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Abstract

Previous solutions to the difficult problem of identifying
sequential redundancy are either based on incorrect theoretical
results, or rely on unrealistic simplifying assumptions, or are
applicable only to small circuits. In this paper, we show the
limitations of the existing definitions of sequential redundancy
and introduce a new concept of c-cycle redundancy as a
generalization of the conventional notion of sequential
redundancy. We present an efficient algorithm, FIRES, to identify
c-cycle redundancies without search. FIRES does not assume the
existence of a global reset nor does it require any state transition
information. FIRES has provably polynomial-time complexity
and is practical for large circuits. Experimental results on
benchmark circuits indicate that FIRES identifies a large number
of redundancies. We show that, in general, the redundant faults
identified by FIRES are not easy targets for state-of-the-art
sequential test generators.

1. Introduction
The design of a logic circuit is done manually or by using

synthesis tools. In either case, some unintentional logical
redundancies may be introduced in the circuit. Identifying
redundancies may provide useful feedback for designers, helping
them in locating design errors or finding ways to simplify the
circuit. Redundancy identification (RID) is very useful in
synthesis, since every redundant fault defines a region that can be
eliminated from the circuit. In a combinational circuit, an
untestable stuck-at fault is always caused by a redundancy. In a
sequential circuit, however, untestability and redundancy are not
equivalent concepts[1]. Any practical state-of-the-art sequential
test generator cannot distinguish between untestable and
redundant faults.

The presence of untestable and redundant faults complicates
automatic test generation (ATG). In addition to complicating
ATG, redundancies have many other detrimental effects. The
presence of a redundant fault may preclude the detection of other
faults in the circuit[2]. Redundancies increase the chip area, the
power consumption, and often the propagation delays in the
circuit. Redundancies may unnecessarily reduce the yield of the
IC manufacturing process[3]. Many sequentially redundant faults
become detectable with full-scan testing, and many sequentially
and combinationally redundant faults become detectable with
I DDQ testing. Although the circuit remains fully operational in the
presence of a redundant fault, full-scan testing orI DDQ testing
will reject that faulty circuit and result in a yield loss.

Most of the previous work on the identification of
sequentially untestable and redundant faults[4] [5] [6] [7] [8] [9] [10] [11]

[12] [13] is based on ATG. Cheng proposed a procedure for
identifying and removing a subset of sequential redundancies

(called feedback-free sequential redundancies)[4] [5] [6]. The
method relies on converting a sequential circuit into a feedback-
free model and uses a modified sequential test generator to
identify sequentially untestable and redundant faults[4] [6]. The
procedure used to verify whether an untestable fault is indeed
redundant was highly complex. Later, special classes of
untestable faults that are guaranteed to be redundant were
identified[5] [6]. It was shown that in a balanced pipeline circuit,
ev ery untestable fault is redundant, and that in a general
sequential circuit, unactivatable and unpropagatable faults are
redundant[5] [6]. Special procedures were devised to identify these
subsets of redundant faults. Recently, it has been shown that the
particular solutions proposed in[5] [6] are incorrect[14] [15].

Sequential RID based on implicit state enumeration was
proposed in[7]. This method uses ATG and relies on the
simplifying assumption that the circuit has a fault-free global
reset. The approach uses binary decision diagrams (BDDs) as a
platform to deal with the reachability information of sequential
circuits. Because of the limitations of BDDs, it cannot handle
some large circuits. In addition, the method is not applicable to
circuits without a global reset mechanism[14] [15].

The method of Agrawal and Chakradhar[8] [9] uses
combinational ATG to target certain faults in an iterative array
model of finite length derived from a sequential circuit. Their
important result is that a combinationally untestable target fault
in this array corresponds to a sequentially untestable fault in the
original circuit, thus allowing a subset of the sequentially
untestable faults to be found by less complex combinational
techniques. Their method, however, still requires exhaustive
search to identify untestability, and it is not applicable to
sequential RID.

Pomeranz and Reddy proposed a method to identify
sequential redundancy, based on combinational ATG for multiple
faults, which is not practical for large circuits[10]. Their method is
an extension of the multi-fault theorem for sequential
untestability that was presented in[8] [9]. More recently, they
proposed a method to determine whether a sequentially
untestable fault prevents the initialization of the circuit[11]. They
argue that faults which do not exhibit this behavior can be
considered as redundant. The method relies on verifying that the
faulty circuit has an initialization sequence and requires
knowledge of state transition information; thus this method does
not seem practical for large circuits. More importantly, their
method assumes that the initialization sequence of the circuit can
be altered. From a designer’s viewpoint this assumption may be
unacceptable, since the reset sequence is considered part of the
behavior of the circuit.

The sequential optimization method of Entrena and Cheng
[12] [13] identifies a redundant fault when the mandatory
assignments required to detect it cannot be consistently justified.
Their analysis is performed only in the fault-free circuit and they
claim a fault as redundant if the mandatory assignments to detect
it end up with conflicts or if the state justification procedure starts
looping over previously unjustified states. Both these claims were
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shown to be incorrect[14] [15] [11].
Formal verification techniques were used for sequential RID

by Moondanos and Abraham[16]. Their method uses a restrictive
definition of redundancy and relies on verifying that the good and
the faulty circuits (for a redundant fault) have equivalent state
tables. Moreover, their method is not practical for large circuits,
because it relies on building the state transition tables for the
good and faulty circuits for each modeled fault.

In earlier work[17] [18], we proposed a Fault-Independent algo-
rithm for REdundancy identification (FIRE) in combinational cir-
cuits. FIRE is radically different from any ATG-based approach
for combinational RID, which finds a fault to be redundant when
all possible ways to detect that fault end up with conflicts. In con-
trast, FIRE starts with a possible conflict and finds faults for
which that conflict is necessary for detection. In addition to being
untestable, these faults are also redundant. The key advantage is
that FIRE accomplishes RID without any search.

More recently, we proposed an algorithm to Find
UNTESTable faults (FUNTEST) in sequential circuits[19].
FUNTEST extends the concept of[17] [18] to sequential circuits
using the single-fault theorem from[8] [9] and identifies sequen-
tially untestable faults without search. However, the use of the
single-fault theorem to identify sequentially untestable faults pre-
cludes identifying redundancy[10]. The FUNI algorithm[20] Finds
UNtestable faults without search using Illegal states. FUNI can-
not distinguish between untestable and redundant faults.

Main Contributions

In this paper, we first discuss the existing definitions of
sequential redundancy and show their limitations. Next, we intro-
duce the concept of ac-cycle redundant fault, as a generalization
of the conventional notion of sequential redundancy. We present
the sequential FIRE algorithm (FIRES) that identifiesc-cycle
redundancies without search. Our important result is that a fault
which requires a conflict as a necessary condition for its detection
is c-cycle redundant.

We assume that all flip-flops (FFs) are controlled by a single
implicit clock. Unlike[7], FIRES can be used for circuits without
a global reset. FIRES is a direct method to identify redundancies
and can be used efficiently in synthesis to remove sequential
redundancies. (None of the currently available synthesis tools
have such a feature). FIRES runs in polynomial time and is prac-
tical for large circuits. It can be used as a preprocessor to any
ATG program, which can avoid targeting the faults identified as
redundant and thus save the large computational effort associated
with them.

The notion of ac-cycle delayed replacement of a circuit[21] is
an equivalent concept, in the sense that ac-cycle redundant cir-
cuit is a c-cycle delayed replacement of the original circuit. A
resynthesis procedure forc-cycle delay replaceability was also
proposed in[21]. Their procedure is based on BDDs and allows
more flexibility during sequential optimization.

The rest of this paper is organized as follows. Section 2
reviews our earlier work on RID for combinational circuits. Sec-
tion 3 discusses the relation between untestability and redun-
dancy in sequential circuits. Section 4 establishes the theoretical
framework for the FIRES algorithm and Section 5 presents the
algorithm. Section 6 presents our experimental results and Sec-
tion 7 concludes the paper.

2. The Combinational FIRE Algorithm
This section briefly reviews the FIRE algorithm for

combinational RID[17] [18] [14]. For every stems, FIRE determines
the sets of faultsS0 andS1, which require, respectively,s = 0 and
s = 1 as necessary conditions for their detection. This is
accomplished using an improved version of the uncontrollability
and unobservability analysis proposed in[22]. In this analysis, 0
(1) denotes the status of a line that is uncontrollable for value 0
(1). For every stems, FIRE propagatess = 0 (1) to find the set of
faultsS0 (S1) that become untestable ifs cannot have value 0 (1).
Then the set of faultsS that require boths = 0 ands = 1 (i.e. a
conflict) for detection is given byS = S0 ∩ S1. FIRE marks the
faults inS as combinationally redundant.
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Figure 1. Propagation of uncontrollability and unobservability

Figure 1 illustrates the propagation of uncontrollability
indicators. Uncontrollability can propagate forward and
backward, as shown by the arrows. For example, the output of a
NAND gate is 0 if at least one input is 1, and is 1 if and only if all
its inputs are 0. Similar rules apply to other gate types.

In a combinational circuit, if a gate input cannot be set to the
noncontrolling value of the gate, all the other inputs become
unobservable (unobservable lines are marked with a "*" in Figure
1). The unobservability status propagates from a gate output
backward to all its inputs. When all fanout branches (FOBs) of a
stem s are marked unobservable, FIRE uses special rules to
decide whethers should also be marked as unobservable (to
avoid marking faults that can be detected using multiple-path
sensitization)[17] [18] [14].

During its analysis, FIRE identifies as untestable, faults that
cannot be activated (s-a-0 on 1 lines ands-a-1 on 0 lines) and
faults that cannot be propagated (both faults on unobservable
lines).

3. Sequential Untestability and Redundancy
Redundancy is a property of a circuit. A fault is redundant, if

the behavior of the faulty circuit cannot be distinguished from
that of the fault-free circuit. (Relying on three-valued simulation
results to verify this fact may lead to erroneous results.) Pomer-
anz and Reddy have provided the following definitions[23].
Definition 1:A fault f is said to bedetectableif there exists an
input sequenceI such that for every pair of initial statesS andSf

of the fault-free and faulty circuit, respectively, the response
Z(I , S) of the fault-free circuit to the input sequenceI is different
from the responseZ f (I , Sf ) of the faulty circuit (at some time on
some output).
Definition 2:A fault is untestableif it is not detectable.
Definition 3:A fault is partially testableif there exists an initial
stateSf of the faulty circuit and an input sequenceI such that for
ev ery fault-free initial stateS, the response of the fault-free
circuit to I starting fromS, Z(I , S), is different from the response
of the faulty circuit starting fromSf , Z f (I , Sf ). (This definition
differs from that in[23], in that it includes testable faults. A fault is
testable if it is partially testable for all initial states of the faulty
circuit.)
Definition 4:A fault is redundantif it is not partially testable.



-- --

Irredundant Untestable Faults

Untestable
Faults

Testable Faults

Partially
Testable
Faults

Redundant Faults

Figure 2. The structure of the fault universe
Figure 2 illustrates the relations between testable, untestable,

and redundant faults.

The following example illustrates a shortcoming of Definition
4. It is provided to motivate an alternative definition of
redundancy that is introduced in the next section.
Example 1:Consider the circuit in Figure 3 and the faultc1 s-
a-1. This fault is untestable because the requirements to detect it
(c = 0 and b = 1) lead to conflicting assignments on stema.
Independent of its initial state upon power-up, the fault-free
circuit can never produce the response{d , c2} = {1 0}. Howev er,
if the faulty circuit powers up in state{b, c} = {1 0}, this output
response will be observed. Hence faultc1 s-a-1 is partially
testable and irredundant under Definition 4. However, the circuit
in Figure 3 is intuitively redundant, since the same signala is fed
twice into the same gated through different FFs.
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Figure 3. Example of an irredundant fault

Another restricted definition of redundancy that uses specific
initialization sequences (without imposing any restriction on time
of observation) has also been proposed in[23]. It can be shown that
the fault in this example remains irredundant under this restricted
definition as well[15].

4. c-Cycle Redundancy
In this section, we introduce the concept of ac-cycle

redundancy, which is a generalization of the conventional notion
of sequential redundancy. Consider any arbitrary input sequence
I . If a fault is redundant according to Definition 4, then forevery
stateSf of the faulty circuit, there must exist some stateS of the
fault-free circuit such that the response of the two circuits
(starting fromSf andS) to I is identical. Now suppose that we
power up the faulty circuit and clock it some number of times,
applying arbitrary inputs. After this procedure, the set of
possible states that the faulty circuit could be in is usually a
proper subset of the set of all states, because values in some of
the flip-flops will become correlated. Suppose that we only
require that everySf in this smaller set have a corresponding
state S in the fault-free circuit for which the response toI is
identical. Under this condition, we can still use the faulty circuit
as a replacement for the fault-free circuit provided that we clock
the faulty circuit a few times before applyingI .
Definition 5: Consider the set of states{Sc} reachable after
powering up the faulty circuit and applying any sequence ofc
input vectors. (Note that{Sc} shrinks asc increases.) Then a
fault is c-cycle redundant if it is not partially testable under the
assumption that the initial states of the faulty circuit are restricted
to {Sc}.

Note that a 0-cycle redundant fault would be a redundant fault

under Definition 4. Also, ac-cycle redundant fault is ac′-cycle
redundant fault for anyc′ > c. A circuit with ac-cycle redundant
fault can be simplified by removing the redundant region
associated with that fault. Ac-cycle redundant fault is not the
same as an untestable fault that does not prevent initialization[11].
Removing ac-cycle redundant fault only requires the application
of c arbitrary input vectors before the existing initialization
sequence.

We feel that it is reasonable to removec-cycle redundant
faults since it is generally easy to have the circuit clocked a few
times before the initialization sequence is applied. In fact, other
sequential optimizations may require the same sort of delay
before initialization. For example, in recent work, Singhalet
al.[24] have shown that forward retiming[25] has this same
property. It can also be shown thatc-cycle redundancy also has
the nice property of beingcompositional[14] [15]. (A property of a
subcircuit is compositional if that property still holds when the
subcircuit is embedded in any larger circuit.) In contrast, with
methods such as[11], it is not safe to remove a fault in a subcircuit
without first analyzing the full circuit to see whether the whole
system will still have a reset sequence. This is because during
initialization some inputs to the subcircuit will come from the
larger circuit and some outputs from the subcircuit will be
observed by the larger circuit. Thus, checking that the subcircuit
still has an initialization sequence is not sufficient.
Example 2:Consider again the circuit in Figure 3 and the faultc1
s-a-1. Example 1 showed that the fault is untestable and
irredundant under Definition 4. Now consider clocking the faulty
circuit once (with a = 0 or a = 1) after powering it up. The
application of this arbitrary input vector ensures that the FFsb
and c have the same value. The initial state of the faulty circuit
({b, c} = {1, 0}) is no longer available and the faulty circuit
cannot be distinguished from the fault-free circuit. Hencec1 s-
a-1 is a 1-cycle redundant fault.

In the previous example, note thatc1 s-a-1 is not redundant
(based on Definition 4) and the circuit cannot be simplified (by
removing line c1) based on that definition. But considering it as
a 1-cycle redundant fault allows circuit simplification. Hence
identification of c-cycle redundancy for redundancy removal
seems more practical.

5. Identifying c-Cycle Redundancies
5.1 Sequential Uncontrollability and Unobserv-

ability Analysis
Extension of the combinational FIRE algorithm to sequential

circuits requires the propagation of uncontrollability and
unobservability indicators through FFs. Figure 4 illustrates the
propagation rules for FFs. Uncontrollability propagates both
ways through a FF. Propagation through a FF means going into
an adjacent time frame.
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Figure 4. Sequential propagation of uncontrollability & unobservability

Though uncontrollability can propagate forward and
backward, unobservability propagates only backward. When a FF
output is unobservable, its input is also unobservable. While in a
combinational circuit, unobservability propagates unconditionally
from the output of a gate to all its inputs, in sequential circuits
this is not always the case. Before marking a gate input as
unobservable, we ensure that multiple fault-effects from that
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input in different time frames cannot combine to reach a primary
output (PO). This is done to avoid marking faults that would be
detected by (sequential) multiple path sensitization. Sequential
propagation of unobservability is allowed under the following
generalization of the combinational conditions of FIRE.

Unobservability propagates ontol i (the copy of linel at time
i) if

1. The fanouts ofl i are marked as unobservable at timei .
2. For every fanoutf i of l i , there exists at least one set of

lines{ p j }, such that
• f i is unobservable because of uncontrollability indica-

tors on every line in{ p j }; and
• there is no sequential path froml k, i ≤ k ≤ j to any line

in { p j }.

5.2 Rules for Marking Faults
The iterative array model of a sequential circuit consists of

repeated time frames of its combinational logic. For a faulty
circuit, the fault is present in every time frame. The
uncontrollability and unobservability propagations described in
the previous section are valid only for the fault-free circuit. In
general, they may not be valid in a faulty circuit. To ensure that
these propagations will also be valid in a faulty circuit we
perform a validation step as follows.

Time
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Time
-1

Time
fTime

2
Time

1
Time

0

Forward time frames (f)Backward time frames (b)Starting
time frame

MTf + b + 1 <=

Time
-b

Figure 5. Model for sequential implications
Let time frame 0 represent the time at which the

uncontrollability started propagating from some stems (see
Figure 5). The time frames through which uncontrollability and
unobservability propagate have positive or neg ative numbers
depending on whether they are forward or backward time frames
with respect to the starting time frame. Letf and b be the
number of forward and backward time frames respectively. This
propagation is allowed for a maximum ofTM time frames
( f + b + 1 ≤ TM ). TM is needed to prevent an infinite propagation
of uncontrollability and unobservability (due to feedback loops).
However, many propagations terminate before the total number
of frames reachesTM .
Definition 6: A value v on a line l i , −b ≤ i ≤ f , is valid in the
presence of a faultm s-a-u if f v propagates ontol i in the
presence of the faultsm s-a-u in all time framesj < i .

For example, if it was necessary to havem = u in a previous
time frame to getl i = v, thenl i = v is invalid in the presence ofm
s-a-u. Note that the validation of an uncontrollability indicator is
with respect to a fault; i.e. an uncontrollability may be valid in
the presence of one fault and invalid in the presence of another.

For the stems and the processess = v, v ∈ {0, 1} and for
each time framei (−b ≤ i ≤ f ), we form a set of faultsSi

v, as
follows

• Uncontrollable faults:If a line m has avalid 0 (1) value, at
time i , we includem s-a-1 (m s-a-0) in Si

v.
• Unobservable faults:Let a line m have an unobservability

indicator at time i caused by a set of uncontrollability
indicators on lines {p j } ( j ≥ i). We include m s-a-u
(u ∈{0, 1}) in Si

v, iff the uncontrollability indicator on every
line in {p j } is valid in the presence of the faultm s-a-u.
We refer to the process of propagating uncontrollability and

unobservability to determine the uncontrollable and unobservable

faults assequential implication.

5.3 The FIRES Algorithm
FIRES(TM ) {

/* TM = Maximum number of time frames */

For every stems

Sequentially Imply s= 0 over a maximum ofTM time
frames. LetSi

0 represent the sets of the corresponding
uncontrollable or unobservable faults.

Sequentially Imply s= 1 over a maximum ofTM time
frames. LetSi

1 represent the sets of the corresponding
uncontrollable or unobservable faults.

A fault f in any setSi = Si
0 ∩ Si

1 is c f -cycle redundant.
}

}
Figure 6. Outline of the FIRES algorithm

Figure 6 summarizes the FIRES algorithm. Consider a fault
f identified by FIRES in some time framei . Let l be the leftmost
time frame where uncontrollability must propagate for FIRES to
identify f as redundant. We use the following rule to associate a
c f with every fault f identified by FIRES.

• c f = 0, if l ≥ i
• c f = i − l , if l < i

It can be shown that a faultf identified by FIRES isc f -cycle
redundant[14]. Clocking the faulty circuitc f times ensures that the
time frames required for the conflict to occur really exist. These
rules may overestimate the value ofc f and a more global analysis
may be required to determine the minimumc f .
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Figure 7. Circuit for Example 3

Table 1.Sequential Implications for Example 3.
Process Time Uncont. Unobs. Identified Faults

0 c = c1 f , e, c1 S0
0 = {c1, c11, c21,

= c2 = 0 f0, f1, e1}

c = 0 1 h = i = 0 g S1
0 = {i 1, g0}

−1 − d, a, b S−1
0 = {d0, d1, a0, b0}

0 c = c1 = c2 e S0
1 = {c0, c20, f0, e1}

= f = 1

c = 1 1 h = g = i = 1 − S1
1 = {h0, g0, i0}

−1 − d, a, b S−1
1 = {d0, d1, a0, b0}

c-cycle 0 S0
0 ∩ S0

1 = { f0, e1}

Redundant 1 S1
0 ∩ S1

1 = {g0}

Faults −1 S−1
0 ∩ S−1

1 = {d0, d1, a0, b0}

Example 3:Consider the circuit in Figure 7.c = 0 at time 0
implies c1 = c2 = 0 at time 0. This impliesh = i = 0 at time 1.
This makes lineg at time 1 unobservable, which makes linesf , e
andc1 at time 0 and linesd, a andb at time−1 unobservable as
well. A similar analysis withc = 1 shows that the fault effect one
at time 0 and fault effects ond, a and b at time −1 are
unobservable. Table 1 summarizes the sequential implications.
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When computingS0 andS1, all uncontrollability implications
remain valid in the presence of the faults found in the corre-
sponding time frames. By the rules of computingc f , all the faults
exceptg0 are 0-cycle redundant. Faultg0 is 1-cycle redundant.

Among the sevenc-cycle redundant faults identified by
FIRES in the above example, FUNTEST[19] will report only one
(g0) as untestable, and FUNI[20] will identify two (g0 and f0) as
untestable by processing the illegal state{g, h} = {1, 0}. The
example also shows that FIRES can find faults that are beyond
the scope of the combinational ATG theorems[8] [9] ( f0, e1, d0, d1,
a0, andb0).

6. Results
We used a prototype implementation of FIRES in C++ to

identify redundancies in the ISCAS89 sequential benchmark
circuits[26]. Our program performs the validation step outlined in
Section 5 as an option. It can be shown that all the faults
identified by FIRES without the validation step are untestable[14],
and those found with the validation step arec-cycle redundant. In
general, without validation, FIRES runs faster and finds more
faults.

Table 2.Results for benchmark circuits
FIRES Without FIRES With

Validation Validation
Circuit # Fr .

# CPU # CPU 0-cycle Max.
Unt. secs. Red. secs. c

S208 13 60 1.3 57 2.0 0 4

S349 4 2 0.3 2 0.3 2 0

S386 4 27 0.5 27 0.6 0 2

S400 12 1 0.9 1 1.2 0 2

S420 15 217 9.8 208 14.1 0 7

S444 11 11 1.4 11 1.5 11 0

S713 15 32 0.7 32 0.8 32 0

S838 15 529 42.1 508 71.9 0 11

S1238 3 6 2.7 6 2.8 6 0

S1423 10 5 1.4 5 1.5 5 0

S1494 3 1 1.5 1 1.7 1 0

S5378 15 367 52.0 366 69.3 48 11

S9234 15 284 113.2 270 142.8 165 6

S13207 10 893 97.8 893 119.5 67 9

S15850 10 332 312.1 328 434.2 236 9

S35932 5 3984 556.8 3984 684.4 3984 0

S38417 5 147 317.3 147 386.2 115 1

S38584 5 1437 272.0 1437 307.7 1052 3

S499* 15 5 12.2 5 18.6 0 2

S1269* 12 1 0.9 1 1.1 0 2

PROLOG* 5 253 5.9 253 8.7 82 2

S3330* 5 162 6.9 162 8.7 12 1

Table 2 shows the results for the benchmark circuits.# Fr.
represents the number of time frames which FIRES processed.
(The maximum number of time frames is decided depending
upon the circuit size, such that #Fr . ≤ 15.) # Unt. represents the
number of untestable faults identified by FIRES without
performing the validation step.# Red.represents the number of
redundant faults identified by FIRES (after validation).0-cycle
represents the number of 0-cycle redundancies identified (these
are combinational, and conventional sequential, redundancies).
Max. crepresents the maximum of thec f values for the identified
faults. All CPU times reported in this section are in seconds for a
SUN sparc10. We show only the circuits where redundancies
were identified by FIRES. The circuits shown with a "*" were

obtained from the ADDENDUM93 directory of the ISCAS89
benchmark set. These circuits, except PROLOG, have no single
combinational redundancies.

For example in S420, without validation, FIRES found 217
sequentially untestable faults in 9.8 seconds. 208 out of these 217
faults passed the validation and hence arec-cycle redundant.
None of them were 0-cycle and the maximumc was found to be
7. The run with the validation step took about 14 seconds.

The distribution of the number ofc-cycle redundancies found
for different values ofc varies widely from circuit to circuit and
can be found in[14].

Unfortunately, we cannot make a fair comparison of our
results with any of the previously published ones. The results of[4]

[5] [6] [7] [11] are for redundancy removal, those of[5] [6] [12] [13] are
based on incorrect theoretical results, those of[7] are not relevant
for the original benchmark circuits without a global reset, those
of[8] [9] are only for untestability, those of[16] deal with a restricted
definition of redundancy, those of[21] are for sequential
optimization and include only the smaller benchmark circuits,
and those of[10] and[11] do not deal with benchmark circuits.

A deterministic sequential test generator performing
exhaustive search can identify all faults found by FIRES as
untestable, if given enough time. However, the test generator
cannot identify these faults as redundant. We now show that
state-of-the-art sequential test generators can have difficulty even
in proving that the faults found by FIRES are untestable. We
used two sequential test generators, GENTEST[27] and HITEC[28].
In this experiment, the faults found by FIRES (without
validation) were passed as the only targets to the test generators.
For S5378, GENTEST, allowed to spend up to 100 seconds per
fault, used 31 times more CPU secs. than FIRES and aborted
95% of the untestable faults found by FIRES (Table 3).

Table 3.Comparison of FIRES with GENTEST for S5378
Circuit FIRES GENTEST Speed-up

Name # CPU # # CPU Ratio
Unt. secs. Unt. Abo. secs.

S5378 367 52.0 19 348 1599.7 31

Similarly, HITEC, allowed to spend up to 20 seconds per fault,
could prove untestability only for 52% of the faults found by
FIRES in S838 and used 162 times more CPU secs. (Table 4).
These examples show that the exhaustive search done by the
sequential test generators could not identify as untestable faults
found by FIRES without any search.

Table 4.Comparison of FIRES with HITEC for S838
Circuit FIRES HITEC Speed-up

Name # CPU # # CPU Ratio
Unt. secs. Unt. Abo. secs.

S838 529 42.1 276 253 6136.8 162

7. Conclusions
This paper has presented FIRES, a new fault-independent

redundancy identification algorithm for sequential circuits that is
based on conflict analysis. We hav e introduced the concept of a
c-cycle redundant fault, where the behavior of the fault-free
circuit is indistinguishable from that of the faulty circuit which
has been clocked for at leastc times after power-up. The
conventional notion of redundancy is a  special case of ac-cycle
redundancy withc = 0. We hav e shown that a fault whose
detection requires a conflict as a necessary condition isc-cycle
redundant. FIRES does not assume a global reset mechanism and
does not require state transition graph information.
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Any practical state-of-the-art sequential test generator cannot
distinguish between untestable and redundant faults. All existing
solutions for sequential RID are either based on incorrect theoret-
ical results, or make simplifying assumptions or are limited to
small circuits. Hence FIRES provides thefirst general solution to
the sequential RID problem, practical for large circuits. FIRES,
however, finds only a subset of the redundant faults.

FIRES can be easily integrated with any synthesis system to
remove redundancies. Apart from being able to identify sequen-
tial redundancy in a practical manner, FIRES has significant
advantages in redundancy removal applications because it is
fault-independent and the average CPU time it takes to process
the entire circuit is negligible. After a redundancy is removed,
new redundancies may be created in the circuit. Even combina-
tional redundancy removal using ATG is expensive because many
faults may have to be retargeted over multiple passes of test gen-
eration to identify newly created redundancies. However, FIRES
may at most have to reanalyze previously analyzed stems in such
an iterative procedure.

A deterministic sequential test generator performing exhaus-
tive search can only prove untestability for the faults found by
FIRES (without search). By processing a single conflict, FIRES
may simultaneously identify several redundant faults that would
require separate targeting by an ATG-based approach. In general,
the faults found by FIRES are not easy targets for state-of-the-art
practical sequential test generators and the FIRES CPU times are
negligible compared to the complete sequential test generation
runs for all faults in the circuit. Thus, FIRES can be used as a
preprocessor to any state-of-the-art sequential test generator to
obtain significant savings in computation time and to increase the
detectable fault coverage.
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