

TR V2 erfc(%)

wherexisthe position at whichtheresponseiscalculated, andb = /RyCx
= xy/rc. Fromthis, theincident diffusion componentu; (x, t) for the semi-
infinite RC line under infinite ramp input can be derived as [14]3

=t =t
/ w(x, T)dt = / Y erfc (X\/r_—c) dt
=0 =0 TR T
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Then, the time-domain response for the incident diffusion compo-
nentv; (x,t) with afiniteramp input can bewritten in termsof theinfinite

ramp response:*

_Y%

= T @

u(x,t) =

Vo

(t+

©)

vix,t) = u(xt)—u(xt—Tg)
VN P O N (g
= T (t+2)erfc(\/ﬁ) b & ]U(t)
Vo b? b
-z (t—TR+7)erfc(ﬁ)
+b @e‘m% Ut—Tg) 4

As expected, the second term in the above equation is zero for t < Tg,
so the finite ramp responseis given by Equation (3) fort < Tg and by
Equation (4) fort > Tr.> The above analytical expressionsfor the ramp
input responseallow direct and efficient computation of delay estimates
for ramp and piecewise-linear inputs.

3We can also compute the response for ramp input by using the transfer function of the

semi-infiniteRCling, Hi (x,s) = e, and theinfiniterampinput, Uin(s) = \T/—g . —;5 Thein-

cident diffusion componentin thetransformdomainisU, (x,s) = TL‘;; .e~VRECS Thetime-
R

domain response obtained by applying theinverse Laplacetransform[6] is exactly equal to
the response given in Equation (3).

4Theresponsein thetransform domain for theincident diffusion componentisV; (x,s) =
TV_Osz (1—eSR)e Vs,

SRecall that the response for the semi-infinite line under step input [12] is v (x,t) =
Voer fo( o).



3 FiniteRCLine Analysis
Thevoltage at the front end of theline (i.e, at A) is

1-Tg(s
VA(®) =Vi(9) 522 = Vin(9) LD
where I's(s) = 252 is the reflection coefficient at the source. For a

general finite RC line with source and load impedance as shown in Fig-
ure 4, the incident propagation of voltage in the transform domain is

Vi(X,S) = Va(s)e" VYRGS = i (s) @e‘ RCS

Thetotal voltagefor afiniteline (Figure 4) is the summation of theinci-
dent diffusion component and reflected diffusion componentsthat arise
at the source (S) and load (L) discontinuities. In other words, the time-
domain expansionfor total voltageisvrer (X, t) = vi(X, 1)+ ¥ 1 VR (X, 1)
wherev (x,t) = voltagedueto theincident diffusion andvg (x,t) = volt-
age due to the it" reflection.® (In our notation, R; refers to the ith re-
flected diffusion starting from either the source or the load discontinu-
ity; i basically represents the number of trips up and down theline)) In
general, Vg (X,t) can be calculated through convolution of the reflected
diffusion (taking into account position displacement) with the reflection
coefficients T g(t) or [ (t).

Figure 4: A distributed RC line of length h, and position x along the
line.

The reflection coefficient at the source in the transform domain_is
Ms(s) = 22522, andthereflection coefficient at theloadis T (s) = $--22.
Asshownin [13], the voltage at the position xin Figure 4 dueto thefirst
reflection at theload can be calculated from theincident wave and shift-
ingin positionby h4+h—x=2h—x,i.e, Vg (X,5) =T (sVi(2h—X,s).
The corresponding time-domain expression is Vg, (X,t) = frt:O r(t—
T)vi(2h—x, 1) d1, i.e, thefirst reflected voltage travelsdistanceh to the
end of the line before reflection, then additional distanceh — x to reach
the specified location. Another explanation for the reflection voltages
is by applying the symmetry argument in the Method of Images (or Re-
flections) [11, 13] to satisfy the boundary condition at the end of theline
x = h. Thetotal voltage on theline can also be proved to be equal to the
sum of incident and reflected diffusion componentsby considering the
response obtained from the 2-port transfer function of theline [13]. The
total voltage can be expressed in the transform domain as a summation
of various reflected components

8

Via(x9) = Mg+ Y [FIOrLvi(2nh-xs)
=
+MP(s)FY(s)Vi(2nh+x, )] (5
and the time-domain responseis
Vrar(Xt) = vi(xt)+ ni [/;0 an(t—T)vi(2nh—x,1) dt
+ /rio bn(t —T)vi (2nh+x,T) dr] (6)
SSimilarly, the  total voltage in the transform  domain is

Vra (X, S) =Vi(X, S) + zr’:lVR‘ (X, S).

where an(t) and bn(t) represent odd and even nt" reflection coefficient
values. Thismethodology allowsusto computethe responseunder ramp
input for various cases of the finite-length line. The total response can
be approximated by considering the analytical expressions for the first
few reflection components; for higher accuracy, additional terms can be
incorporated by using numerical techniques.

4 Open-Ended FiniteRC Line Analysis

A finite open-ended line with ideal sourcehasls(s) = —1and I (s) =
1. Thetime-domain incident diffusion component for infinite and finite
ramp inputisgivenby Equations(3) and (4). Sinceall the coefficientsof
reflection are constantsfor an open-ended line with an ideal source, the
total response can be computed from the incident diffusion component
viashiftsin the time variable, i.e., the time-domain response is

Vrot(X 1) = v (x,t) + % [(—1)”‘1v| (2nh—x,t)+ (—1)"v; (2nh+x 1)
=1

where v;(x,t) is theincident diffusion component for finite ramp input
givenin Equation (4). Figure5 comparesthe voltageresponseat theend
of the line between SPICE and an approximation, called Diff4, which
sums only up to thefirst four reflected diffusion components.
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Figure 5: Responseat the end of an open-ended line for afinite ramp
with rise time Tg = R;C;,, using SPICE and an approximation which
sums up to the first four reflected diffusion components. The line
parameters arer = 0.015 Q/um, ¢ = 0.25 fF/pumand length h =
2000pm. The time constant of the lineis R,Cy, = 15.0 ps.

5 Finite RC Linewith Capacitive L oad

A finite distributed RC line of length h with capacitive load C_ at the
end of thelineis shown in Figure 6. Recall from Equation (6) that the
total response on the line is obtained by summing an infinite series of
diffusion componentsdueto reflectionsat the load and source. We now
review the calculation of up to thefirst four reflected components(some
details must be omitted for space reasons). If desired (e.g., for larger
loads than those we consider), more reflection components can be cal-
culated using methods given in Section 6.

Incident Diffusion.  Thefirst component of the total responseisthe
incident diffusion voltage, derived in Equations (3) and (4). Diffusion
components for reflections are computed by multiplying the reflection
coefficientswith theincident diffusion responsein thetransform domain
as described in Section 3.

First Reflection. The reflection coefficient at the load for a load

. . _ 1—
impedanceof Z, = Z-isF((s)= %tég = 1+3£ whereq=Cj +/ % =

%\/Rhch. The voltage response of the first reflected diffusion can be




Figure 6: Distributed RC line of length h with capacitiveload C_.

obtained from Equation (6):

VR (xs) = TMi(2h—-xs)
I e
Tre? 1+Q\/§
The infinite ramp input responseis
Vo 1-avS b5
R = T TraysS

whereb= (Zh—h_xl\/ RhCh. To computethe time-domain responsewe ex-
press the responsein the transform domain in the form of % Let

Vo 1-0S _ps

F = —=
1(5) Trs3 1+0s

_ Wofl_ 2 2@ 2 )

B $ £ s (s+1/q)

The responsein the transform domain can be expressed as
_ W[l 29 22 29 ] ug
s = 2 |g gt s el

The inverse transform of Ug, (X, s) can be computed by inverting each
term of the above equation using the identity [13, 14]

FOWS . 1 [
TC} N u:Oe f(u)du 7

Thus, the time-domain responsefor the first reflected diffusion is

V b? b t
T—g 7)erfc(ﬁ)—b -

(t+
—4q\/7e « +(2gb+2q )erfc( b )
Nz
t+gb
—2q2e(_qg_)erfc(\/ b )]U(t)
2Vt
For afinite ramp input the time-domain responseis given by
VR, (X,1) = UR, (X, t) — UR, (X, t —TR)
Second Reflection.  The voltage response of the second reflected dif-

fusion component dueto the source discontinuity with [ g(s) = 5552 =
—1lisgiven by

VR,(X,8) = Tdl M (2h+x,5) = - V|(2h+X,5).

Thetime-domain responsefor infinite ramp input can be calculated from
the first reflected diffusion component as

Ug,(Xt) = —e 4

V% b? b t
t b
+4q ﬁe T —(20b+2q )erfc(\/ﬂ)

+ 2q2e(1iqgg) erfc (% + 21\/{)] u(t)

whereb= @ﬁ’—x)\ /RnCh, whencethe time-domain responseunder finite
ramp input is
VR, (X, 1) = UR, (X t) — UR, (X, t — TR).

Third Reflection.  In the transform domain, the third reflected diffu-
sion component is

VR,(X,5) = TgML2Vi(4h—x,s)
_ —Vo(1-e°R) (1-qv/5)? P N e
Tre? (1+Q\/_)
Considering the function
Vo (1=as\? g
F(s) = _TR53<1+qs) ©
_ W[ 1,49 82 8@
T Tr| 2 s ' (s+1/q)
4q —bs
— e
*@+um4
whereb = ﬂ}:—"l\/RhCh. Theinfinite ramp responseis
_ M (A-av’ bs BWLA)
V(%S = T iravert | T e
:\q +ﬂ_ﬁ &
Tr 72 Va5 1/a)

4q —by/5
*w%ﬁ+um46 |

The inverse transform of Ug, (x, s) can be computed by inverting each
term of the above equation; the inverse transform of the first four terms
can be obtained from the analysis of the First Reflection above. The
time-domain expression for the last term can be calculated by consider-

ingthefunction F4(s) = (sz(}q)f e~PSwhosecorrespondingtime-domain

function is f4(t) = 4q(t — b)e_%u (t —b) [14]. Thetime-domain re-
sponsefor the third reflected diffusion for an infinite ramp is

2
b2 )erfc(\/z_)—kb\/; -%

b2 b
8 € — (4gb+ 8g©)er fc
+q\/74t (4db + 807) (\/ﬂ)

+8¢? e(wqb) erfc (\/f 25)/)

+8\/7 ( (l_" H’%QQ)
Il

(t+ab)

_4(2t+qb)e_rerfc(\/ zt\)/)] u(t)

Vo

T |

UR,(X,t) =

Thefiniteramp time-domain responseisvg, (X, t) = Ur,(X,t)—
TR).

Fourth Reflection.  Similarly, the voltage response of the fourth re-
flection at the sourceis Vg, (x, ) = M2 Vi (4h+x,9) = M2V (4h+
X, s) and the time-domain r&sponsefor infinite ramp input is

UR, (X, t—

Vo

b? b t _»
UR4(X7t) = T_R a

5 )erfc(\/ﬂ)—b ﬁe‘

—8q\/7e « + (4gb+8q )erfc(\/bﬂ)

t+5




L oad factor 10% Threshold delays 50% Threshold delays
(RaCh) (RaCh)
(%) SPICE | Diff4 SPICE | Diff4
0.0 6.20 6.30 14.20 14.25
0.25 7.60 7.70 16.90 16.85
05 8.70 8.80 19.35 19.30
1.0 10.50 10.50 24.30 24.25
2.0 13.10 13.15 34.20 33.50
5.0 18.50 17.55 64.00 56.00
Load factor || 63.2% Threshold delays || 90% Threshold delays
(RaCh) (RaCh)
(%) SPICE | Diff4 SPICE [  Diff4
0.0 16.50 16.50 24.75 24.70
0.25 19.75 19.70 32.00 30.00
05 23.30 23.30 40.00 38.90
1.0 30.50 30.60 57.50 57.75
2.0 45.10 44.70 92.00 99.00
5.0 89.50 80.00 199.00 235.00

Table 1: Comparison of delay values at the end of the interconnect
line (x = h), between the SPICE URC model and the Diff4 analytical
expression computed using diffusion analysis up to the first four re-
flection components. Theinput rise timeis assumed equal to the line
time constant, i.e., Tr = RCy, = 15 psec.

q 2yt
- s\ﬁe(‘(%ﬂ_&)“%ﬂ)
T
(t+gb)
+4(2t+qb)e_q?q—erfc (% + Z_b\/t')] u(t)

whereb = (ihﬁ’—x)\/RhCh; theresponsefor thefiniterampinputisvg, (x,t)
= UR,(X,1) — UR, (X,t —TR). If we approximate the total responsefor in-
finite ramp input by considering only up to thesefirst four reflections,

Ut (X t) & U (X 1)+ Ug (X,1) 4+ UR,(X,1)

+ UR3(X7 t) +UR, (Xv t) (8)
and the total responsefor the finite ramp input is
Vrot(Xt) = Uot(X,t) — Urot (Xt — TR)
~ [Vi(Xt) + VR, (X 1)+ VR, (X,1)
+ VR, (X, t) -+ VR, (X, 1)] 9)

We call the approximation of Equation (9) the Diff4 model. Table 1
compares Diff4 delay estimates at different threshold valuesfor awide
range of capacitiveloads, versusthe SPICE URC (Uniform Distributed
RC) model. The delay estimates using our new diffusion equation ap-
proach are very closeto the SPICE-computed delays, even though only
four reflectionsare considered. Figure 7 givesa comparison of thevolt-
age response between SPICE and the Diff4 model for the case of load

factor % =10.
6 Generalization of the Reflected Component Compu-
tation

While the previous section gave analytical expressionsfor the first four

reflection components, we now discuss methodsto computehigher-order

components of the infinite ramp response; from these, the components
of the finite ramp response easily follow. In general, the (infinite or fi-
nite) ramp response in the transform domain is a function of reflection

coefficients and the incident voltage. From Equation (5) the 2nth re-

flected componentat the sourceis givenby Ug, (x,s) = I's"FL"U;(2nh+
x, ), andthe (2n— 1)" refl ected component at theload issimilarly given

by Ug,. ,(x,5) = I~ "Uj(2nh - x,s). The time-domain response
for each refl ected diffusion component can be computed using the above
method (Section 5) for obtaining an exact analytical expression. To gen-

eralize the computation of eachtime-domain reflected diffusion compo-

nent we may apply two different techniques: (i) anumerical integration

approach, and (ii) recursive error function evaluation.
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Figure 7: Responsefor afinite RC line with capacitive load under fi-
nite ramp input, calculated using both the SPICE URC model and the
Diff4 model. Therisetime of theinputisTgr = R;,Cy, and theload fac-
tor is % = 1.0. Theline parameters are same asin Figure 5.

6.1 A Numerical Integration Approach

Here and in the next subsection, we consider the time-domain expres-
sion for the 2n'" source reflection component (the (2n — 1) load re-
flection component is analogous). Assuming resistive source and ca-
pacitive load impedances, the reflection coefficients can be represented

as rs(S) = — Ei;gg F._(s) = Ei__‘_g\\;?) where p= %\/Rhch and q=

% +/RnCy,. Substituting for the reflection coefficients and incident volt-

ageandusingb= (2”%‘1 +/RnCh, theinfiniteramp responsein thetrans-
form domain is given by

Ve Pvs

Ur,(%S) = T(SIYsVi(2nh+x,5)=(S)FY(s)—=—
TRS
= (=" Vo (1-py9)" (1_q\/§)ne_b‘/§

Trs? (1+py9™! (1+0v/9)"

The response in the time domain for this reflected component can be
evaluated by expressingUg,, intheform F(\‘/@ and applying theidentity
in Equation (7) [14]. To evaluate the integral in the identity we need

the time-domain expression f(t) of the function. Hence, we first apply
partial fraction expansion to the function as

_ Vo (1-p9" (1-09)" _ps
FO = VST pgm (Trasr®
_ W(=1)"[D1 D, Ds
- pTR s S
Ay Ant1
Teryp T T e/t
Bl Bn —bS
Tt T T sr /g



where A;, Bj, and D; are the coefficients corresponding to each pole of
the function. The inverse transform for this function is

o = D1+ Dyt~ b) + D L2

+Ale(t_b)/p +...+ An—Tl(t _ b)ne(t_b)/p
n!
_ Br(t—b)"1
(t—b)/q n (t-b)/q _
+Bg€ +...+ (=1 e U(t—b)
and the time-domain response for the reflection component can be cal-
culated by numerical integration asug,, (X, t) = \/_lT_'t feo e% f(x)dx.

6.2 RecursiveError Function Evaluation

Instead of calculating theinversetransform of the function F(s) and us-
ing numerical integration, we may rewrite the reflected component in

the transform domain in the form L\/‘/;l and then calculate the inverse
transform, i.e.,

F(VS) _ Vo(=1)" [D1
U = —_— - —— | — J——
Ran (%:9) NG pTR s  8/2 + 2
N AL A Ant1
VS(v/5+1/p) VS(V/s+1/pntt
B: Bn ] —by5
+ +.o+ €
VEA+L) T AE+ 1)
The inverse transform for Ug, (x,s) can now be obtained by taking in-
verse transforms separately for each term in the above expression. The
time-domain expression for the 2nth reflection component can be ob-
tained in the form of recursive error functions as[14]
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which can be evaluated using therecursive expressionfor the error func-
tion[5, 14], i.e,
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Thus, thetime-domain responsefor thefinite ramp input can be obtained
asVR,, (X t) = UR, (X,t) — U, (X,t — TR).

7 Conclusions

We have analyzed finite distributed RC lines under ramp input viaanew
technique based on solving the diffusion equation and using reflected
diffusion components to account for reflections at the source and load
end of theline. Our general and, in the limit, exact approach computes
the time-domain response for finite RC lines under ramp input by sum-
ming distinct diffusions starting at either end of the line. We then de-
rived the time-domain voltage responsefor various configurationsof the

RC line. To the best of our knowledge, theseresults are completely new;
there is no previous literature on this subject. Delay estimates using
our new approach (the Diff4 model incorporating up to thefirst four re-
flection components) are very closeto SPICE-computed (URC model)
delays. Finally, we present two methodologies, including a general re-
cursive equation, for computing the higher-order diffusion components
due to reflections at either the source or load end. Ongoing work ex-
tends this approach to response computations in arbitrary interconnec-
tion trees by modeling both reflection and transmission coefficients at
discontinuities, e.g., we might derive the input ramp for each intercon-
nect from the response at the end of the previous (upstream) intercon-
nect.
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