
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

The Design of Mixed Hardware/Software Systems

Jay K. Adams
Synopsys, Inc.

700 East Middlefield Road
Mountain View, CA 94043

jka@synopsys.com

Donald E. Thomas
Deptartment of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

thomas@ece.cmu.edu

Abstract

Over the past several years there has been a great deal
of interest in the design of mixed hardware/software
systems, sometimes referred to as hardware/software
co-design or hardware/software co-synthesis. How-
ever, although many new design methodologies have
taken the name hardware/software co-design, they of-
ten do not seem to share much in common with one
another. This partly due to the fact that the problem
itself has so many dimensions. This tutorial describes
a set of criteria that can be used to compare differ-
ing approaches to hardware/software co-design. These
criteria are used in the discussion of a number of pub-
lished hardware/software co-design techniques to il-
lustrate how a wide range of approaches can be viewed
within a single framework.

1 Introduction

Because of the growing complexity of digital systems and the avail-
ability of a variety of implementation technologies, many digital
systems today are mixed hardware/software systems. The hard-
ware and software elements may be either physically separate com-
ponents or the same physical components viewed at different levels
of abstraction. In either case the interdependency of the hardware
and software elements often leads to trade-offs in the way one or
the other is implemented.

The design of mixed hardware/software systems presents sev-
eral challenges to the designer. Not the least of these is the fact that
even though the hardware and software components are interde-
pendent, they are typically described and designed using different
formalisms, languages, and tools. Hardware/software co-design is
an attempt to integrate hardware and software design techniques
with the goal of incorporating more of the system design process
into a single design methodology.

Combining hardware and software design tasks into a common
methodology or automation tool has several advantages. One is that
including more of the system into an automated or structured design

methodology may accelerate the design process. Another is that ad-
dressing the design of hardware and software components simulta-
neously under a single methodology may enable hardware/software
trade-offs to be made dynamically, as the design progresses.

Approaches to hardware/software co-design are becoming com-
mon in the literature. However, the proposed methodologies differ
widely and have been slow to converge around a small number of
formalisms or techniques. This lack of convergence is due in part to
the widely differing assumptions made in each case. The assump-
tions include what part of the system makes up the hardware and
software, what aspects of the design are variable and what parts are
fixed, the design goals, and so on.

This tutorial attempts to lend some structure to the field of
hardware/software co-design by defining terminology and suggest-
ing some criteria that can be used to compare various approaches
to co-design. First, Section 2 offers a broad classification of hard-
ware/software systems in terms of the relationship between the
hardware and software components, which is similar to that of
[1]. Then, Section 3 discusses some of the design tasks can be
addressed by hardware/software co-design. Section 4 illustrates
these principles as they apply to a variety of published examples of
hardware/software co-design.

2 Mixed hardware/software systems

For the purposes of our discussion, a mixed hardware/software sys-
tem is any digital system that includes both hardware and software
components designed using a single methodology. Many digital
systems contain both hardware and software, but unless the two
are designed together, we do not think of it as a mixed hardware/-
software system. When we speak of the hardware and software
components of the system, we are referring to just those compo-
nents that are part of a particular design methodology.

Two broad classifications can be used to distinguish different
types of hardware/software systems. The distinguishing factor is
whether the boundary between hardware and software is logical
boundary (Type I) or a physical boundary (Type II). Figure 1 illus-
trates the difference between Type I and Type II hardware/software
systems.

In a Type I hardware/software system the hardware is thought
to be executing the software. The the relationship between the two
is one of abstraction level. Such a system may contain one or more
physical components. An example of a Type I hardware/software
system is one made up of a microprocessor and its associated glue
logic. In this case the hardware, which is probably specified as
a microprocessor type and a netlist of gates, is viewed at a much

software

hardware

component 1 component 2 component n

process 1 process 2 process n

. . .

. . .

(a) Type I HW/SW Systems

component 1

process 1 process n

component n

hardwaresoftware

component k+1

process k

component k

process k+1

.

(b) Type II HW/SW Systems

Figure 1: Types of mixed HW/SW systems.

lower level of abstraction than the software, which is likely to be
specified using a high-level programming language.

In a Type II hardware/software system, the hardware and soft-
ware components are modeled at the same level of abstraction and
are physically separate components. An example of a Type II hard-
ware/software system is one comprising both a microprocessor and
a special-purpose computing engine. If the special-purpose en-
gine is designed using behavioral synthesis techniques, then the
hardware, which is specified by a behavioral description, can be
modeled at roughly the same level of abstraction as the software.

Hardware/software co-design can be attempted for both types
of hardware/software systems. In Type I systems, the hardware and
software configurations may be interdependent, leading to trade-
offs in the way the two are organized. In some cases, the boundary
between hardware and software may be movable, leading to trade-
offs in whether hardware or software is used to implement some of
the functionality.

In Type II systems, the hardware and software components may
also be inter-dependent. Furthermore, there may be an opportunity
to choose whether to use one of the software components or one of
the hardware components to implement some of the functionality,
leading to a greater set of hardware/software trade-offs. Also in
Type II systems, the interaction between hardware and software
components can be modeled at a variety of abstraction levels.

Finally, it is conceivable that a hardware/software system could
represent a mixture of Type I and Type II hardware/software bound-
aries, but to our knowledge, no published work has addressed this
situation.

3 System design tasks

Approaches to hardware/software co-design can be characterized
by the design activities for which hardware and software are inte-
grated. Figure 2 summarizes how the various system design tasks

hardware-software
partitioning hardware-software

co-simulation

system design

hardware-software co-design

co-synthesis
hardware-software

Figure 2: HW/SW system design activities.

operating
system

software
application

device driver

system bus

register reads/writes

interrupts

bus transactions

bus interface

system bus

specific
hardware

send, receive, wait

software hardware

application

Figure 3: HW/SW interface abstractions.

are related. Examples of system design methodologies can be found
that fit into every subset of this diagram.

3.1 Hardware/software co-simulation

Simulation of hardware/software systems, sometimes called hard-
ware-software co-simulation, presents the problem of modeling the
behavior of a system based on the behavior of the hardware and
software components. The problem is that these components may
have differing semantic models and be described using different
languages. The purpose of co-simulation may be to flesh out the
functionality of hardware and software early in the design process
or to integrate the two late in the design process. It may be aimed
at verifying the functionality of the system [2] [3] or at evaluating
the performance [4] [5].

Hardware/software co-simulation requires a simulation environ-
ment that can understand the semantics of both the software and the
hardware components and how actions in one domain affect the state
of the other. The interaction of the hardware and software may be
modeled at a variety of abstraction levels. Figure 3 illustrates some
of the abstraction levels at which hardware and software interaction
might be modeled for a Type II hardware/software system.

At the lowest level, the interface between the hardware and the
software may be modeled by the activity on the pins of a CPU or
the wires of a bus [4]. This approach is most accurate for evaluating
performance, but is computationally expensive.

If the hardware and software elements of the system commu-
nicate asynchronously, the interaction could be modeled at a high
level by the process or device communication mechanism provided
by an operating system [2] [3]. This approach is much very efficient
computationally, but may not be useful for evaluating performance.

3.2 Hardware/software co-synthesis

Co-design may also include integrated synthesis of hardware and
software components, which we refer to as hardware/software co-
synthesis [6] [7] [8] [9] [10]. Automated hardware/software co-syn-
thesis may allow the designer to explore more of the design space
by dynamically reconfiguring the hardware and software to find the
best overall organization as the design evolves. This can lead to
better results than could be achieved if the hardware and software
architectures had to be specified up-front, during the early stages of
the design.

Design tools for hardware/software co-synthesis must under-
stand the relationship between the hardware and software organi-
zations and how design decisions in one domain affect the options
available in the other. It also requires an understanding of how the
overall system cost and performance are affected by the hardware
and software organizations.

Another challenge for hardware/software co-synthesis is that
hardware and software are often described using different languages
and formalisms. If a design methodology considers moving func-
tionality back and forth between hardware and software, a uni-
fied understanding of hardware and software functionality must be
reached.

3.3 Hardware/software partitioning

Hardware/software co-synthesis may include hardware/software
partitioning. This is the case whenever the design methodology
allows for a choice between using hardware and software to im-
plement some of the functionality. Attempts at hardware/software
partitioning can be characterized by the factors that influence the
partition. The set of factors used in any particular situation is closely
tied to the design goals.

Many factors may influence the hardware/software partitioning
problem. Some of the considerations that can be taken into account
are as follows:

Performance requirements. Functions that have a great impact
on the overall performance of the system may need to be
implemented in hardware. This may be the case even if a
hardware implementation of the function offers only a modest
improvement in performance.

Implementation cost. Finding an effective hardware/software
partition may involve considering the cost of producing a
hardware implementation of some of the functionality. If
hardware resources can be shared among functions, it may
also be necessary to consider how the partition impacts the
sharing.

Modifiability. Sometimes a software implementation is desired
so that the function or algorithm can be easily changed.

Nature of computation. The function in question may have an
affinity for either hardware or software. Computations which
benefit from a high degree of data parallelism, for instance,
may be better suited for hardware.

For Type II hardware/software systems, hardware/software par-
titioning implies physical partitioning. In this case the partitioning
problem is further complicated by the following issues:

Concurrency. If the software and hardware components run asyn-
chronously, the best system performance may be achieved by
exploiting concurrency among them.

Communication. The overhead of synchronization and data trans-
fer among the hardware and software components is likely
to have a significant impact on overall performance. This
fact favors partitions that localize communication, even at
the expense of other considerations.

processor
micro-

hardware

code
application

I/O drivers

interface hardware
and glue logic

software

Figure 4: An embedded microprocessor system.

4 Examples of hardware/software co-design

Several examples of hardware/software co-design have been pub-
lished over the past several years. This section illustrates how
the criteria presented in the previous two sections can be used to
characterize and compare various approaches to hardware/software
co-design.

4.1 Embedded microprocessor systems

One instance of hardware/software co-design involves the design
of a system consisting of an embedded microprocessor and some
associated interface or glue logic. In this case the software run-
ning on the dedicated microprocessor may have to interact with the
surrounding hardware in some way.

An embedded microprocessor design problem is illustrated in
Figure 4. In this configuration of hardware and software, the hard-
ware is modeled and designed at a much lower level of abstraction
than the software. For this reason, we consider this to be an example
of a Type I hardware/software system.

The co-simulation technique described in [4] simulates the soft-
ware running on the microprocessor in conjunction with the sur-
rounding hardware using a Verilog simulator. This approach is an
example of hardware/software co-simulation using existing hard-
ware simulators and software compilers. The interaction between
the hardware and software is modeled at the level of activity on the
pins of the CPU.

The Chinook system [11] performs hardware/software co-syn-
thesis of the software I/O drivers and hardware interface logic. The
Chinook system uses a common specification for the hardware and
software components, but does no hardware/software partitioning.
Instead, Chinook concentrates on co-simulation and interface syn-
thesis.

4.2 Heterogeneous multiprocessing systems

Another instance of hardware/software co-design is the design of a
distributed, heterogeneous embedded processor. Figure 5 shows a
diagram of a such a system. We consider this to be a Type I hard-
ware/software system. Since the boundary between the hardware
and software is again one of abstraction level.

The design involves both choosing the number and type of
processing elements and mapping software tasks onto processing
elements. The goal is to meet some performance objective while
minimizing the cost of the hardware, either by choosing inexpensive

software

. . .
code
appl. appl. appl.

hardware

code code

interconnection network

. . .µ proc. µ proc. µ proc.
type 1 type 2 type n

Figure 5: A heterogeneous, distributed multi-processing system.

processing elements, reducing the number of processing elements,
or both.

Several approaches to the design of heterogeneous multipro-
cessing systems have been published recently [9] [12] [13]. The
key difference in the approaches is the way the processing elements
are specified and the way the optimization is performed.

In [12] the processing elements are chosen from a library of
available microprocessors, each characterized in terms of process-
ing speed and cost. Optimizing the system takes the form of select-
ing the set of processing elements and mapping the tasks onto the
processors. The optimization is done using integer linear program-
ming, which yields the optimum configuration and mapping.

In [13] the processing elements are specified abstractly by their
processing capacity. Optimization, which also involves choosing
the number and type of processing elements and mapping the tasks
onto them, is done using a vector bin packing approach.

All of these approaches to automated design of heterogeneous
multiprocessing systems offer a similar set of hardware/software
trade-offs. A more highly parallel software architecture allows the
use of slower, less-expensive processing elements. On the other
hand, less parallelism in the software architecture allows fewer
processing elements to be used, also lowering the cost. The goal is
to find the right balance between the two extremes minimizing the
cost of the system while meeting the performance goals.

Because the design methodology does not include the possibility
of choosing between hardware and software implementations for
some part of the system, we think of it as an instance of hardware/-
software co-synthesis but not of hardware/software partitioning.

4.3 Application-specific instruction set processors

Another published example of hardware/software co-design is the
design of an application-specific instruction set processor [14]. As
shown in Figure 6, the hardware/software boundary in this case lies
between the software running on the processor and the processor
itself.

Hardware/software co-design for an application-specific instruc-
tion set processor attempts to find the best hardware implementation
for a given software application or set of applications. Generally
this involves coming to an understanding of how the structure of the
hardware implementation impacts the performance of the software.

In some cases, the design of an application-specific instruction
set processor affords the opportunity to move the boundary between
hardware and software by, for instance, adding new instructions to
the instruction set architecture. In these cases, hardware/software

hard-wired
controller

software hardware

data
path

code
native

storage

Figure 6: An application-specific instruction set processor.

hard-wired
controller

software

data
path

hardware

native
code

storage

Figure 7: An instruction set processor with special-purpose func-
tional units.

co-design for an instruction set processor can include hardware/-
software partitioning. Modifiability is likely to be an important
factor in finding the best hardware/software partition in such cases.

Note that the diagram shown in Figure 6 would also apply
to the design of a general-purpose instruction set processor, but
in that case, the application software is usually not part of the
design methodology and is not known ahead of time. For this
reason, we generally do not consider general-purpose processors to
be examples of mixed hardware/software systems.

4.4 Special-purpose functional units

A slightly less general example of reconfiguring an instruction set
processor for a given application is that of adding special-purpose
functional units to the processor data path. Figure 7 illustrates the
hardware and software components of such a system. Like the
previous example, we consider this to be Type I hardware/software
system. Hardware/software co-design for this type of system has
been proposed in [15].

Like application-specific instruction set processors, special-
purpose functional unit systems offer an opportunity for hardware/-
software partitioning. The partitioning is limited by the need to
incorporate the hardware into an existing data path and controller.
However, what makes this configuration interesting is the possibil-
ity of using field programmable hardware to implement the special-
purpose functional units. In this case, the hardware/software parti-
tion need not be static and could be adapted on the fly to suit a wide
variety of circumstances.

4.5 Application-specific co-processors

In some cases, the performance of an instruction set processor
can be augmented by adding one or more application-specific or
custom co-processors. The purpose of the custom co-processor
is to off-load some of the more computationally intensive tasks
from the main instruction set processor, which may be either a

native
code

storage
microprocessor

data
path

controller

software

hardware

Figure 8: An instruction set processor with a custom co-processor.

general purpose or special purpose (e.g. DSP) processor. The
software component of such a system is the code that is to run on
the instruction set processor, while the hardware component is the
custom co-processor.

Figure 8 shows a diagram of a custom co-processing system
with the hardware and software boundaries outlined. We consider
this type of system to be a Type II hardware/software system, since
the hardware component includes its own data path and controller
and can be specified and modeled at the same level of abstraction
as the software.

The hardware/software trade-off in the design of custom co-
processors is between implementing some function using the in-
struction set processor or implementing it using the custom co-
processor. Since the design methodology allows a choice between
hardware and software, we consider this to be an example of both
hardware/software co-synthesis and hardware/software partition-
ing.

Custom co-processor systems afford many degrees of freedom
to the designer, because the structure of the co-processor is largely
separate and independent of that of the instruction set processor. A
custom co-processor might, for example, be organized as special-
purpose scalar (SISD) processor, a long instruction word (SIMD)
machine, or even a multi-threaded (MIMD) processor with a number
of controller/data path pairs.

Several design methodologies dealing with application-specific
co-processor systems have been introduced [6] [16] [17]. While
they are similar in their view of the hardware and software com-
ponents, they differ in the considerations taken into account during
hardware/software partitioning.

In [17] the custom co-processor is defined to be a SIMD machine
and the behavioral specification limited to a single thread of control
(specifically, a software program). Hardware/software partitioning
is aimed at moving the performance-critical regions of code into
hardware. Performance requirements and hardware implementation
cost are the principle factors considered in the partitioning.

The approach taken in [6] is to design the co-processor using
high-level synthesis techniques using the instruction set processor to
perform non-critical computations. The goal of hardware/software
partitioning in this case is to minimize the hardware implementation
cost without decreasing performance relative to a purely hardware
implementation. Performance requirements are have the most im-
pact on the hardware/software partition in this case.

In [16] hardware/software partitioning is performed with an
eye toward performance requirements, implementation cost, and,
to some extent, concurrency. Furthermore, the implementation
cost formulation [18] considers the potential for sharing resources
among the set of functions implemented in hardware, which further
complicates the partitioning problem.

microprocessor
native
code

storage

co-processor interface logic

ctrl ctrl
path
data

path
data

software

hardware

Figure 9: A multi-threaded custom co-processor.

4.5.1 Multi-threaded co-processors

A slight generalization of the custom co-processor arrangement is
one in which the custom co-processor is understood to comprise
more than one controller and data path and, consequently, is able
to implement concurrent threads of control. Figure 9 shows the
hardware/software boundary for multi-threaded co-processor sys-
tems. In this case the hardware/software partitioning problem is
further complicated by the opportunity to exploit parallelism both
between hardware and software components and among hardware
components.

In [10] hardware/software partitioning is done in a way that
considers minimizing the communication between the hardware
and software components and maximizing the concurrency between
them and within the multi-threaded co-processor. The hardware/-
software partitioning approach considers all the factors outlined in
Section 3.3 except for modifiability.

A technique for applying hardware/software co-simulation to
this type of system was presented in [3]. The approach suggested
was to model the interaction between the hardware and software
components at a high level using “send,” “receive,” and “wait” op-
erations. In this case the purpose of performing co-simulation was
to verify the functionality of the hardware and software components
working together.

5 Summary

In this tutorial we have presented a set of criteria that can be used
to compare approaches to hardware/software co-design. Briefly
stated, these criteria are as follows:

1. The type of hardware/software system is being designed (e.g.
Type I, Type II).

2. The system design tasks are being addressed (e.g. co-simu-
lation, co-synthesis, hardware/software partitioning).

3. If co-simulation is addressed, the level of abstraction at which
the hardware/software interaction is modeled (e.g. signal
activity, communicating processes).

4. If hardware/software partitioning is addressed, the consider-
ations that are taken into account (e.g. performance require-
ments, implementation cost, modifiability, nature of compu-
tation, concurrency, communication).

We illustrated how to apply these criteria to some examples of
hardware/software co-design representing a wide range of system
types and design goals. Since hardware/software co-design can
mean many things, it is important to determine characteristics of a
given approach before evaluating it or comparing it to some other
example.

Acknowledgment

This work is supported by the Semiconductor Research Corporation
under contract #DC-95-068.

REFERENCES

[1] A. Kalavade and E. A. Lee, “Manifestations of Heterogeneity in Hard-
ware/Software Codesign,” in Proc. 31th DAC, 1994.

[2] D. E. Thomas, J. K. Adams, and H. Schmit, “A Model and Methodol-
ogy for Hardware/Software Codesign,” IEEE Design & Test of Com-
puters, vol. 10, no. 3, pp. 6–15, 1993.

[3] S. L. Coumeri and D. E. Thomas, “A Simulation Environment for
Hardware-Software Codesign,” in Proc. ICCD ’95, 1995.

[4] D. Becker, R. K. Singh, and S. G. Tell, “An Engineering Environment
for Hardware/Software Co-Simulation,” in Proc. 29th DAC, 1992.

[5] A. Kalavade and E. A. Lee, “A Hardware/Software Codesign Method-
ology for DSP Applications,” IEEE Design & Test of Computers,
vol. 10, no. 3, pp. 16–28, 1993.

[6] R. K. Gupta and G. De Micheli, “Hardware-Software Cosynthesis for
Digital Systems,” IEEE Design & Test of Computers, vol. 10, no. 3,
pp. 29–41, 1993.

[7] R. Ernst, J. Henkel, and T. Benner, “Hardware-Software Cosynthesis
for Microcontrollers,” IEEE Design & Test of Computers, vol. 10,
no. 4, pp. 64–75, 1993.

[8] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and
Design of Embedded Systems. Englewood Cliffs, NJ: Prentice Hall,
1994.

[9] T.-Y. Yen and W. Wolf, “Sensitivity-Driven Co-Synthesis of Dis-
tributed Embedded Systems,” in Proc. 8th Int. Symposium on System
Synthesis, 1995.

[10] J. K. Adams and D. E. Thomas, “Multiple-Process Behavioral Syn-
thesis for Mixed Hardware-Software Systems,” in Proc. 8th Int. Sym-
posium on System Synthesis, 1995.

[11] P. H. Chou, R. B. Ortega, and G. Borriello, “The Chinook Hard-
ware/Software Co-Synthesis System,” in Proc. 8th Int. Symposium on
System Synthesis, 1995.

[12] S. Prakash and A. C. Parker, “SOS: synthesis of application-specific
heterogeneous multiprocessor systems,” Journal of Parallel and Dis-
tributed Computing, vol. 16, no. 4, pp. 38–51, 1992.

[13] J. Beck, Autoamted Processor Specification and Task Allocation Meth-
ods for Embedded Multicomputer Systems. PhD thesis, Carnegie
Mellon University, April 1995.

[14] J. Soto, A. Y. Alomary, Y. Honma, T. Nakata, A. S. adn N. Hikichi, and
M. Imai, “PEAS-I: A Hardware/Software Codesign System for ASIP
Development,” IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., vol. E77-A, pp. 483–91, March 1994.

[15] P. M. Athanas and H. F. Silverman, “Processor Reconfiguration
Through Instruction-Set Metamorphosis,” Computer, vol. 26, no. 3,
pp. 11–18, 1993.

[16] D. D. Gajski, F. Vahid, and S. Narayan, “A system-design method-
ology: executable-specification refinement,” in Proceedings of Euro-
pean Design and Test Conference, 1994.

[17] J. Henkel, R. Ernst, U. Holtmann, and T. Benner, “Adaptation of par-
titioning and high-level synthesis in hardware/software co-synthesis,”
in Proc. ICCAD, 1994.

[18] F. Vahid and D. D. Gajski, “Incremental Hardware Estimation During
Hardware/Software Functional Partitioning,” IEEE Transactions on
VLSI Systems, vol. 3, no. 3, 1995.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

