
Abstract- CAD tool interoperability issues are a recurring
impediment to constructing a design methodology, especially if
the methodology incorporates point tools from several ven-
dors. Failures in data transfer between tools often arise unex-
pectedly, and can delay design work until a workaround is
developed. This paper examines interoperability issues for
four classes of tools: schematic tools, simulation and synthesis
tools, IC physical design tools, and workflow management
tools. This paper also describes current research in modeling
interoperability problems. Using this paper, the reader can
develop a checklist of potential interoperability issues in his
CAD environment, and address these issues before they cause
a design schedule slip.

1. Introduction
Why is CAD tool interoperability such a ubiquitous problem?

Any experienced CAD manager, particularly one using tools from
multiple CAD vendors, can recite the list of the difficulties he’s
encountered integrating tools into a design flow. Yet compared to
the technical innovation required for algorithmic developments in
simulation, synthesis, or place and route, interoperability problems
appear easy to solve. After all, it’s just an issue of moving struc-
tural, behavioral, physical, and process design data around!

The answer is “Interoperability should have been easier, but it
wasn’t”. To understand why, we have to look at how CAD vendors
and users got to this point. The CAD industry was in its infancy
when most of the major tools were developed to service the design
community. CAD tool design specifications were technologist
driven, as opposed to user driven. Consequently, tools were locally
optimized for features and performance, and interoperability was
at best an afterthought. During the mid to late 80’s CAD compa-
nies began to recognize that interoperability was becoming a user
requirement. CAD companies believed that they could achieve a
competitive and technological advantage by making their tools
interoperate better than their competitors. They approached the
problem of tool interoperability by taking their existing solutions
and attempting to glue them together. However, glue alone could
not compensate for the tools’ not having been designed for
interoperability. Furthermore, in spite of vendor initiatives such as
CFI, the glue was unique to each vendor. Major vendors typically
focused on integrating their own offerings, rather than on design-
ing tools which could cooperate in the typical customer’s multi-
vendor CAD environment.

CAD tool interoperability is an important problem because
without interoperability, CAD users are not free to use best-in-

class point tools at each step in the design process. In addition,
CAD customers are finding the need to exchange design informa-
tion both internally and with external organizations. With different
CAD tool suites being used by different groups, companies who
wish to use design information from other groups have found the
limiting factor to be the format of the data itself. In these environ-
ments, design transportability and tool interoperability are critical
components to the long term success of the data transfer and ulti-
mately, to the design project.

The next four sections of this tutorial paper describe current
interoperability problems in four classes of tools: schematic cap-
ture tools, simulators and synthesizers, IC design tools, and work-
flow management tools. Each section gives specific examples of
problems which arise when data is passed among tools. There is no
new theory here. Instead, the objective of these sections is to dis-
seminate real world experience in applying CAD tools to commer-
cial design problems. The final section of this paper describes
research work which may help reduce interoperability problems
over the long term.

 2. Schematic Capture Tools
This section presents problems which may be encountered pass-

ing data between schematic capture tools. This section is based on
consulting work done by Concurrent CAE Solutions for Exar Cor-
poration. Exar’s objective was to move existing design informa-
tion from the Viewlogic Viewdraw schematic tool to the Cadence
Composer schematic tool.

 Exar was facing a typical interoperability task. Exar’s goal was
to maintain their schematic front end in Viewlogic, and at the same
time use several of the Cadence back end capabilities, like cross-
probing. Exar had an existing investment in both Viewlogic View-
draw schematics, and in Cadence Composer libraries. Switch level
and analog modeling were key components of Exar’s design meth-
odology, and Exar had invested time and resources in qualifying
the Composer libraries. These libraries included component
description formats, technology rules, and schematic symbols.

Exar’s requirements included taking the existing schematics
from the Viewlogic system, and replacing the Viewlogic primitive
library components with existing library components from the
Cadence system. As shown in Figure 1, this component replace-
ment required ripping up specific existing components, along with
the segments of the nets connected to the pins of those compo-
nents. The ripped up net segments were then rerouted to the pins of
the replacement components symbols. The number of ripped up
net segments was minimized, and the resulting Cadence schematic
with the replaced components appeared graphically very similar to
the original Viewlogic schematic.

In transferring schematic data between Viewlogic and Cadence
tools, the following issues had to be addressed:

Scaling: The schematic symbols used on the Viewlogic sche-
matics were drawn on a 1/10 inch grid with a 2/10 inch pin spac-
ing. The target Composer symbol libraries were drawn on a 1/16

Issues and Answers in CAD Tool Interoperability

Yatin Trivedi
Seva Technologies
Fremont, Ca. 94539

Uwe B. Meding
Concurrent CAE Solutions
Santa Clara, Ca. 95050

Bill McCaffrey
High Level Design Systems
Santa Clara, Ca. 95054

Bill Berg
Mentor Graphics
Wilsonville, Or. 97070

Ted Vucurevich
Cadence Design Systems
San Jose, Ca. 95134

Mike Murray
Acuson
Mountain View, Ca. 94039
mikem@acuson.com

trivedi@seva.com

ccaes@netcom.com bberg@wv.mentorg.com

billmc@hlds.com tedv@cadence.com

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

inch grid with a 2/16 inch pin spacing. The symbols and schemat-
ics were scaled down in size to adjust to the Composer grid spac-
ing.

Symbol replacement mapping: Maps were created for replac-
ing components between the Viewlogic and Cadence systems.
Library, name, and view mappings, along with origin offsets and
rotation codes, were defined for each Viewlogic component to be
replaced by a Cadence component. For situations where pin nam-
ing conventions differed, a pin name map was also created.

Standard property mapping: Rules were defined for mapping
standard properties and labels between the two systems. The map-
ping included the addition, deletion, renaming or changing of
property names, values, and text labels.

Non-standard property mapping: Special property mapping
requirements for analog properties required the reformatting of
single properties into multiple properties. These requirements were
handled by the addition of Access Language (a/L) callbacks for a
selected set of objects. Concurrent CAE Solution’s a/L is a Lisp
dialect and is set up so that a user can interact with the entire
design hierarchy during the migration process. By using the a/L
interpreted language to handle the unique formatting requirements,
Exar achieved a high degree of automation with no manual post
translation cleanup.

Bus syntax translation: Viewlogic and Cadence differ in their
definition of legal bus syntax. For example, Viewlogic allows con-
densed busing syntax, i.e. “A0” is equivalent to bit 0 of bus
A<0:15>. However, Cadence requires that bus syntax be explicit,
and A0 is not equivalent to A<0>. Translation rules were created
to map between syntaxes. Viewlogic and Cadence also differ with
respect to bus postfix indicators. Viewlogic permits the use of post-
fix indicators such as the minus sign in the “myBus<0:15>-”. This
syntax is not understood by Cadence. For these nets, the postfix
indicators were adjusted to keep the net names unique (myBus-
<0:15>).

Hierarchy and off page connectors: Viewlogic and Cadence
Composer maintain different rules defining the interaction between
different levels of a design hierarchy. Viewlogic does not require
the explicit use of either hierarchy or off-page connectors, how-
ever, Cadence Composer requires both hierarchical and off page
connectors. Translation rules were set up governing the mapping
and addition of the hierarchy and off page connectors. These rules
defined translations of the type of connector (input, output, or bidi-
rectional); the library, cell, and view names of the connector; and
any offsets or rotations codes. Off page connectors represented a
more difficult task, because Viewlogic connects same signal names
across multiple pages implicitly. However, Cadence Composer
requires these connections to be explicit by using off-page connec-
tors. The connectivity challenge was addressed by maintaining an
understanding of the connections during the migration process.
The geometrical challenge was addressed by adding off-page con-
nectors to the end of wires if a floating wire was determined, or to

the side of the schematic sheets for these internal connections.
Globals: Rules were defined for the labels, names, and/or

instances of objects, and how they were mapped to the correspond-
ing instances on the target system. Similar to the replacement of
components, offsets and rotation codes were required to map the
replaced components to the correct location on the translated sche-
matic. When the schematic was received by the target system, it
used global instances and connectors from the native component
libraries.

Cosmetic issues: A host of cosmetic issues existed, including
the height and width of fonts. Font characters in Viewlogic are typ-
ically smaller than in Cadence, and the origin of each character is
offset from the baseline. For example, if the character “E” is
placed on a line in Viewlogic, it may appear as an “F” when trans-
lated directly to Cadence Composer. Rules for character scaling
and offsets were defined in order to correctly align text.

Verification: Careful design of a data translation strategy is
insufficient to guarantee correctness of the translated data; design
data translations must be independently verified. For this transla-
tion, Exar performed the verification using their own software
package.

3. Simulation and Synthesis Tools
The section presents problems which may be encountered in

passing data among simulation and synthesis tools. It is based on
the consulting experience of SEVA Technologies.

3.1 Simulator issues

Language standards: SEVA Technologies’ product evalua-
tions in 1994 and 1995 showed that most commercial products
lack compliance to language standards, such as IEEE 1076 for
VHDL and OVI LRM2.0 for Verilog HDL. (Verilog was subse-
quently adopted as the IEEE 1364 standard.) Even when standards
exist, they may be incomplete or controversial. For example, simu-
lation results depend on the scheduling algorithm the simulator
uses to order and process events. Different Verilog simulators can
legitimately disagree on the outcome of the same simulation,
because the simulation cycle and processing order for simulta-
neous events are not completely defined by the language. Typi-
cally, if different simulators give different results when simulating
the same model, there is a race condition in the model being simu-
lated, and the potential for a bug in the real hardware. However,
determining whether a discrepancy between the simulations is due
to a model race condition or to a simulator bug can be trouble-
some.

assign a = b & c;
always begin
...
b = d;
if (a != d) // which value of a?

Sheet, containing
other logic

Cadence system

Sheet from Viewlogic Component Replacement Sheet in Composer

Component to be replaced Native System Library

Figure 1: Component Replacement

Backward compatibility: Simulator timing models can change
as new versions are released, causing simulation timing results to
drift unless backwards compatibility is specifically addressed. For
example, Verilog-XL, a popular Verilog simulator, supports the
“+pre_16a_path” command line option. This option forces simula-
tors with version 1.6a or later to use the same timing check behav-
ior as was used prior to the 1.6a version. Users frequently use this
option to ensure that certain modeling styles remain compatible
across the versions of this simulator.

Co-simulation: Making two simulation tools work together,
specially a Verilog HDL - VHDL co-simulation, is typically prob-
lematic. Although co-simulation attempts have been made by all
major CAD vendors, most have fallen short of their targets. Incon-
sistencies in the signal value set (e.g. 0, 1, x, and z) and in the sim-
ulation cycle definition are common sources of problems.

Environment: In addition to language, other elements of the
simulation environment have not been standardized. If the design
environment uses multiple simulators, it is difficult to write a sin-
gle script for running the simulation, as the command line options
and user interaction mechanisms vary considerably between inter-
preted and compiled code simulators. Usually, this is not a major
problem as one group of users (e.g. designers) use one simulator
and the other group (e.g. verification engineers) use another simu-
lator.

3.2 Synthesis issues

Language standards: Standards for language and design envi-
ronment are also an issue for synthesizers. For each HDL and syn-
thesis tool, there exists a subset of the HDL that the synthesis tool
can accept. However, for a given HDL, there is no standardization
of the synthesizable subset across synthesis vendors. The lack of
standardization is understandable, because synthesis vendors can
differentiate themselves through the HDL subsets that they accept.
Consequently, if a model will be transported between synthesis
tools, it should be written using only those HDL constructs con-
tained in the intersection of the vendors’ subsets.

Environment: In addition to differences in the HDL subsets
that they accept, synthesis tools also differ in the specification or
contents of design constraint files, technology libraries, report gen-
eration, and runtime control mechanisms (e.g. command line
options and user interfaces). These differences make it nearly
impossible to migrate a design synthesis description from one syn-
thesizer to another without significant effort and schedule impact.

Modeling style: Synthesis tools sometimes interpret more than
what is described in the model. For example,

 always @(a or b)
 out = a & b & c;

You would expect the signal out to be modified when a or b
changes. However, the synthesis software interprets your model as
if out was sensitive to signals a, b and c.

 always @(a or b or c)
out = a & b & c;

The advantage of generating combinational logic may not be
acceptable to your latch-based architecture!

3.3 Naming issues

Several interoperability problems which affect both simulators
and synthesizers are related to the identifiers used in HDL models.

Name length: Even though an HDL definition may allow arbi-
trarily long names, several PC based simulators consider only the
first eight characters as significant. Two names that differ after the
first eight characters are treated as the same name, causing undesir-
able aliasing. For example, cntr_reset1 and cntr_reset2 are treated
as the same as cntr_res.

Escaped identifiers:Several simulators and HDL based tools
differ in their definition and interpretation of legal characters for

identifiers, and how illegal characters can be escaped. Specifically,
in Verilog HDL, the use of escaped identifiers (names that begin
with \ and terminate with a white space) has been confused by
many simulators. Some analysis tools always assume that the use
of [] implies a bit on a bus, or a * implies an active low signal.
Such specific interpretations are not valid across all tools,

Keywords: VHDL and Verilog differ in their definition of key-
words and legal identifier names, and this difference can compli-
cate the translation of models between languages. For example,
“in” and “out” are valid Verilog HDL identifiers (e.g. signal
names) that are reserved keywords in VHDL. Even if a translation
tool can rename Verilog identifiers so that VHDL syntax errors are
avoided, the identifier names will no longer match between mod-
els, and simulation analysis scripts may need to be modified.

Hierarchy removal: Certain HDL based tools work only on a
flat design description as opposed to a hierarchical model. When
such a tool imports a hierarchical design, it must flatten the design.
New names get derived in some systematic way, such as joining
the names in a hierarchical path using an underscore. However, the
design process is often iterative, and if a a problem is found in the
flat representation, the user must map back to the name used in
hierarchical representation.

Before beginning a project, a user should study the naming con-
ventions used by the tools he will use, and adopt a naming conven-
tion which will minimize problems such as those listed above.

3.4 Hardware and software platform dependencies

Quite frequently, interoperability problems are really manifesta-
tions of transportability problems, i.e. being unable to move exist-
ing work to a different environment; be it a hardware platform,
operating system, or simulation or synthesis software. There are
several problems faced during a design cycle that are related to the
hardware and operating system used for running design tools. Typ-
ical problems include:

Nonstandard operating system commands:Certain system
commands for identification of hostname, hostid, and Ethernet id
are different across different versions of UNIX. Similarly, the
commands for creation and expansion of swap space and for
accessing remote file systems vary across platforms. This lack of
standardization makes system administration harder to perform.

Office / home computing incompatibilities: Portability of
scripts from one software platform to another platform is limited.
For example, if an engineer is using a UNIX workstation at his
office and a personal computer at home, he require two sets of
scripts to run simulations and to copy files back and forth. Scripts
may even not be portable between platforms running different fla-
vors of Unix. Furthermore, the engineer’s preferred simulator or
waveform display program may not be available on both his office
and home platforms, forcing him to learn two user interfaces.
These problems reduce the productivity gains which could other-
wise be realized by telecommuting.

Tool version skew:Even if a CAD vendor has ported a tool to
all of the platforms in use on a design project, the vendor may not
support all platforms equally. Bug fixes and new tool releases
sometimes take weeks to propagate across all of the platforms a
vendor supports. Before purchasing a tool, the user should verify
the vendor’s track record in supporting the platforms the user will
be using.

Hardware interfacing: The interface required between a
workstation and a special purpose hardware box such as a Quick-
turn emulator or an IKOS hardware accelerator is different for dif-
ferent vendors. These interfaces differ in cabling, connectors,
device drivers, installation, and administration. They also differ in
their user interfaces. These differences makes it harder to change
the hardware and/or software computing environment during a
project.

Extension languages: Different hardware and software ven-
dors provide different C or C++ compilers and libraries. Verilog
simulators provide a PLI (programming language interface), which
allows the user to link custom C language modules to the simula-
tor. Compiling and linking these modules into a Verilog simulation
requires the user to be familiar with the compiler for his computing
platform, and with the linking procedure for his simulator.

 3.5 Tool Command Languages:

There is no standardization on the language used to integrate
tools and manage workflows. TCL, Skill, Perl, and Unix shell are
all in widespread use. Unless a company adopts and enforces a
standard for an integration language, sharing and reuse of design
methodologies within that company will be limited. Section 5
describes how to choose a workflow management tool which can
promote consistency in a company’s design methodology.

 4. IC Floorplanning and Place and Route Tools
This section describes interoperability problems between floor-

planners and P&R (place and route) tools used for physical design
of integrated circuits.

Today’s process technologies provide designers with the ability
to develop very complex, transistor rich designs that can operate at
frequencies above 200MHz. However, capitalizing on the potential
offered by these process technologies is not easy. Time to market
pressures and increasing design complexity require that more and
more of the design be done with CAD tools. Signal delay and
integrity are now significantly affected by interconnect topologies,
adding complexity to the design process and requiring a higher
degree of input control to the P&R tools. Design floorplanning is
now a requirement for managing signal delays. However, floor-
planning is effective only if the floorplanner’s results can be used
to control the P&R tools which will be used to complete the physi-
cal implementation. Frequently, the problem of communication
between floorplanners and P&R tools is complicated by the
designer’s use of multiple P&R tools on a single design.

High Level Design Systems provides the designer with multiple
levels of floorplanning capabilities which can drive directly into a
place and route backplane. Almost all of today’s P&R tools are
supported from this backplane. In developing this backplane, HLD
has had to deal with the lack of interoperability between P&R
tools. For example, there are no common languages, syntaxes, or
semantics between these tools. While there have been efforts to
create standards such as PDEF to support some timing related
placement, there is currently no effort to define a common lan-
guage to deal with the semantics of both control and data input into
the various P&R tools. HLD’s P&R backplane is the best attempt
to at least map the semantics and controls from one tool to the
next. The lack of interoperability between these tools decreases the
designers’ ability to properly influence the P&R tools. Interopera-
bility problems in cell definition, block floorplanning, and inter-
connect topology are described below.

Cell definition: All P&R tools require an abstract view/defini-
tion of the design cells or blocks that they are to assemble. These
abstract views consist of many parts including cell/block bound-
aries, site types, legal orientations, a complex (and sometimes
comprehensive) set of pin data, and routing blockages. How this
data is defined and input is different for most P&R tools. (While
there are groups of tools that support some commonality, there is
minimal consistency over all tools). To demonstrate the complex-
ity that the designer must deal with, let’s examine pin definitions.

Pins are the connection targets for the router. The parts of a pin
are: a name, location, shape, layer, and a set of connection proper-
ties. The connection properties include access direction, multiple
connect, equivalent connect, must connect, and connect by abut-
ment. Each P&R tool supports a slightly different set of input data

requirements. For instance, some tools read access direction as a
property, while others try to determine it from the routing block-
ages. The latter approach adds a level of complexity to how block-
ages are defined for each tool. Connection types are also not
uniformly supported. Some tools read connection types as a set of
literal properties on the pin, others require an external file, and a
few have no predefined support for some connection types.

Block floorplanning: Communicating area constraints from a
floorplanner to a P&R tool is also, unfortunately, an exacting pro-
cess. During floorplanning, a designer makes decisions on block
aspect ratios and size, general and literal pin locations, and special
blockages marking keep out zones. He also defines the general
routing strategies for global signals such as power, ground and
clock. Once the designer is satisfied with the floorplan, he must
then convey all of the appropriate information to the P&R tools.
Though HLD’s P&R backplane conveys as much as possible to the
various P&R tools, each tool requires a specific set of constraints.

Interconnect topology: Interconnect topology has a large
impact on design performance and functional integrity. Conse-
quently, the designer must pass topology control information
between the floorplanner and the P&R tools. Coupling capacitance
can causes all sorts of problems, but can be controlled by shorten-
ing wire length, increasing spacing, or even by shielding. Mini-
mum metal widths are also only appropriate for typical drive
currents; wider widths must be used for nets with larger currents.
Therefore, routers should be able to accept width specifications for
selected nets. Some tools can not support these requirements,
while those that do are inconsistent in their language or semantics.

There are many other issues with communicating constraints
into P&R route tools, but the above issues are sufficient to demon-
strate the global issue of interoperability. The designer is really
dealing with two separate problems. First, the feature sets of the
various tools are sometimes significantly different. Though ven-
dors will argue that these features competitively differentiate their
tool from another tool, it can also be argued that there is a required
set of features that must be understood by all tools. Second, when
such features are supported, there is no standard as to how they
should be defined and presented to the designer.

HLD’s place and route backplane addresses many of these
issues. However, designers, floorplanner vendors, and P&R ven-
dors need to cooperate to standardize on a complete set of require-
ments and semantics for properly feeding design constraints
forward through the design process. This standardization can be
done without compromising the competitive features and perfor-
mance of the various CAD products.

5. Workflow Management Tools
An integrated design environment must include more than just

the ability for one tool to share data with another tool. There is a
need to address the “process gaps” that also typically affect the
efficiency and robustness of the design process. Companies have
found that simply adding better point tools, no matter how well
integrated, does not provide the same incremental productivity
gain as in the past. What is now required to achieve and maintain a
competitive advantage in the market is a focus on the “process” -
whether that process includes gathering product requirements,
design, manufacturing or maintenance. The type of workflow man-
agement support required goes far beyond the simple “tool
invoker/tool sequencer” approach currently found in many process
management tools.

Creating a workflow involves first capturing the structure of the
flow graphically. Next, the work that occurs within the flow as the
process is followed is specified. Once the workflow is captured and
specified, the resulting workflow template is deployed across the
organization. Each instance of the captured process is derived from
the same template, providing process consistency. As the workflow

progresses, status is collected and reported to the end-user and to
management as required. These collected metrics can later be ana-
lyzed and used to tune the process, providing a closed-loop, con-
tinuously improving process environment.

Mentor Graphics has found that a workflow product suite must
have the following characteristics to successfully deliver a work-
flow-enabled, integrated design environment:

Environment independence:No vendor has a monopoly on
the tools included in the design environment. A successful work-
flow management environment must support any combination of
tools from multiple vendors. The workflow management tool itself
must be framework independent such that it does not require a par-
ticular vendor framework be resident (i.e. purchased!) to operate.
The same integration facilities and process should be used to cre-
ate the workflow independent of the tools being used in the pro-
cess.

Open language environment:Many processes are controlled
currently via a series of shell scripts and other procedures that are
held together by the user’s own experience about what the proce-
dures do and the order in which they are to be executed. This expe-
rience can be leveraged if the workflow system maintains a clear
architectural separation between the process description and the
process actions. This means that the actions invoked from the pro-
cess description can be implemented in any programming lan-
guage desired by the flow developer - UNIX shell scripts, PERL,
TCL/TK, C-language, etc. This openness allows any existing pro-
grams, executable from the UNIX command line, to be attached as
actions to a workflow without the use of special compilers, propri-
etary languages or wrappers, or other tool-specific means.

Flexible tool management:A workflow and a set of integrated
tools can co-exist in a number of different ways depending on the
type of process flow and the capabilities of the individual tools.
For example, a workflow may consist of a number of separate
steps, each of which causes a separate tool to invoke. Another
workflow may consist of the same number of steps, but in this case
each of the steps causes a separate feature of a single tool to be
executed. In the first case, each tool is invoked as a separate pro-
cess and the return value (or other means) is used to determine the
success or failure of the step. In the second case, the first step in
the sequence invokes the tool (if not already invoked), then subse-
quent steps communicate to the already- running tool via inter-pro-
cess communication or RPC protocols (both of which can be used
within the workflow).

Default behavior, not built-in policies: There is a fine archi-
tectural line between providing an extremely programmable sys-
tem and a system that is extremely difficult to program. During the
course of workflow capture, if the developer must tell the system
exactly what to do in every case, and always account for even the
most commonly-expected behavior, then creating a workflow can
become tedious and error-prone. For many tool integrations, a
return status of “zero” from the tool will indicate successful execu-
tion; a return of “non-zero” status will indicate failure. For this
common case, defaults must be built into the workflow system to
react appropriately. For example, a tool invoked from a workflow
step that returns zero status will be assumed to have completed
successfully, and the workflow status for that task will be updated
appropriately by default, without the developer having to explicitly
set the task state to “completed successfully”. However, if a more
complex integration is required, support is provided in the API to
set the state of a step to an explicit value based on whatever criteria
is necessary to determine the completion status of the tool invoked
from that step. This type of flexible default behavior allows any
tool to be successfully integrated into the workflow environment.

Support for hierarchical design: Hierarchical design is a
given, and tools integrated into a workflow-managed environment
must be allowed to operate on hierarchical data if designed to do

so. The process flow must adjust dynamically to the changing hier-
archy of the design (especially in the early “what-if” stages). Each
design block in the hierarchy can be developed using the same
sub-flow template, but the data and process status is kept separate
for each block. Blocks can be named and organized within the
workflow such that a natural design hierarchy is visible and obvi-
ous to the user.

Open and flexible support for data management:A default
design data management structure can simplify the design process
and allow designers to concentrate on design instead of data man-
agement. Most designers do not care where their data is stored, as
long as they can find it easily and their tools operate on it correctly.
A default data storage structure can be embodied in the workflow,
built by running an initial setup action, and then added to and/or
re-used as the workflow progresses. This approach isolates the
designer from the details of data location and access.

Architectural separation of workflow and data manage-
ment: Although data management is a crucial component of work-
flow management, services that provide each should not be too
tightly linked. It should be possible to build a flow that contains as
much data management as is required - but no more than is
required. By separating the two services, workflow does not dic-
tate that the same data management facilities be used for every
flow. In some cases, UNIX-based utilities such as SCCS, RCS and
make can provide an adequate level of data management. In other
cases, a much more sophisticated level of data management, such
as is provided by commercial data repositories and product data
management (PDM) systems is required. This decision should be
left to the flow developer, not the workflow system provider.

Flexible dependency management:A rich and robust depen-
dency management system must control the workflow engine such
that tool and data prerequisites and other conditions can be mod-
eled and presented to the end-user via the flow in an acceptable
manner. For example, certain events might trigger the availability
of certain data or tasks for use by downstream steps in the flow
(“start dependencies”). Other events might be used to insure that a
task does not complete too soon (“finish dependencies”). Condi-
tions must also be allowed that support controlled decisions
regarding “When can I reset and rerun this step?”, “Do I have the
necessary permissions to execute this task?”, etc.

Tools are integrated such that checks can be made on their data
to determine flow state. File existence, date/time stamps, file con-
tents and other means can be used to determine data maturity, and
these maturity results can be use to control progress through the
workflow. Data variables in the workflow can serve as proxies for
one or more design data items, allowing information about the data
state and/or value to be stored as metadata separate from the
design data. Workflow procedures can be automatically triggered
based on design data-related events that occur. Communication
between the integrated tools and the workflow is performed via the
workflow application procedural interface (API), which allows the
tool to exchange (set/get) metadata (task state, data variable state
and value) with the workflow.

Trigger-based procedures provide the ability to notify the user
when something has changed in the design that does, or might,
require them to rework some of their steps. Features that detect
changes, notify downstream process steps, capture information
about the change, and allow the user to determine the best course
of action must be provided.

Each of the characteristics described previously contributes to
the goal of creating an integrated, workflow-enabled design envi-
ronment. This goal is achieved if the user of the workflow system
becomes (and feels) more productive, while at the same time
deriving the cost, quality and time-to-market benefits gained
through following consistent design processes to produce success-
ful designs.

6. Interoperability Research
This section describes research into a system level CAD soft-

ware design process for developing truly interoperable CAD soft-
ware that solves real user problems.

Past efforts at making CAD tools interoperate met with limited
technical success because the interoperability problem was being
approached from the bottom up. This approach was analogous to a
microprocessor designer trying to design a state of the art proces-
sor starting with off the shelf components. Although the designer
could probably find all the parts he needed, they would not work
well together because they had not been designed from a system
perspective

System design approach: The key to the successful design of a
complete system-to-mask CAD software system is to treat the
design as a system design problem. This section outlines an
interoperability analysis methodology that combines object ori-
ented software design with top down hardware design. There are
three distinct parts of the methodology: system specification, sys-
tem analysis, and system optimization. Detailed implementation
follows from these steps and will not be addressed here.

System specification: In both hardware and software system
design, the single most important step from the perspective of
quality and timeliness of results is specification of the problem to
be solved. This methodology uses a “user task” oriented way of
specifying high level system requirements. The basic approach is
to model the CAD user’s design methodology as a set of well
defined tasks. A task consists of a textual description of what work
is performed, the set of inputs required in order to perform the
task, and the set of outputs produced by the task. Note that tasks
are defined in a tool independent way. So, an example task might
be developing RTL level models. A task would NOT be, push but-
ton A on interface B to produce a netlist that is used by C. Tasks
are defined for the entire design methodology to be supported by
the CAD system. In our experience, we found that it takes approx-
imately 200 tasks to describe a cell based design methodology that
spans from product specification to final mask tapeout. During the
task development process, it is important that task inputs and out-
puts be normalized. Normalization means that the fundamental
information being consumed or produced is identified, rather than
the file format which some tool may use to represent it.

Once tasks have been defined, the resulting information repre-
sents the major design creation, analysis, and validation steps as
well as a complete information model of the user’s design method-
ology in a tool independent fashion. Tasks are represented as nodes
in a directed graph which are linked together through the specified
inputs and outputs. Interestingly, task graphs more faithfully repre-
sent the designer’s choices in what steps to do next at a given point
in the design process. In contrast, the normal tool specific design
flow descriptions do not represent what designers actually do,
because they simplify the problem to one which is linear in nature.

After tasks have been specified, then a set of scenarios is
defined. A scenario is a set of boundary conditions to be applied to
the set of tasks previously defined. A scenario typically includes:
end user profile (team size, experience, etc.), tools that must be
used (already purchased or developed), and end user driving func-
tions (product cost, size, performance, and technology to be used).
Scenarios should represent the set of unique contexts in which the
CAD system will used. The purpose of the scenarios is to prune the
task graph, and reduce the number of interactions the tasks have
with each other to a practical subset.

The combination of tasks and scenarios represents the system
specification that the CAD system is designed to.

System analysis:The CAD system is now analyzed using real
tools. The purpose of the system analysis phase is to evaluate data
and control flow during the design process as defined by the tasks
and scenarios. The first step in the analysis is to perform a task to

tool mapping. During this step each scenario is analyzed with a
specific set of tools. For example, a broad based CAD vendor may
perform one analysis with only its tools and a second with key
third party tools included. An internal CAD organization may per-
form two or three mappings on a combination of external and
internal tools. The result of this step is a mapping of tools to tasks.
Typically, this is the first point where holes and overlaps of func-
tionality are identified.

When the task/tool map is complete, then tool models need to
be developed for each tool. A tool model is similar in structure to
the user task. It contains a description of the function, data inputs,
data outputs, control inputs, and control outputs. Data input and
output is classified into four parts, persistence, behavioral seman-
tics, structural model, and namespace. Control is defined as a set of
interfaces. This interface model is analogous to the software com-
ponent models like Corba and Com.

Once models have been developed, then data flow and control
flow diagrams are created for the entire task/tool map. These dia-
grams are then analyzed. In our experience, this analysis clearly
identifies the classic interoperability problems (performance, name
mapping, structure mapping, semantic interpretation errors, and
tool control). This level of analysis is typically the most important
for CAD organizations as they typically have to deal with tools as
black boxes that cannot be optimized in and of themselves. The
analysis results are captured and used as input for the system opti-
mization step.

System optimization: In the system optimization step, the
pieces of the system are modified to improve overall performance
of the system. There are three ways of improving this perfor-
mance. The first way is to repartition the boundaries of tools. This
type of improvement can typically be performed only by CAD
vendors or on internal tools. The idea is that by peeling back the
tool’s general purpose interface, there is typically a level where a
lower overhead interchange of data and control can take place. The
second type of improvement comes from improvements in data
interoperability. In this case, analysis results will lead to things like
internal naming conventions, bus usage conventions, etc. that
improve the interpretation of data throughout the flow. The final
type of improvement is through technological innovation. This is
where new technologies (such as formal logic verification) replace
a large number of tasks with a single task in the overall flow.

7. Conclusion
This tutorial paper has described interoperability problems in

four classes of tools: schematic capture tools, simulators and syn-
thesizers, IC design tools, and workflow management tools. Using
the examples cited in this paper, a new CAD user can carefully
examine his design process, the tools required to execute that
design process, and the limitations and interactions of such tools.
Current research may allow seamless interoperation of future
tools. For now though, the authors hope that this paper has fore-
warned and forearmed new CAD users against the interoperability
problems they will certainly face!

Acknowledgments
Ates Gurcan and Jim Sunde of Exar Corporation provided sup-

port and review for the section on schematic interoperability
issues. Mike Murray thanks Rhonda and Steven Murray for their
patience and understanding. All product or service names men-
tioned herein are trademarks of their respective owners.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

