
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

EFFICIENT APPROXIMATION ALGORITHMS FOR

FLOORPLAN AREA MINIMIZATION

Danny Z. Chen� Xiaobo (Sharon) Huy

ABSTRACT

Approximation has been shown to be an e�ective method
for reducing the time and space costs of solving various

oorplan area minimization problems. In this paper, we
present several approximation techniques for solving
oor-
plan area minimization problems. These new techniques
enable us to reduce both the time and space complexi-
ties of the previously best known approximation algorithms
by more than a factor of n and n2 for rectangular and
L-shaped sub-
oorplans, respectively (where n is the num-
ber of given implementations). The e�ciency in the time
and space complexities is critical to the applicability of such
approximation techniques in
oorplan area minimization al-
gorithms. We also give a technique for enhancing the qual-
ity of approximation results.

1. INTRODUCTION

Floorplan area minimization plays an important role in
achieving an optimal
oorplan for an integrated circuit.
Most
oorplan area minimization algorithms search for the
minimum area implementation by �rst constructing a list of
all non-redundant implementations of the entire
oorplan
(e.g., [4, 5, 6, 7, 9]). The list is built recursively in a bottom-
up fashion, by traversing the tree (called
oorplan tree) that
represents the
oorplan under consideration. Depending on
the number of implementations for the basic circuit mod-
ules and the structural complexity of a
oorplan, the size
of such a list can become very large [6, 10]. Both the com-
putation time and memory usage of the known
oorplan
area minimization algorithms are directly proportional to
the size of the list consisting of the non-redundant imple-
mentations. For large
oorplans, such algorithms may fail
to produce a solution due to exorbitant space or time cost.
An e�ective method for improving the e�ciency of the

known
oorplan area minimization algorithms and, more
importantly, for enabling such algorithms to handle large

oorplans, is to approximate the list of all non-redundant
implementations associated to an internal node of a given

oorplan tree by a new list that contains a smaller num-
ber of non-redundant implementations. Wang and Wong
[10] have proposed several approximation algorithms for
two important types of sub-
oorplans: one in which the
list (called R-list) consists of rectangular implementations
and the other in which the list (called L-list) consists of L-
shaped implementations. They used an interesting graph-
theoretic approach. Let n be the number of non-redundant
implementations in the original list and k the number of
implementations in the resulting list after approximation.
Wang and Wong's algorithms require O(kn2) time and
O(n2) space for approximating an R-list, and O(n3) time

and O(n2) space for approximating an L-list.
In this paper, we propose new algorithmic techniques for

solving the approximation problems for both the R-lists and
L-lists. In contrast to Wang and Wong's graph-theoretic
approach [10], our approach hinges more heavily on geo-
metric structures of these approximation problems. Specif-

�Department of Computer Science and Engineering, Univer-
sity of Notre Dame, Notre Dame, IN 46556, U.S.A.

yDepartment of Electrical and Computer Engineering, West-
ern Michigan University, Kalamazoo, MI 49008, U.S.A.

ically, we prove a number of observations on useful geomet-
ric structures of the approximation problems for the R-lists
and L-lists. By exploiting these geometric properties, we de-
velop approximation algorithms that are substantially more
e�cient in both the time and space complexities than the
previously best known results [10]. Regardless of the type
of the lists, our following results hold true. A simple-to-
implement version of our algorithms has a time complexity
of O(nk) and a space complexity of O(n). A more sophisti-

cated version of our algorithms runs in n2O(
p

log k log log n))
time (which is equivalent to O(nk�) for any constant � > 0)
and still takes O(n) space. Our improvements on the time
and space complexities of the approximation algorithms for
the R-lists and L-lists make it more applicable and attrac-
tive to incorporate the approximation techniques into
oor-
plan area minimization algorithms. Furthermore, these re-
sults are obtained without sacri�cing the quality of the ap-
proximation solutions. Actually, our algorithms generate
better approximation results than those of [10] (i.e., our re-
sults have smaller approximation errors) when applied to
the set of irreducible L-lists of an L-shaped block.

2. PROBLEM FORMULATION

We �rst review some needed terminology and useful struc-
tures (many of which are from [10]), and then formulate
the
oorplan approximation problems studied in this pa-
per. The basic terminology related to
oorplanning can be
found in many publications (e.g., [9]).
We consider two commonly-used sub-
oorplans: rectan-

gular and L-shaped blocks [9]. An implementation (i.e. a
layout alternative) of a rectangular block can be repre-
sented by a 2-tuple (w;h), where w is its width and h is
its height. An implementation of an L-shaped block can be
represented by a 4-tuple (w1; w2; h1; h2), where w1 and w2

are the widths of the two horizontal edges, and h1 and h2

are the heights of the two vertical edges, with w1 � w2 and
h1 � h2.
Wang and Wong [10] used an R-list to represent multiple

implementations of a rectangular block. An implementation
list f(w1; h1); (w2; h2); : : : ; (wn; hn)g is an R-list if wi � wj

and hi � hj for all 1 � i < j � n. Similarly, multiple
implementations of an L-shaped block can be represented
by an L-list [10]. An implementation list

�
(w1

1; w
2
1; h

1
1; h

2
1) ,

(w1
2; w

2
2; h

1
2; h

2
2), : : :, (w

1
n; w

2
n; h

1
n; h

2
n)
	
is an L-list if w1

i �
w1
j , w

2
i = w2

j , h
1
i � h1j , and h2i � h2j for all 1 � i < j � n.

Note that the implementations of an L-shaped block may
be represented by multiple L-lists.
An R-list is called an irreducible R-list [10] if there are

no redundant implementations in the list. An implementa-
tion (w;h) is redundant if there exists another implemen-
tation (w0; h0) such that w � w0 and h � h0. An irre-
ducible L-list can be de�ned similarly [10]. Irreducible R-
lists and irreducible L-lists are fundamental data structures
that are used by a number of
oorplan area minimization al-
gorithms to store non-redundant implementations that may
lead to optimal
oorplan implementations. For large, com-
plex
oorplans, the number of non-redundant implementa-
tions in such lists can be enormous [6, 9].
To reduce the number of non-redundant implementations

or the size of an irreducible R-list or L-list, an approxima-

tion approach was proposed by Wang and Wong [10]. A
prede�ned limit is set for the number of non-redundant im-
plementations that can be stored at an internal node of
a
oorplan tree (this limit may be determined based on
the available time and space resources). When the num-
ber of non-redundant implementations at the internal node
exceeds this limit, only a subset of these non-redundant
implementations will be retained for the subsequent steps
while the others are eliminated. Clearly, the retained non-
redundant implementations can only approximate the en-
tire non-redundant implementation set. Hence, an impor-
tant problem is to select a subset of implementations that
best approximates the original set of implementations. This
problem is formulated formally as follows.
Let R = fr1; r2; : : : ; rng be an irreducible R-list, where

ri = (wi; hi), and L = fl1; l2; : : : ; lng be an irreducible L-
list, where li = (w1

i ; w
2
i ; h

1
i ; h

2
i), for i = 1; 2; : : :, n. Given

an integer k, k < n, we denote a subset of k implemen-

tations of R (resp., L) by ~R = frd1 ; rd2 ; : : : ; rdkg (resp.,
~L = fld1 ; ld2 ; : : : ; ldkg), where 1 = d1 < d2 < � � � < dk = n.
Without cluttering the exposition, our following discussion
will use R-lists only. If L-lists are concerned, one only needs

to replace R with L and ~R with ~L in our exposition. Clearly,

the list ~R is an approximation to the original R-list R.
More precisely, an error is committed when implementa-
tions rdz = ri and rdz+1 = rj but not those implementa-

tions of R strictly between ri and rj are included in ~R, for
each z = 1; 2, : : : ; k�1. Let the error induced by including

in ~R the implementations rdz = ri and rdz+1 = rj but not
the implementations strictly between ri and rj be denoted
by e(dz; dz+1) = e(i; j). Then the total approximation error

committed by using ~R to replace R is simply

E(R; ~R) =

k�1X

z=1

e(dz; dz+1) (1)

Therefore, the problem that we are concerned with is to
obtain a list ~R that results in the minimum approximation

error E(R; ~R). It should be pointed out that the actual
value of each e(i; j) depends on the speci�c error de�nition
and will be discussed in Section 4.

3. MAIN IDEAS AND TECHNIQUES

Several new ideas are used in our approach to �nding the
best approximate sub-list of size k for a given R-list (resp.,
L-list) of size n, k < n. One of them is to reduce this ap-
proximation problem to that of computing the minimum-
weight K-link path in a complete, weighted, directed acyclic
graph (DAG) possessing certain special geometric proper-
ties [2, 8]. Another key idea is to develop a scheme for
implicitly representing the complete, weighted DAG. This
scheme stores the graph of O(n2) weighted edges in only
O(n) space, yet still allows graph information to be ex-
tracted as if an explicit graph representation is available.
Considering the problem of approximating an irreducible

R-list R of size n, we model it by a complete, weighted
DAG G as follows: Each vertex vi in G corresponds to the
implementation ri in the R-list R and each arc a(i; j) in G
has a weight equal to the approximation error e(i; j) (for all
1 � i < j � n). It is not di�cult to see that, for an integer
k, 0 < k < n, the vertices along Pk�1(1; n), the minimum-
weight (k � 1)-link path from v1 to vn in G, correspond
precisely to those k implementations that constitute the

best approximation ~R to the original R-list R. (A path
PK(i; j) in G is a minimum-weight K-link path from vi to vj
if PK(i; j) consists of exactly K arcs and has the minimum
total weight among all K-arc paths from vi to vj.)

Although the DAG model we have just described is sim-
ilar to the one used in [10], we are able to prove a number
of useful geometric structures about the R-list (resp., L-
list) approximation problem. Our �rst observation is that
the complete, weighted DAG G that models an R-list or L-
list has an important geometric structure called the Monge
property [2, 8]. (We shall present the details in the next sec-
tion.) Let a complete, weighted DAG G have vertices v1,
v2, : : : ; vn and a weight w(i; j) for each arc a(i; j), i < j.
Then, G is said to satisfy the concave Monge property if for
all 1 < i+ 1 < j < n, the following inequality holds [2, 8]:

w(i; j) +w(i+ 1; j + 1) � w(i; j + 1) + w(i+ 1; j): (2)

Aggarwal, Schieber, and Tokuyama [2] and Schieber [8]
have shown that the minimum-weight K-link path prob-
lem on a complete, weighted DAG with the concave Monge
property can be solved by faster algorithms than those for
a general graph [3]. Provided that the graph is already
available, the best known algorithm for this problem takes

n2O(
p

log k log log n) time, which is bounded by O(nk�) for
any constant � > 0, and O(n) space [8].
It should be pointed out that although the complete,

weighted DAG G that models an R-list (resp., L-list) can
be shown to have the concave Monge property, simply ap-
plying the algorithms in [2, 8] to G would not achieve the
improvement on the time and space complexities that we
claim. In fact, such a solution would take O(n2) time and

space (resp., O(n3) time and O(n2) space) for the R-list
(resp., L-list) approximation. The reason is that one would
have to make the graph G available �rst, and explicitly con-
structing G, as shown in [10], takes O(n2) time and space

(resp., O(n3) time and O(n2) space) for an R-list (resp.,
L-list). Our idea for overcoming this di�culty is, instead
of building the graph explicitly (and hence paying the high
price for the graph construction and representation), rep-
resenting the graph implicitly. More speci�cally, by taking
advantage of several additional geometric properties of the
approximation problems, we design a scheme for implicitly
representing the graph G. Our implicit representation of
G requires only O(n) time and space to construct, yet it
enables us to extract information of G as if an explicit rep-
resentation of G is available. Combining our observations
on the Monge property of the graph we use with our implicit
graph representation schemes, we solve the R-list and L-list

approximation problems in the claimed n2O(
p

log k log log n)

time (which is bounded by O(nk�) for any constant � > 0)
and O(n) space.
Note that Schieber's algorithm [8] for computing the

minimum-weight K-link path in a complete, weighted DAG
with the concave Monge property makes use of a variant of
the parametric search technique which is quite challeng-
ing for practical implementation. To resolve this issue, we
present a di�erent version of the algorithms for the R-list
and L-list approximation problems that are simple to imple-
ment yet reasonably e�cient. These simple-to-implement
algorithms are also based on the concave Monge property
of the graph we use and on our implicit graph representation
schemes. However, we replace in these algorithms the para-
metric search technique [8] by the fast Monge matrix search-
ing algorithm [1] and a novel path construction scheme
based on a divide and conquer strategy. In consequence,
these simple-to-implement algorithms require O(nk) time
and O(n) space, slightly worse than the time complexity
of our sophisticated algorithms but still signi�cantly better
than the previously best known results [10]. The ideas and
details of the simple-to-implement algorithms are interest-
ing in their own right but due to the space limitation, we

3r
r2

r5

1r

r6

h

w

e(4,6)

e(1,4)
r4

Figure 1. Staircase curves for R-list R =

fr1; r2; r3; r4; r5; r6g and ~R = fr1; r4; r6g and the ap-
proximation errors.

will omit the detailed discussion of these algorithms.

4. FLOORPLAN APPROXIMATION
ALGORITHMS

In this section, we substantiate the main ideas and tech-
niques outlined in the previous section. We will discuss the
R-list approximation problem �rst but omit the proofs to
our lemmas and theorems. Due to the page limit, we will
only brie
y present our approach to solving the more com-
plicated L-list approximation problem.

4.1. R-list approximation

We begin with de�ning how the actual values of approxima-
tion errors are determined. We use the same error de�nition
as introduced by Wang and Wong [10]. Quantitatively, the
approximation error associated with two consecutive imple-

mentations rdi and rdi+1 in ~R due to the omission of those
implementations in R strictly between rdi and rdi+1 is de-
�ned as follows. If di + 1 < di+1, then

e(di; di+1) =

di+1�1X

q=di+1

(wdi �wq)(hq+1 � hq) (3)

and e(di; di+1) = 0 when di + 1 = di+1. Then, the total

error of approximating R with ~R is

E(R; ~R) =

k�1X

i=1

e(di; di+1): (4)

Graphically, the original R-list R and an approximating R-

list ~R can be represented by two staircase curves (see Fig-
ure 1). The total error committed by approximating R with
~R is indicated by the shaded regions in Figure 1, represent-
ing the area enclosed by the two staircase curves.
Although the above de�nition of e(di; di+1) implies a

straightforward way of computing e(di; di+1), we give
a lemma which shows a di�erent way of calculating
e(di; di+1). This lemma is also critical to our presentation of
the geometric properties of the R-list approximation prob-
lem. It is based on the observation that the error between
two consecutive implementations rdi and rdi+1 in ~R is di-
rectly related to the area di�erence between the rectangle
with width wdi and height (hdi+1 � hdi) and the rectilinear
polygon under the staircase curve for R between rdi and
rdi+1 (see Figure 1).

Lemma 1 For an R-list R, R = fr1; r2; � � � ; rng and each
rj = (wj; hj), let ai = wi(hi+1 � hi) for i = 1; 2; : : : ; n� 1.
The approximation error e(i; j) (due to including ri and

rj in ~R and omitting all the implementations in R strictly

Algorithm: R-Approximation

Input: An irreducible R-list R = fr1; r2; � � � ; rng,
where each ri = (wi; hi), and a positive integer
k < n;

Output: An R-list ~R containing k implementa-
tions from R, which minimizes the total ap-

proximation error E(R; ~R);
begin

A(1) 0;
for i = 2 to n

A(i) A(i� 1) +wi�1(hi � hi�1);
G the complete, weighted DAG for R;
P Find_Min_K_Path(G;k� 1);
output the k vertices on the path P ;

end

Figure 2. Algorithm for �nding the best approxi-
mation to a given R-list R of size n and an integer
k (k < n).

between the two), i < j, can be calculated as follows:

e(i; j) = wi(hj � hi)�
j�1X

q=i

aq

Based on Lemma 1, we can show that the complete,
weighted DAG G we use to model the R-list approxima-
tion problem satis�es the concave Monge property. This is
stated in Lemma 2.

Lemma 2 Given an R-list R = fr1; r2; � � � ; rng, let G be
the complete, weighted DAG that models the R-list approxi-
mation problem on R. Then, G satis�es the concave Monge
condition. That is, for all 1 < i+ 1 < j < n, the following
inequality holds:

e(i; j) + e(i+ 1; j + 1) � e(i; j + 1) + e(i+ 1; j)

where e(i; j) is as de�ned in Lemma 1.

As pointed out in the previous section, having the Monge
property alone would not result in solving the R-list ap-
proximation problem within the claimed time and space
complexities. We need to develop a scheme for implicitly
representing the complete, weighted DAG we use. In the
implicit graph representation scheme, a preprocessing step

is used to calculate and store a value Ai =
Pi�1

q=1
aq (where

aq is as de�ned in Lemma 1) for each i = 2; 3; : : : ; n (with
A1 = 0). When the error associated with a pair of im-
plementations ri and rj is needed, it can be computed in
constant time by using

e(i; j) = wi(hj � hi)� (Aj � Ai): (5)

The correctness of Equation (5) follows immediately from
Lemma 1. The preprocessing step takes only linear time
and space for computing the Ai's. Therefore, we reduce the
time and space for constructing and storing the complete,
weighted DAG G from O(n2) to O(n). (In fact, this implicit
graph representation scheme can be applied to any R-list
algorithms that use the same error de�nition as (3).)
We summarize in Figure 2 our R-list approxima-

tion algorithm, where Find_Min_K_Path(G;K) denotes the
minimum-weight K-link path algorithm given in [8]. Note
that the complete, weighted DAG G is represented implic-
itly as discussed above, that is, only linear space is needed
for storing G. When the weight of an arc in G is required by
Find_Min_K_Path, (5) is evaluated in constant time. The
time and space complexities of the algorithm is summarized
in Theorem 1.

Theorem 1 Given an R-list R of size n and an integer k

(k < n), in n2O(
p

log k log log n) time and O(n) space, the
algorithm in Figure 2 selects k elements from R to form an

R-list ~R of size k which best approximates R.

4.2. L-list approximation

Although the L-list approximation problem in principle can
be solved in a similar fashion as the R-list approximation,
the details are substantially di�erent. The major di�culty
lies in the more complex computation required by the de�-
nition of approximation error in the L-list case. It not only
introduces new challenges in demonstrating that the L-list
approximation problem has the required properties but also
complicates the implicit graph representation scheme.
By using the same error de�nition for an L-list L as

in [10], the approximation error associated with two con-

secutive implementations ldi and ldi+1 in ~L by discarding
those implementations in L strictly between ldi and ldi+1 of
L is determined by

e(di; di+1) =

di+1�1X

q=di+1

cost(lq) (6)

where

cost(lq) = min
�
dist(ldi ; lq); dist(lq; ldi+1)

	
(7)

dist(li; lj) = jw1
i � w

1
j j+ jh1i � h

1
j j+ jh2i � h

2
j j (8)

The total error of approximating L with ~L is hence

E(L; ~L) =

k�1X

i=1

e(di; di+1): (9)

The following important observation forms the basis for our
approach to solving the L-list approximation problem,

Lemma 3 Let (li; li+1; : : : ; lj) be a subsequence of imple-
mentations in an irreducible L-list L. There exists an index
s, i � s � j, such that dist(li; lp) � dist(lp; lj) for any
p, i � p � s and that dist(li; lq) > dist(lq ; lj) for any q,
s < q � j. Such an index s is called a separating point.

Based on 3, we are able to show that the complete, weighted
DAG G for modeling the L-list approximation problem has
the concave Monge property (similar to Lemma 2.)
To apply the techniques outlined in Section 3 to the L-

list approximation problem, we also need to have an implicit
graph representation scheme which requires only O(n) space
to store G. (In [10], O(n3) time and O(n2) space are used to
build and store the associated DAG.) The following lemmas
make it possible for us to achieve this goal. We skip the de-
tails of our representation scheme and the actual algorithm
due to the space limitation.

Lemma 4 For an irreducible L-list L = fl1; l2; : : : ; lng, let

X(i) =

iX

j=1

dist(l1; lj); i = 1; 2; : : : ; n

Y (i) =

nX

j=i

dist(lj; ln); i = n; n� 1; : : : ; 1

We then have, for any i and j with i < j,

jX

q=i

dist(li; lq) = X(j)�X(i)� (j � i) � dist(l1; li)

jX

q=i

dist(lq; lj) = Y (i)� Y (j)� (j � i) � dist(lj; ln)

Lemma 5 Given the separating point s for two implemen-
tations li and lj in an irreducible L-list with i < j, the
approximation error e(i; j) can be computed by

e(i; j) = X(s)�X(i)� (s� i) � dist(l1; li)
+Y (s+ 1)� Y (j)� (j � s� 1) � dist(lj; ln) (10)

Lemma 6 Given an irreducible L-list L, for implementa-
tions li; lq ; lj 2 L and i < q < j, let sij be the separating
point for li and lj, siq be the separating point for li and lq,
and sqj be the separating point for lq and lj . We have
(1) sqj � sij, and (2) siq � sij.

The time and space complexities of our L-list approxima-
tion algorithm are given in Theorem 2.

Theorem 2 Given an L-list L of size n and an integer k

(k < n), in n2O(
p

log k log log n) time and O(n) space, our
L-list approximation algorithm selects k elements from L to

form an L-list ~L which best approximates L.

To apply the L-list approximation algorithm to the ap-
proximation problem in minimizing the
oorplan area of an
L-shaped block, note that the non-redundant implementa-
tions of an L-shaped block may need to be stored in a set of
irreducible L-lists, rather than a single L-list [9]. Wang and
Wong [10] proposed to allocate the number of implementa-
tions to be selected in proportion to the size of each L-list.
The L-list approximation algorithm is then applied to each
L-list. Although this approach is intuitive, it does not al-
ways produce implementations that best approximate the
original implementations since the approximations of some
L-lists may introduce larger errors than others.
Our approach is to construct a single, complete, weighted

DAG GL for all implementations represented by the mul-
tiple L-lists, rather than consider each L-list separately as
in [10]. To solve the minimum-weight K-link path problem
on GL within the time and space complexities we claimed
earlier, we need to verify on GL that the concave Monge
property still holds and that the implicit graph representa-
tion scheme is still applicable. The details for this will be
left to the full paper.

REFERENCES

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor and R.
Wilber, \Geometric applications of a matrix-searching al-
gorithm," Algorithmica, vol. 2, 1987, pp. 195-208.

[2] A. Aggarwal, B. Schieber and T. Tokuyama, \Finding a
minimum weight k-link path in graphs with Monge prop-
erty and applications," Proc. 9th Annual ACM Symp. on
Computational Geometry, 1993, pp. 189-197.

[3] E.L. Lawler, Combinatorial Optimization: Networks and
Matroids. Holt, Rinehart and Winston, 1979.

[4] T. Lengauer and R. Muller, \A robust framework for hier-
archical
oorplanning with integrated global wiring," Proc.
IEEE Int'l Conf. on Computer-Aided Design, 1990, pp.
148-151.

[5] R.H.J.M. Otten, \Automatic
oorplan design," Proc. 19th
ACM/IEEE Design Automation Conf., 1982, pp. 261-267.

[6] P. Pan and C.L. Liu, \Area minimization for
oorplans,"
IEEE Trans. on Computer-Aided Design, vol. 14, no. 1,
1995, pp. 123-132.

[7] M. Pedram and B. Preas, \A hierarchical
oorplanning
approach," Proc. IEEE Int'l Conf. on Computer Design,
1990, pp. 332-338.

[8] B. Schieber, \Computing a minimum-weight k-link path in
graphswith the concaveMonge property,"Proc. 6th Annual
ACM-SIAM Symp. on Disc. Algorithms, 1995, pp. 405-411.

[9] T.-C. Wang and D.F. Wong, \Optimal
oorplan area op-
timization," IEEE Trans. on Computer-Aided Design, vol.
11, no. 8, 1992, pp. 992-1002.

[10] T.-C. Wang and D.F. Wong, \Graph-based techniques to
speedup
oorplanarea optimization," Integration, the VLSI
Journal, vol. 15, 1993, pp. 179-199.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

