
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

A Fast State Reduction Algorithm for
Incompletely Specified Finite State Machines

Hiroyuki Higuchi and Yusuke Matsunaga
FUJITSU LABORATORIES LTD, Kawasaki 211-88, Japan

Abstract— This paper proposes a state reduction al-
gorithm for incompletely specified FSMs. The algorithm
is based on iterative improvements. When the number of
compatibles is likely to be too large to handle explicitly,
they are represented by a BDD. Experimental results are
given to demonstrate that the algorithm described here
is faster and obtains better solutions than conventional
methods.

1 Introduction

Reducing the number of states in incompletely specified
finite state machines(ISFSMs) is an important step in FSM
synthesis. It may result in a fewer number of state variables
needed to encode the states. Even if the number of state vari-
ables is not reduced, many unused states are introduced. They
can be used as don’t-cares in combinational logic synthesis.
State reduction also reduces the size of the machine for subse-
quent steps in the synthesis. As a result, algorithms for state
assignment and test generation etc. can perform much better.

The problem of minimizing ISFSMs has been studied by a
number of researchers [1, 2]. However these are not suitable
for large problems because the problem is NP-hard. In order
to handle practical problems, heuristic algorithms for obtain-
ing near-minimal solutions have been proposed [3, 4, 5, 2].
Though they can reduce medium-sized machines in practical
time, they require considerable time for larger machines.

In this paper we present a fast state reduction algorithm.
It depends upon ESPRESSO-style iterative improvement[6].
The algorithm consists of generating the set of all the max-
imal compatibles as an initial solution and attempting to re-
duce each compatible in the set by iterative improvements in
order to reduce the size of the solution. The number of the
maximal compatibles is, however, exponential to the num-
ber of the original states in the worst case. When the num-
ber of the maximal compatibles is likely to explode, we uti-
lize Binary Decision Diagrams(BDDs) to avoid such combi-
national explosion. Experimental results show that the pro-
posed method is faster and obtains better solutions in many
cases than conventional ones.

NS, z
PS I1 I2 I3 I4

A B, 0 –, – –, – E, 1
B A, 0 C , – –, – –, –
C C, – A, 1 D, 1 E, –
D –, – B, – –, – A, –
E C, – B, 1 F , – –, 0
F F , 1 A, – E, – B, –

Figure 1: Machine M1

2 Preliminaries

A Finite State Machine M is a 5-tuple (I; O; S; �; �),
where I; O; and S are finite nonempty sets of inputs, outputs,
and states, respectively; � : I � S ! S is the state transition
function; � : I � S ! O is the output function. An FSM is
incompletely specified, if either the next state or the output is
not specified for at least one (input,state) pair.

Two output sequences of machineM are compatible if and
only if their corresponding outputs are not conflicting, i.e.,
identical whenever both outputs are specified. An input se-
quence is applicable to state si of M if no unspecified next
state is encountered. Two states si; sj of M are compatible if
and only if si; sj yield compatible output sequences for every
input sequence applicable to both si and sj . Two states are
incompatible if they are not compatible.
Theorem 1 Two states of machine M are compatible if and
only if, for every input, (i)their outputs are not conflicting and
(ii) their next states are compatible.

Let us introduce an example machine M1. The state table
is shown in Fig.1. An unspecified (or don’t-care) entry is
denoted by a “–”. In the table, state pair (AB) is compatible.
Therefore (DF) is also compatible. (AE) is incompatible,
because the outputs of A and E for input I4 are conflicting.

Let the next states of si and sj be s0
i

and s0
j
, respectively;

then (s0
i
s0
j
) is said to be implied by (sisj), or an implied pair

of (sisj).
A set of states is compatible if and only if each pair of

states in the set is compatible. A set of states is incompatible
if it is not compatible. In this paper, a compatible set is sim-
ply called a compatible. For example, set of states (ABC) is
compatible in M1.

The implied set of compatible c for input i is the set of next
states of states in c for input i. A compatible containing the
implied set of c for i is said to be an implied compatible of c
for i. In the example of Fig.1, the implied set of compatible
(DEF) for input I1 is (CF) and an implied compatible is

(CEF). The class set CS(c) of compatible c is the set of all
the implied sets d such that (i) jdj > 1, (ii) d 6� c, and (iii)
8d0 2 CS(c); d 6� d0. The class set of a compatible expresses
the closure conditions imposed by the compatible. The class
set of compatible (DEF) in Fig.1 is f(AB); (CF)g.

A set of compatibles for a machine is said to be closed
if, for every compatible in the set, all its implied compati-
bles are also contained in the set. A closed set of compat-
ibles which contains all the states of the machine is called
a closed cover. The state reduction problem of an ISFSM
is to find a small closed cover of the original machine. For
M1, f(ABC); (DE); (F)g is a closed cover. Therefore the
reduced machine has 3 states. Each compatible corresponds
to a state of the reduced machine.

A compatible is said to be maximal if it is not a proper
subset of another compatible. For M1 maximal compatibles
are (ABC), (BCE), (BDE), (CEF), (DEF).

3 A fast state reduction procedure

In this section we propose a fast state reduction algorithm.

3.1 Outline

Our method attempts to reduce each compatible in the so-
lution iteratively, that is, to delete unnecessary states in the
compatible. By reducing a compatible, we have two possi-
bilities for decreasing the size of the closed cover:
� Some compatibles may be contained by another one.

Therefore they can be deleted.
� Implied sets of reduced compatibles become smaller.

As a result, another compatibles in the solution are also
likely to be reduced.

The state reduction procedure is as follows:

1. Check if each state pair is compatible.
2. Generate all the maximal compatibles.
3. Solution S “all the maximal compatibles”.
4. S REDUCE-I(S).
5. S MERGE(S).
6. S EXPAND(S).
7. S REDUCE-II(S).
8. S MERGE(S).

We use the set of all the maximal compatibles as an initial
solution, according to the following theorem.

Theorem 2 The set of all the maximal compatibles is a
closed cover.

3.2 Reduce-I

The initial solution is the set of all the maximal compat-
ibles. For the covering condition we only have to consider
maximal compatibles. However a subset of a maximal com-
patible may be better for the closure condition, because its
implied sets may be smaller. REDUCE-I attempts to reduce
each compatibles iteratively, keeping the solution closed.

For example, consider the machine M1 again. The initial
set of compatibles and their class sets are shown in Fig.2.

compatible class set core

ABC ; ABC

BCE ABC;DF ;

BDE AC;BC BE

CEF AB;DEF;BE CF

DEF AB;CF DEF

Figure 2: Initial solution and its core subsets

REDUCE-I(CompSet S) f
1. while (S is changed) f
2. QC the set of essential compatibles for S;
3. if (QC = ;) QC an compatible in S;
4. for (each compatible c in S) core(c) ;;
5. while (QC 6= ; _ there exists uncovered states) f
6. if (QC = ;) QC an compatible in S;
7. Take a compatible c 2 QC and delete it from QC;
8. for (each implied set d in the class set of c) f
9. Select a compatible c0 such that d � c0(2 S);
10. if (core(c0) = ;) QC QC [c0;
11. core(c0) core(c0) [d;
12. g
13. g
14. S the set of the core subsets;
15. Check and satisfy the covering condition;
16. Delete core subsets contained by another core subset;
17. Check and satisfy the closure condition;
18. g
19. return S;
g

Figure 3: Reduce-I

To satisfy the closure condition of (BCE) in the initial so-
lution, the implied set (ABC) and (DF) must be contained
by at least one compatible, respectively. Theorem2 implies
that there is at least one maximal compatible containing each
implied set. In this case, compatible (ABC) contains (ABC)
and compatible (DEF) contains (DF). Therefore (ABC) it-
self out of (ABC) and (DF) out of (DEF) are necessary for
the closure condition. Thus a core subset of each compatible
in the solution is obtained by extracting necessary portion for
satisfying closure conditions of every compatible. For exam-
ple, core subsets for the initial solution is also shown in Fig.2.
The next solution consists of the core subsets. The size of the
solution is decreased from 5 to 4. Since each member is re-
duced, its implied sets are likely to be reduced. For example,
compatible (CEF) is reduced to (CF). As a result, the class
set is also reduced to f(DE); (BE)g. This may cause further
reduction of the solution in the next iteration.

The overall procedure of REDUCE-I is shown in Fig.3.
Essential compatibles on line 2 is defined as follows.

Definition 1 A compatible c in a closed cover S is essential
for S, if c contains at least one state which is not covered by
any other compatible in S.

The procedure consists of selecting essential compatibles

for the current solution and attempting to satisfy its closure
conditions by selecting a compatible in the solution and ex-
panding core subsets. If there are no essential compatibles,
a compatible with the highest gain is selected. The gain of a
compatible c is calculated as follows:

gain =
number of uncovered states in c

(
P

d2CS(c) number of implied pairs in d)=jIj
:

When a compatible is large or its class set is small, its gain
becomes large.

If the selected compatibles do not cover all the states, the
procedure is repeated, this time starting with a compatible
that covers most of uncovered states. A compatible is se-
lected on line 9 in Fig.3 to cover a target implied set d. This
process is assisted by noting that each core subset is as small
as possible. After core subsets are generated, it is checked
whether they satisfy covering and closure conditions. When
they are violated, some core subsets are expanded to their cor-
responding compatibles. The reduction of the solution is re-
peated while there are some changes in the solution.

3.3 Merge

After REDUCE-I, some pair of compatibles in the solu-
tion can be still merged into one compatible. By merging
these compatibles, the size of solution is reduced. Procedure
MERGE attempts to merge each pair of compatibles.

3.4 Expand

Procedure EXPAND facilitates improvement over the lo-
cal minimum obtained by REDUCE-I. It takes, in turn, each
compatible in the solution and expands it to the maximal com-
patible. The benefit is that a larger compatible can gener-
ally be reduced in more directions than a smaller compatible.
Thus EXPAND often allows us to move away from a locally
minimal solution towards a yet smaller closed cover.

3.5 Reduce-II

We use a variation of REDUCE-I after EXPAND. We call
it REDUCE-II. In REDUCE-I, core subsets are calculated by
using the implied sets of compatible itself. However compat-
ibles are to be reduced to their core subsets. Therefore some
subset of implied sets are really necessary for the closure con-
dition. REDUCE-II uses compatible pairs in each compati-
ble instead of compatible itself in the core subset calculation.
The number of pairs is generally larger than the number of
compatibles. However REDUCE-II does not take much time,
because the size of solution to be dealt in REDUCE-II is gen-
erally much smaller than that in REDUCE-I.

4 Implicit generation of initial solutions

Since the number of maximal compatibles is exponential
in the number of the original states in the worst case, it some-
times takes a considerable time to generate and manipulate
them explicitly. Therefore, if the number of compatible pairs

exceeds a given threshold, compatibles are generated implic-
itly. In this section we discuss the implicit generation of com-
patibles and the extraction of initial solutions.

4.1 Implicit representation of compatibles

In state reduction, compatibles, i.e. sets of states, need
to be represented and manipulated efficiently. To represent
sets of states or sets of sets of states implicitly, we use Binary
Decision Diagrams(BDDs). The representation of compat-
ibles is the same as in [7]. A set of sets of states is repre-
sented as a set S of positional-sets by a characteristic func-
tion �S : Bn ! B, where n is the number of the states.
Characteristic function �S(~x) = 1 if and only if the set of
states represented by the positional-set ~x is in the set S. A
BDD representing �S(~x) contains minterms, each of which
corresponds to a set of states in S.

4.2 Implicit generation of compatibles

We generate all the compatibles implicitly by using the
information of pair-wise compatibility checking. Since in-
compatibles are the sets containing at least one incompatible
pair, the set of all the compatibles is calculated by iteratively
excluding all the sets including each incompatible pair from
a set of all the sets of states without the empty set.

4.3 Extraction of initial solutions

The procedure of extracting initial solutions from the BDD
representing the set of all the compatible corresponds to the
first iteration in procedure REDUCE-I. For the sake of effi-
ciency, this procedure selects a compatible which contains the
largest number of uncovered states instead of essential com-
patibles or compatibles with high gains.

5 Experimental results

We implemented our algorithm in a program called SLIM,
a SequentiaL machIne Minimizer. We ran SLIM on all the
MCNC benchmarks and several large FSMs [7]. Compar-
isons are made with heuristic methods in STAMINA [2]. In
the experiments the threshold for implicit manipulation was
set to 10000, that is, if the number of compatible pairs is more
than 10000, compatibles are implicitly generated.

Table 1 summarizes the results of state reduction for
MCNC FSMs. Actually all the FSMs were run. Those not
reported, either have no compatible states, or have all states
compatible. For all the cases not reported, the processing
times were negligible. In Table 1, ColumnNs show the num-
bers of states of the machines: Columns init, min, slim,
stam indicate the numbers of states in the original machines,
strictly minimized machines, machines reduced by SLIM, and
machines reduced by heuristic methods in STAMINA, respec-
tively. Column time shows the CPU time for state reduction.
Times are referred to Sun SPARCstation10(96Mb). The re-
sults for STAMINA are the best results among three heuristics.

Table 1 shows that SLIM obtained the minimum solutions
on all the MCNC benchmark FSMs within 1 second. Though

Table 1: Experimental results(MCNC benchmarks)
Ns time(sec.)

FSMs init min slim stam slim stam

bbara 10 7 7 7 0.03 0.02
bbsse 16 13 13 13 0.08 0.03

beecount 7 4 4 4 0.03 0.00
ex1 20 18 18 18 0.15 0.04
ex2 19 5 5 5 0.14 15.47
ex3 10 4 4 4 0.06 0.15
ex5 9 3 3 3 0.03 0.05
ex7 10 3 3 3 0.03 0.07

lion9 9 4 4 4 0.04 0.01
mark1 15 12 12 12 0.10 0.02
opus 10 9 9 9 0.04 0.00
scf 121 97 97 97 0.23 0.41
sse 16 13 13 13 0.11 0.02
tbk 32 16 16 16 0.68 1.09

train11 11 4 4 4 0.02 0.02

STAMINA also obtained the minimum solutions, it required
much time on ex2. When the exact method in STAMINA is
applied to ex2, it required 2484 seconds.

Table 2 gives the results of state reduction for some large
FSMs. Data in the parentheses in Columnmin show the best
results so far, which are not proven to be the minimum. Table
2 shows that SLIM completed for all the tested large FSMs,
while STAMINA failed on some FSMs. SLIM completed ev-
ery FSM in 200 seconds. These results indicates that SLIM is
robust from a practical point of view. As for the number of
states, SLIM obtained smaller machines for most of the exam-
ples than conventional methods, especially for th:55. The im-
plicit method described in Section4 was applied to rubin600,
rubin1200 and rubin2250.

Experimental results show that SLIM can reduce the num-
ber of states efficiently. It is mainly because we do not
solve the minimum closed covering problem exactly. Heuris-
tic methods in STAMINA solve the problem exactly for re-
stricted set of compatibles. Therefore the computational time
required for these algorithms becomes considerably large in
Table2, though they are efficient and obtain near-optimum so-
lutions for small FSMs such as MCNC benchmarks.

6 Conclusions

We have described a fast state reduction algorithm for ISF-
SMs. The algorithm consists of generating maximal compat-
ibles as an initial solution and attempting to reduce each com-
patible in the solution by iterative improvements. When the
number of the maximal compatibles is likely to explode, we
utilize BDDs to avoid such combinational explosion. Experi-
mental results indicate that the proposed algorithm is efficient
in terms of both computational time and reduction ability.

Acknowledgments The authors would like to thank Dr. Timo-
thy Kam and Dr. Tiziano Villa of University of California at Berke-
ley for providing us with the benchmarks of the large FSMs.

Table 2: Experimental results(Large FSMs)

Ns time(sec.)
FSMs init min slim stam slim stam

alex1 42 6 6 6 0.75 21.9
intel edge.dummy 28 4 6 4 0.12 0.86

isend 40 4 4 4 0.21 2.44
pe-rcv-ifc.fc 46 2 2 2 0.14 0.40

pe-rcv-ifc.fc.m 27 2 2 2 0.10 0.09
pe-send-ifc.fc 70 2 3 2 0.29 1.93
pe-send-ifc.fc.m 26 2 2 2 0.09 0.05

vbe4a 58 3 3 3 4.23 331
vmebus.master.m 32 2 2 2 0.60 0.50

th.30 31 (8) 7 9 0.13 1.20
th.40 41 (12) 9 15 0.32 1.13
th.55 55 – 13 24 8.72 5.88
fo.20 21 (4) 3 3 0.03 36.0
fo.50 51 – 9 11 0.21 9.25
fo.70 71 – 10 14 0.57 23.8
ifsm0 38 3 3 3 0.15 0.10
ifsm1 74 (14) 14 15 0.15 0.49
ifsm2 48 9 9 9 0.24 862

rubin18 18 3 3 3 0.34 0.00
rubin600 600 3 3 – 12.7 fails
rubin1200 1200 3 3 – 53.9 fails
rubin2250 2250 3 3 – 199 fails

e271 19 2 2 2 0.04 0.03
e285 19 2 2 2 0.04 0.02
e304 19 2 2 2 0.05 0.02
e423 19 – 3 3 0.09 0.99
e680 19 2 2 2 0.06 0.02

References
[1] A. Grasselli and F. Luccio. “A Method for Minimizing the Num-

ber of Internal States in Incompletely Specified Sequential Net-
works”. IRE Trans. on Elect. Comp., vol.14, pp.350–359, June
1965.

[2] J.-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby. “Exact
and Heuristic Algorithms for the Minimization of Incompletely
Specified State Machines”. IEEE Trans. on Computer-Aided
Design, vol.13, pp.67–177, Feb. 1994.

[3] R. G. Bennetts, J. L. Washington, and D. W. Lewin. “A Com-
puter Algorithm for State Table Reduction”. Radio and Elec-
tronic Engineer, vol.42, pp.513–520, Nov. 1972.

[4] M. A. Perkowski and N. Nguyen. “Minimization of Finite State
Machine in System SuperPeg”. in 28th Midwest Conf. on Cir-
cuits and Systems, pp.139–147, Aug. 1985.

[5] L. N. Kannan and D. Sarma. “Fast Heuristic Algorithms for Fi-
nite State Machine Minimization”. in Proc. of European Design
Automation Conf., pp.192–196, Feb. 1991.

[6] R. Btayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.

[7] T. Kam, T. Villa, R. Brayton, and A.Sangiovanni-Vincentelli.
“A Fully Implicit Algorithm for Exact State Minimization”.
in 31st ACM/IEEE Design Automation Conf., pages 684–690,
June 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

