
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Symbolic Optimization of FSM Networks Based on Sequential ATPG Techniques

Fabrizio Ferrandi # Franco Fummi # Enrico Macii z Massimo Poncino z Donatella Sciuto #

Politecnico di Milano
Dip. di Elettronica e Informazione

Milano, ITALY 20133

z Politecnico di Torino
Dip. di Automatica e Informatica

Torino, ITALY 10129

Abstract

This paper presents a novel optimization algorithm for FSM

networks that relies on sequential test generation and redun-

dancy removal. The implementation of the proposed approach,

which is based on the exploitation of input don't care sequences

through regular language intersection, is fully symbolic. Exper-

imental results, obtained on a large set of standard benchmarks,

improve over the ones of state-of-the-art methods.

1 Introduction

The most natural way of representing complex designs is
through networks of interacting FSMs, where each network
component represents a module that can be synthesized
and optimized separately. Clearly, treating each compo-
nent in isolation may not lead to a globally optimal design.
In fact, this approach prevents the exploitation of the free-
dom introduced by the mutual interaction of each module
with its neighbors in the realization of each component.
To overcome this problem, and thus obtain a better quality
of the global design, synthesis and optimization techniques
that take into account the interaction between the network
components have been developed in the last few years. One
of the most popular approaches is based on the concept of
input don't care sequences (IDCSs). Let us consider the
FSM network of Figure 1.

M1 M2

M
I

I1 I2
O

O1 O2

Figure 1: FSM Network with Cascade Decomposition.

In such network there exists a cascade decomposition; in
fact, the driving machine M1 feeds the driven machine M2,
while no information ows fromM2 toM1. As observed by
Unger in [1], machine M2 may have more unspeci�ed input
behaviors when it is connected to machine M1 than when it
operates in isolation. These unspeci�ed behaviors are the
IDCSs of M2 and can be used for optimization purposes.
In [2], Kim and Newborn have proposed an exact algorithm
for the optimization of the driven machine based on IDCSs.
On the other hand, Devadas [3] has presented an e�cient,
though approximate, modi�cation to Unger's method. In
[4], Rho and Somenzi have introduced extensions to Kim
and Newborn's procedure. Finally, Wang and Brayton [5]
have generalized the approach of [2] to FSM networks of
arbitrary topology.

In this paper, we present an algorithm for the optimization
of M2 which is based on sequential ATPG and redundancy
removal. Random pattern simulation is initially executed
at the inputs of M1 to remove easy-to-detect faults from
M2. Then, test sequences for hard-to-detect faults in M2

are generated at the inputs of M2. Finally, a regular lan-
guage intersection is performed to verify if at least one of
such sequences can be generated at the outputs of M1. If
this is not the case, the fault is redundant and it can be
removed from M2. The standard way for checking regu-
lar language intersection in a cascade network requires the
traversal of the composed machine M1 !M2�M

F

2 , where
MF

2 indicates the faulty M2. Unfortunately, reachability
analysis on such a machine is usually too memory and time
consuming. We present methods to simplify both M1 and
M2 �MF

2 by means of �nite automata, so as to make the
task of the traversal program easier.
Test sequences for faults contained in M2 are generated us-
ing a modi�ed version of the ATPG procedure of [6], which
is able to operate on both state-graphs and gate-level de-
scriptions. On the other hand, the algorithms for simplify-
ing M2�MF

2 and for optimizing M2 are original contribu-
tions of this work. All the procedures rely on BDD-based
symbolic techniques, and have been implemented in SIS [7].
Results obtained on standard benchmarks are satisfactory.

2 Optimization of FSM Networks

2.1 Overview

Optimization algorithms based on IDCSs and redundancy
removal are funded on the following principle. Let f be
a fault in machine M2, and let Tf be the set of all input
sequences (to machine M2) which detect f . Then, the
fault can be removed if either Tf is the empty set, or Tf is
non-empty but none of the input sequences in Tf can be
generated at the outputs of machine M1.
A simple way to check whether fault f in M2 is redundant
or not with respect to the global circuit consists of inject-
ing f into M2 to obtain the faulty machine MF

2 , taking
the product M2 �MF

2 , feeding it with M1, and generat-
ing the test sequences for f on the so obtained FSM. If no
sequence exists, f is redundant and can be removed. Un-
fortunately, this approach is not always applicable to real
cases, due to the limitation imposed by the size of the FSM
to be handled. In fact, even if BDD-based techniques are
employed, the representation of either the cascade machine
M1 !M2�M

F

2 , or its set of reachable states, or both may
become too large to be manipulated.

The algorithm we propose simpli�es the method above and
is based on regular language intersection. Let Af be the
�nite automaton accepting the language L(Af) of all the
test sequences in Tf (an implicit algorithm to compute
Af is summarized in Section 2.2), and let L(MO

1) be the
regular language of all the output sequences generated by
M1. Because M1 and M2 are connected, languages L(Af)
and L(MO

1) are de�ned over the same alphabet. Then,
fault f is redundant if and only if there exists no sequence
generated by M1 which is accepted by Af . Formally:

L(MO

1) \ L(Af) = ;: (1)

We can verify condition (1) through reachability analysis of
the automaton P = A1�Af [8], where A1 is a deterministic
�nite automaton accepting language L(MO

1). Each state p
of P is actually a pair (a1; af), where a1 is a state of A1

and af is a state of Af . Therefore, if the set of reachable
states of P contains at least one state p = (a1; af) such that
af is an accepting state of Af , then L(A1) \ L(Af) 6= ;,
indicating that fault f is irredundant. In essence, Af can
be viewed as the \interesting" portion of M2 �MF

2 that
has to be fed by M1. We can only guarantee that Af is not
larger than M2 �MF

2 ; however, what happens in practice
is that Af �M2�M

F

2 , so chances of a successful traversal
of P increase when Af is used instead of M2 �MF

2 .
Automaton A1 can be computed by �rst getting a non-
deterministic version, A0

1, as in Kim and Newborn's pro-
cedure, and then determinizing it using Rabin and Scott's
algorithm [9]. Unfortunately, this algorithm is exponential
in the number of states of A0

1. Recently, Wang and Brayton
have proposed a new method for FSM network optimiza-
tion [10] that �rst calculates a possibly non-deterministic
automaton A0

1 accepting language L(M
O

1) through a proce-
dure similar to Kim and Newborn's. Then, a deterministic
FSM, D1, simpler than M1 but generating the same out-
put language as M1, is derived from A0

1 and synthesized.
Finally, the cascade of D1 and M2 is optimized using tra-
ditional techniques. The advantage of this method over
Kim and Newborn's is that it does not require the deter-
minization of A0

1. In fact, simple construction techniques
are given to obtain an implementation of D1 from A0

1, even
when A0

1 is non-deterministic. Clearly, we can use a simi-
lar approach to build A1 from A0

1. However, determinizing
A0
1 is not required by our algorithm. In fact, for our pur-

poses, it is su�cient to traverse the product automaton
P 0 = A0

1 �Af to check if condition (1) holds.

2.2 Building Automaton Af

In [6] we have proposed a symbolic algorithm to compute
the set Tf for a fault f contained into a FSM. We have
modi�ed the procedure to generate the automaton Af of
all the test sequences for a fault f located into M2. For
e�ciency reasons, Af is constructed directly during test
generation. Each state of Af is labeled as s=sF to indicate
that, after the application of an input sequence, the ma-
chines M2 and MF

2 will be in states s and sF , respectively.
Such a sequence is obtained by concatenation of the edge
labels on the path connecting the root state (i.e., the initial
state) of Af to the state labeled s=sF .

The procedure that computes Af does not require the cal-
culation of the test sequences for fault f in an explicit way
(i.e., one sequence at a time) but, instead, it determines all
of them simultaneously. Two steps are needed: First, all
the minimum length test sequences for fault f are stored
as a directed, levelized graph, called in [6] the expansion

graph. Then, the automaton Af is constructed by choosing
the accepting state among all the \distinguishing" states
reached at the last deepest level of the expansion graph,
and by adding the back-edges required to make the au-
tomaton accepting test sequences of any length.
We have observed that the use of Af instead of M2 �MF

2

is always bene�cial for the optimization procedure. The
following result supports the experimental evidence.

Theorem 2.1 The state graph of Af is always smaller
than or equal to the state graph of M2 �MF

2 .

Sketch of Proof: Consider the worst case (the set of test

sequences for f in M2 forms the input language of M2 �M
F

2
),

and suppose that we construct Af starting from M2 �M
F

2
(in

reality, Af is always incrementally built during test generation).

All the accepting states of Af are equivalent. Pick one of them

and collapse all the others into it. Then, when M2 �M
F

2 has

only one distinguishing state, Af andM2�M
F

2 are of the same

size. Otherwise, Af is smaller. See [11] for more details.

Corollary 2.2 Af is always a sub-graph of the minimum
automaton accepting the input language of M2 �MF

2 .

2.3 Verifying Condition (1)

In this section, we prove that determinizing the (possibly)
non-deterministic automaton A0

1 is not strictly required to
verify condition (1) through the traversal of P 0 = A0

1�Af .
Consider machine M1, and let L(MO

1) be the regular lan-
guage it produces. Let A0

1 be the �nite automaton accept-
ing the regular language L(A0

1) = L(MO

1) and computed
using [2]. By construction, A0

1 is completely speci�ed, but
it may be non-deterministic. We have the following result.

Theorem 2.3 Condition L(MO

1)\L(Af) = ; can be ver-
i�ed via reachability analysis of P 0 = A0

1 � Af .

Sketch of Proof: Af is deterministic, while A0
1, in general,

is not. If there is a state in P 0 which is reachable from the reset

state, and such that it corresponds to the accepting state of Af ,

then there exists at least one sequence which belongs to both

L(A0
1
) and L(MO

1) by construction. Therefore, there exists at

least one sequence which is generated by M1 and accepted by

Af . See [11] for more details.

2.4 Optimization Algorithm

Figure 2 shows the pseudo-code of our algorithm. The pro-
cedure starts by constructing, once and for all, automaton
A0
1, by creating the collapsed fault list, Flist, for faults

in M2, and by initializing to ; the set VTm of all test
sequences for all such faults. Then, a set of random se-
quences, T , is generated and simulated over the cascade
network, and Flist is properly updated. Then, the opti-
mization loop begins. A fault, f , is extracted from Flist
and inserted into M2 to get MF

2 , the automaton Af is
constructed, and the product P 0 = A0

1 � Af is calcu-
lated. The set of reachable states of P 0 is now computed

through symbolic traversal, and the set of states belonging
to Reached(P 0) corresponding to the accepting states of A0

1

and Af is extracted. If such set is empty, then fault f is
redundant, so it is removed from M2, and the new Flist for
the optimized M2 is created; the set of randomly generated
test sequences T is then simulated on M1 !M2 and Flist
is updated accordingly. Otherwise, the valid set of test se-
quences, VTf , is determined, accumulated into VTm, and
�nally simulated over machine M2. Upon convergence, i.e.,
no faults are left in Flist, the procedure returns the opti-
mized M2; since A0

1 accepts all the output sequences of
M1, the optimized M2 is guaranteed to be 100% irredun-
dant when driven by M1.

procedure Optimize Network (M1,M2) f
A0

1 = Kim Newborn Step 1(M1);
VTm = ;.
Flist = Create Fault List(M2);
T = Generate Random Sequences(M1 !M2);
Flist = Upd Fault List(Simulate(M1!M2,T), Flist);
while (Flist 6= ;) f
f = Get Fault(Flist);

MF
2 = Inject Fault(M2);

Af = Generate Test Sequences(M2 ,M
F

2 ,f);
P 0 = A0

1 � Af ;
Reached(P 0) = Symbolic Traversal(P 0);
if (Accepting States (Reached(P 0)) == ;) f
M2 = Redundancy Removal(M2,f);
Flist = Create Fault List(M2);
Flist = Upd Fault List(Simulate(M1!M2,T), Flist);

g
else f
VTf = Extract Sequences(Af);
VTm = VTm [VTf ;
Flist = Upd Fault List (Simulate(M2, VTm), Flist);

g
g
return(M2);

g

Figure 2: The Optimize Network Algorithm.

It is important to observe that machine M2 is assumed to
be irredundant when considered in isolation. Then, au-
tomaton Af never represents the empty language.

3 Experimental Results

We present results for networks built as the cascade of
Mcnc'91 symbolic FSMs [12] and Iscas'89 sequential cir-
cuits [13]. The symbolic FSMs have been initially state
minimized in isolation using Stamina, and then encoded
using Jedi. The encoded state transition graphs have been
synthesized with SIS. Finally, the resulting networks have
been optimized by �rst running script.rugged and then
by removing all the redundant faults. For the sequen-
tial circuits a gate-level implementation was already avail-
able. The optimization has then been performed through
script.rugged followed by redundancy removal.
Table 1 shows our �ndings. The �rst 12 examples have
been constructed as in [10]; the following 5 have been taken
from [4]. Finally, the last 10 consist of the cascade of larger
Mcnc'91 and Iscas'89 benchmarks; as far as we know, no
results are available in the literature for the latter.
All the circuits have been optimized by iteratively apply-
ing procedure Optimize Network followed by script.rugged.
Up to 5 iterations were required to reach convergence.

Redundancy removal techniques which are more e�cient
than the one of SIS are available, e.g., [14]. Their use inside
our optimization procedure may lead to better results.
For some examples run times are large. This is an intrinsic
limitation of the method, since the optimization is fault-
based. Notice, however, that the execution times in Table 1
refer to the overall optimization process; therefore, they
include the time spent to run script.rugged, which may
account for a large fraction of the total time (e.g., 410
seconds out of 1948 for circuit bbsse-planet).
In the rightmost columns of the table we compare our data
to the ones reported in Table 1 of [10] (circuits from ex1-
s510 to sand-styr) and in Table I of [4] (circuits from c1
to sd1). The comparison is made against the published re-
sults; some discrepancies may then exist between the ref-
erence circuits, due to di�erent initial optimizations. We
have improved the area results of Wang and Brayton for 8
circuits out of 12. Execution times in [10] were obtained
on a machine, the DEC 3000/500 AXP, which is approx-
imately 4 times faster than the Sparc-10. Then, we can
conclude that our method is, on average, slower by a fac-
tor of two, but there are cases (e.g., planet-s510) where
we are sensibly faster. Our area results are also better
than the ones by Rho and Somenzi [4] (three wins and two
ties). However, larger execution times { about one order
of magnitude { were required.
Some better \absolute" results were reported in Table 2 of
[10] for the benchmarks we have considered. However, it
is important to notice that such results were obtained by
applying re-encoding and re-synthesis to the circuits ini-
tially optimized through the algorithm summarized in Sec-
tion 2.1. Since the objective of this section is evaluating the
e�ectiveness of procedure Optimize Network, rather than
targeting \best ever" results on the benchmarks in Table 1,
for the sake of fairness, we have chosen to compare our data
to the ones reported in Table 1 of [10]. However, as future
work, we are de�nitely interested in testing out the perfor-
mance of re-encoding and re-synthesis when applied to the
optimized FSM networks produced by our tool.
Theorem 2.1 says that the size (i.e., the number of states)
of Af is always smaller than or equal to the size of M2 �

MF

2 . In general, a smaller set of states does not necessarily
imply a smaller BDD for such a set. Also, a �nite state
structure with fewer states does not necessarily imply a
smaller BDD for its transition relation [15]. However, in
our case, we have experimentally observed that the use
of Af instead of M2 �MF

2 is bene�cial concerning both
the aspects we have just mentioned. Table 2 presents the
results. Since M2�MF

2 and Af are fault-dependent, data
have been averaged over all the considered faults. Savings,
in terms of BDD nodes of the transition relation, are over
one order of magnitude on all the examples.

4 Conclusions

We have presented a new algorithm for the optimization
of the driven machine of a cascade FSM network which is
based on sequential ATPG and redundancy removal. Ex-
perimental results have shown the e�ectiveness of the pro-
posed technique on a large set of benchmarks.

Example I O C Our Method From the Literature

S1 IS2 IL2 F2 RR2 TR2 FS2 FL2 Time IS2 IL2 FS2 FL2

ex1-s510 9 7 19 18 47 290 522 219 303 14 43 258.7 47 248 12 37

ex7-dk16 2 3 2 4 27 213 314 174 140 17 68 65.1 27 348 16 75
s820-s510 18 7 19 24 47 290 489 66 423 10 43 423.5 47 248 16 34

s832-s510 18 7 19 24 47 290 522 143 379 4 12 133.2 47 248 5 15

bbsse-keyb 7 2 7 23 19 180 291 146 145 15 97 108.7 19 314 18 170
keyb-dk16 7 3 2 29 27 213 314 88 226 25 119 151.2 27 348 20 94

s510-keyb 19 2 7 47 19 180 399 123 276 19 82 212.9 19 314 16 93
sand-ex1 11 19 9 32 18 209 432 199 233 10 65 255.4 20 280 9 66
bbsse-planet 7 19 7 13 48 616 1027 702 325 44 440 1948.2 48 617 44 454
planet-s510 7 7 19 48 47 290 522 362 160 38 191 544.3 47 248 35 165

s510-planet 19 19 7 47 48 616 1027 266 761 43 428 4720.9 48 617 45 439

sand-styr 11 10 9 32 30 602 959 269 690 27 336 1759.4 30 596 27 375

c1 9 7 2 7 13 109 224 33 191 12 91 41.4 13 116 12 93
c2 9 7 19 20 48 616 1027 634 393 45 520 2079.5 48 606 44 651

c3 2 5 5 16 16 73 138 25 113 2 6 4.3 16 23 2 6
c1b 7 7 7 13 10 89 174 45 129 10 73 35.4 13 116 10 87
sd1 1 1 2 3 4 15 28 20 8 4 13 2.0 6 17 4 13

s1494-s510 8 7 19 48 47 290 522 92 430 4 11 152.0 { { { {

s1488-s420 8 2 19 48 18 77 156 7 149 2 1 14.4 { { { {

s298-ex4 3 9 6 218 14 71 156 81 75 8 37 41.3 { { { {
s298-tbk 3 3 6 218 16 195 291 84 207 4 18 175.6 { { { {

s208-dk16 11 3 2 18 27 213 314 177 137 17 72 132.5 { { { {
tma-tbk 7 3 6 18 16 195 291 40 251 6 31 130.3 { { { {

pma-s1494 8 19 8 24 48 655 1167 386 781 39 528 1891.1 { { { {
pma-s1488 8 19 8 24 48 659 1161 390 771 45 512 1546.8 { { { {

dk16-s298 2 6 3 27 218 2717 2278 808 1470 135 1336 30754.2 { { { {

tbk-s298 6 6 3 16 218 2717 2278 769 1409 144 1463 57401.7 { { { {

Table 1: Experimental Results.

I = # of primary inputs of M1 ! M2. F2 = # of faults in M2.
O = # of primary outputs of M1 ! M2. RR2 = # of faults removed by random patterns.
C = # of communication signals of M1 !M2. TR2 = # of faults removed by targeted test sequences.
S1 = # of states of M1. FS2 = # of states of the optimizedM2.
IS2 = # of states of the initialM2. FL2 = # of literals (fact. form) of the optimizedM2.
IL2 = # of literals (fact. form) of the initialM2. Time = CPU time (in seconds on a SUN Sparc-10 with 64MB of RAM).

Example M2 �MF

2 Af
NT S NS T S NS

ex1-s510 8731 33 171 307 16 80
ex7-dk16 3487 33 93 418 30 84

s820-s510 14697 20 92 323 17 83
s832-s510 12934 44 193 303 17 72
bbsse-keyb 6322 24 87 341 19 65
keyb-dk16 3540 41 102 502 38 92
s510-keyb 6565 30 77 507 30 77
sand-ex1 3659 19 73 321 18 69

bbsse-planet 14137 45 160 688 39 140
planet-s510 11783 81 329 586 27 132
s510-planet 15476 52 185 821 47 166
sand-styr 4584 27 84 506 27 84

c1 1122 15 40 210 14 38
c2 15550 47 166 823 47 166

c3 209 10 51 104 5 26
c1b 1517 24 38 343 24 38

sd1 74 9 5 56 9 5

s1494-s510 12934 44 193 303 17 72
s1488-s420 1504 9 38 144 8 36

s298-ex4 493 14 54 127 8 33
s298-tbk 2910 22 44 467 20 35

s208-dk16 3048 41 93 485 40 89
tma-tbk 3139 26 44 550 25 38

pma-s1494 13675 55 195 866 47 165

pma-s1488 14364 44 158 817 44 158
dk16-s298 214818 1414 1094 11612 1088 842

tbk-s298 214695 1430 1060 13687 1374 816

Table 2: Comparison of M2 �M
F

2 to Af .

NT = # of BDD nodes of the transition relation.
S = # of reachable states.
NS = # of BDD nodes of the set of reachable states.

Acknowledgments
Interestingdiscussionswe had with Fabio Somenzi and Abelardo

\Baron" Pardo are acknowledged.

References
[1] S. Unger, Asynchronous Sequential Switching Circuits, John

Wiley, 1969.

[2] J. Kim, M. Newborn, \The Simpli�cation of Sequential Ma-
chines with Input Restrictions," IEEE TC, 1972.

[3] S. Devadas, \Optimizing Interacting Finite State Machines Us-
ing Sequential Don't Cares," IEEE TCAD, 1991.

[4] J. Rho, F. Somenzi. \Don't Care Sequences and the Optimiza-
tion of Interacting Finite State Machines," IEEE TCAD, 1994.

[5] H. Wang, R. Brayton, \Input Don't Care Sequences in FSM
Networks," ICCAD-93.

[6] F. Ferrandi, F. Fummi, E. Macii, M. Poncino, D. Sciuto, \Test
Generation for Networks of Interacting Finite State Machines
Using Implicit Techniques," GLSVLSI-96.

[7] E. Sentovich, K. Singh, C. Moon, H. Savoij, R. Brayton,
A. Sangiovanni-Vincentelli, \Sequential Circuits Design Using
Synthesis and Optimization," ICCD-92.

[8] J. Hopcroft, J. Ullman, Formal Languages and Their Relation
to Automata, Addison-Wesley, 1969.

[9] M. Rabin, D. Scott, \Finite Automata and Their Decision
Problems," IBM Journal of Research and Development, 1959.

[10] H. Wang, R. Brayton, \Exploitation of Input Don't Care Se-
quences in Logic Optimization of FSM Networks," ICCAD-95.

[11] F. Ferrandi, F. Fummi, E. Macii, M. Poncino, D. Sciuto,
ATPG-Based Symbolic Optimization of FSM Networks, In-
ternal Report, Politecnico di Torino { DAI, 1995.

[12] S. Yang, \Logic Synthesis and Optimization Benchmarks User
Guide Version 3.0," MCNC Technical Report, 1991.

[13] F. Brglez, D. Bryan, K. Ko�zmi�nski, \Combinational Pro�les of
Sequential Benchmark Circuits," ISCAS-89.

[14] L. Entrena, K. T. Cheng, \Sequential Logic Optimization by
Redundancy Addition and Removal," ICCAD-93.

[15] K. Ravi, F. Somenzi, \High-Density Reachability Analysis,"
ICCAD-95.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of contents
	Session Index
	Author Index

