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Abstract
1

In this paper, we propose a hybrid approach for es-
timating the switching activities of the internal nodes
in logic circuits. The new approach combines the ad-
vantages of the simulation-based techniques and the
probability-based techniques. We use the user-speci�ed
control sequence for simulation and treat the weakly
correlated data inputs using the probabilistic model.
The new approach, on one hand, is more accurate than
the probabilistic approaches because the strong tempo-
ral and spatial correlations among control inputs are
well taken into consideration. On the other hand,
the new approach is much more e�cient than the
simulation-based approaches because the weakly corre-
lated data inputs are not explicitly simulated. In addi-
tion, we also propose a heuristic that builds BDDs in
terms of internal nodes such that large circuits can be
handled. Extensive experimental results are presented
to show the e�ectiveness and e�ciency of our algo-
rithms.

1 Introduction

We can roughly divide the existing techniques on es-
timating the switching activities into two categories,
the simulation-based and the probability-based. In
simulation-based approaches (e.g.: [1][11]), the basic
idea is quite simple. With either user-provided func-
tional vectors or randomly generated patterns at the
primary inputs, we can simulate the circuit repeat-
edly and monitor the switching activities at the in-
ternal nodes of the circuit. Eventually the switching
activity of each node in the circuit will converge to
the average case. Good techniques, such as the Monte
Carlo method [1], do exist for limiting the convergence
of switching activities to a user-speci�ed con�dence
range and terminating the simulation faster.

In probability-based approaches (e.g.: [7][4][10][5]),
with user-provided parameters that characterize the
typical behavior at the primary inputs (PIs), the idea
is to propagate these parameters, which are in a prob-
abilistic form, through the whole circuit and thereby

1This work was done while the �rst authur was with Univ. of
California at Santa Barbara, and was supported in part by the NSF
grant MIP 9419119 and California MICRO/LSI/SVR.

obtain the average switching probabilities at the inter-
nal nodes of the circuit. One very important issue here
is the modeling of the temporal and the spatial corre-
lations among signals. Temporal correlation refers to
the dependency between the values of a signal in two
consecutive time frames; spatial correlation refers to
the dependency between two separate signals. These
correlations exist at internal nodes as well as at PIs.

In general, the simulation-based approaches are
more accurate but slower, while the probability-based
techniques are less accurate but faster. Moreover,
the simulation-based approaches have the advantage
that complicated spatial and temporal correlations, no
matter at the primary inputs or internal nodes, are
automatically taken care of because the actual node
transitions are counted. The probability-based ap-
proaches, on the other hand, have the advantage of
being able to compactly lump lengthy, random, and
independent activities into a few, usually one or two,
probabilistic parameters.

In modeling the PI activities, we say the simulation-
based approaches use a deterministic model, to
contrast with the probabilistic model used in the
probability-based approaches. In this paper, we �rst
propose a hybrid approach on the modeling of the PI
activities when functional vectors are available. A key
motivation of this new approach is the fact that, in
most industrial designs, circuits have data path and
control path mixed together. The data path inputs
are weakly correlated (spatially and temporally) and
random in nature, while the control path inputs are
highly correlated and typically limited to certain se-
quences of patterns. We propose to model these two
sets of signals separately. Data inputs, due to their
random and uncorrelated nature, should be modeled
by probabilistic parameters in an implicit form. This
is similar to the modeling of PI activities used by the
existing probability-based techniques. On the other
hand, control inputs, due to their highly correlated na-
ture, stay deterministically in the explicit form given
by the functional vectors. This is similar to the mod-
eling of PI activities used by the existing simulation-
based techniques. In order to distinguish from the
original complete functional vectors, we use the term
control sequence to refer to the sequence of the control
part in the given functional vectors. In other words, in
modeling of the PI activities, we keep the part of the
control inputs intact in the given functional vectors,
but compactly lump the actual patterns in the part of
the data inputs into their probabilistic parameters.

Using this hybrid model that separates data inputs
and control inputs, we then present a hybrid algorithm
that combines the advantages of both the simulation-
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Figure 1: A 4-bit ALU

based and the probability-based techniques. The algo-
rithm is extended and generalized from the symbolic
simulation technique proposed in [4], for which we will
provide a detailed review in later sections. By simu-
lating the control patterns given at the control inputs,
we propagate the probabilistic parameters given at the
data inputs through the whole circuit. Our algorithm
is very accurate and improves the purely probabilistic
nature of the original symbolic simulation technique.

To handle large circuits, we also propose a heuris-
tic that builds BDDs in terms of the internal nodes,
as opposed to in terms of the PIs, of a circuit. The
heuristic is based on the topological analysis presented
in [2], which �nds the minimally required independent
signals for each node in a circuit systematically. We
modify the algorithm in [2] to �nd weakly correlated,
rather than completely independent, internal signals
for each node. The resulting heuristic can trade ac-
curacy for applicability or run time, and therefore en-
ables us to handle large circuits.

Our hybrid model and algorithm degenerate to a
simulation-based approach when a given circuit does
not have data path, and degenerate to a probability-
based approach either when the circuit does not have
control path or when the control sequence is not avail-
able.

2 The Model Separating Data and Control

Given a logic circuit, we assume that the control
sequence is available. In this section we discuss our
new model that separates the control inputs and the
data inputs. As an example, Fig. 1 shows a schematic
diagram of a 4-bit ALU. The data inputs of the ALU
are A0-A3 and B0-B3. The control inputs are S0-S3
(selectors) and m (mode), whose values determine the
functionality of the ALU. This ALU was embedded in
a larger system we found. Due to the system require-
ment, this ALU had the �xed control sequence shown
in Fig. 1, where the meanings of the control patterns
are also shown. The data inputs, on the other hand,
will be supplied with random data in the system. We
can see that, even in this small example, this control
sequence has a spatial correlation across �ve signals

and a temporal correlation across six time frames.
Continuing with the above example, we now look

at what traditional techniques would do to model the
PI activities. In a simulation-based technique, with
the repeating of the six control patterns, we have to
generate many random patterns out of the all possi-
ble combinations, as well as an even larger number
of possible sequences of these combinations, at the
data inputs. This large number of random patterns,
as mentioned in Section 1, makes a simulation-based
technique slow. However, note that in this case the
complicated control input correlations (temporal and
spatial) are automatically taken care of because the
actual control patterns are intact. On the other hand,
in a probability-based technique, we need to charac-
terize each PI, regardless of control or data, into a few
probabilistic parameters. Let us illustrate the situa-
tion with two commonly used parameters, the signal
probability and the transition density [7], denoted by
s and t respectively. The data inputs, because of their
randomness, all have s = 1

2
and t = 1

2
. The signal

probability and the transition density of the control
inputs are calculated as shown at the bottom of Fig. 1.
Here in the modeling of the control input activities, we
can see that these probabilistic characterizations have
already implicitly caused a loss of some correlation in-
formation. For example, spatially, the occurrence of
combination 11111, which should have a probability
zero, now has the probability equal to the product of
the signal probabilities of all the control inputs. Tem-
porally, for example, the sequence of 00000 followed by
00000, which should have a zero occurrence probabil-
ity, now obviously has some non-zero probability. In
spite of the above inaccuracy in modeling the control
inputs, however, note that the lengthy and random
nature of the data inputs are compactly lumped into
the signal probability and the transition density, which
almost fully characterize their activities.

Based upon the understanding of the above phe-
nomena, we propose a hybrid model that separates
the data and control inputs. We treat the data in-
puts probabilistically, and characterize the data in-
puts with two parameters, the signal probability and
the transition density[7]. We treat the control inputs
deterministically and keep the control sequence intact.

3 Hybrid Algorithm

With the hybrid model, we present a hybrid algo-
rithm in this section. Since the symbolic simulation
technique in [4] is very related to our algorithm, we
�rst provide a brief review of [4] in Section 3.1. In this
section we assume the circuit is combinational and all
nodes have zero delay. The issues related to sequential
circuits will be discussed in Section 5.

3.1 Symbolic simulation

In [4], the transition density of each internal node is
analyzed by considering a PI pair, V (t) and V (t+ 1),
where V (t) corresponds to the current time frame and
V (t + 1) corresponds to the next time frame. More
speci�cally, each PI is �rst represented by two BDD
variables, one for the current time frame, and the other
for the next time frame. For each internal node, the
symbolic simulation technique builds a Boolean func-
tion whose on-set represents all the conditions when
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Figure 2: Symbolic simulation and our modi�cations

the internal node makes a transition. This can be best
explained by an example. Fig. 2(a) shows a simple
AND gate. Let a(t) and a(t + 1) be the BDD vari-
ables representing the values of PI a at time frame t
and t+1, respectively (similarly for signal b). Assum-
ing zero delay, the BDDs of the functions of signal c at
time frames t and t + 1 are shown in Fig. 2(b). Tak-
ing the XOR of the BDDs in these two time frames, in
Fig. 2(c) we obtain the BDD whose on-set represents
all the PI conditions that signal c makes a transition.
Given the signal probability and the transition density
of PIs a and b, we can evaluate the the transition den-
sity of c by linearly traversing the BDD in Fig. 2(c).

3.2 Our algorithm

For each control pattern pi in a control sequence,
we look at the values of a control input in pi and pi+1.
Then we simply pretend that the values of the control
inputs are �xed to the values given in pi and pi+1.
For example, suppose signal a in Fig. 2(a) is a control
input and has the control sequence as shown, while sig-
nal b is a data input having signal probability 0:5 and
transition density 0:5. Now we look at the �rst and
the second control patterns of signal a. In this case,
we simply pretend signal a is �xed at 1 in the current
time frame and also will be �xed to 0 in the next time
frame. In terms of the BDD traversal performed in
the original symbolic simulation technique, this simply
means we only take the paths that consist of a(t) = 1
and a(t + 1) = 0. In Fig. 2(c), this means we only
evaluate the probability of the sub-BDD rooted at the
node labeled by Z. This evaluated probability corre-
sponds to the transition density of signal c when input
a is �xed to the \10" sequence while b is a random
data. In this manner, our algorithm iteratively per-
forms the evaluation for every control pattern in the
control sequence. Finally, for every internal node, we
take the average of the evaluated transition densities
as the node transition density.

Since in each run of a control pattern we need to
evaluate all the BDDs, at the �rst glance it may seem
to be a formidable task that we need to do n runs,
where n is the length of the control sequence. We

can greatly improve the e�ciency of our algorithm
with proper data structures. First, we should order
the control inputs as the top variables in all BDDs,
while the orderings among control inputs themselves
and among data inputs themselves are not important.
Recall that, in the original symbolic simulation tech-
nique, the �nal BDD that characterizes all the condi-
tions for an internal node making a transition is built
by XOR'ing the BDDs corresponding to the current
and the next time frames. When control inputs are or-
dered as the top variables, we can \walk down" these
two BDDs according to the deterministic values given
in control patterns pi and pi+1 until a BDD node rep-
resenting a data input is reached. We can then take
the XOR of the sub-BDDs rooted at the reached nodes
and perform probability evaluation on the resulting
BDD, which now only has BDD variables represent-
ing the data inputs. As an example, consider the �rst
and the second patterns of signal a in Fig. 2(a) again.
Since we have a \10" sequence, we set a(t) = 1 and
a(t + 1) = 0. In Fig. 2(b), we therefore can \walk
down" the BDDs and reach the BDD nodes labeled by
X and Y in the BDDs representing the current(left)
and the next(right) time frames, respectively. Taking
the XOR of these two sub-BDDs, we have the result-
ing BDD as the same one labeled by X because the
other BDD is Boolean 0. Note that the BDD labeled
by X is the same as the one labeled by Z in Fig. 2(c).
This is because both of these two BDDs characterize
the same condition: the transition density of signal
c given that signal a has a \10" transition. In the
original symbolic simulation technique, the BDD cor-
responding to the XOR of two time frames at each
node characterizes all the conditions when the node
makes a transition. Since very often the patterns in
a control sequence do not consist of all possible com-
binations, with our \walk down" method we perform
the XOR when needed. Depending on the control se-
quence, this sometimes greatly reduces the time and
space complexity. An illustrative diagram is shown in
Fig. 2(d) where all the egg-shaped circles represent
BDDs. What the original symbolic simulation tech-
nique does is XOR'ing the complete functions of the
current (labeled by P) and the next (labeled by Q)
time frames. The resulting BDD (labeled by R) may
become very large. In our case, we only XOR the sub-
functions (labeled by F and G), and many times have
much smaller resulting BDD (labeled by H).

There is one more point we need to clarify with the
above \XOR when needed" method. It is not unusual
at all that some control pattern pairs repeat. When
a control pattern pair repeats, we would repeat the
same \walk down" process and XOR the same pair of
sub-BDDs that we XOR'ed before. This repeating of
computation can be saved by building a cache, usually
implemented as a hash table, that stores the XOR
results.

The time complexity of each run of our algorithm
is linear in terms of the BDDs needed. In practice,
because of the cache setup, many times we have the
situation where only the �rst few runs reach this time
complexity, and the rest runs are extremely fast be-
cause they either just walk down the BDDs and take
the result from the cache, or easily hit some BDD node
whose probability has been calculated during previous
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Figure 3: Supergate concept

traversals.
Because we deterministically simulate all control

patterns, all the temporal and spatial correlation ex-
isting at control inputs are automatically taken care
of, just like the case in a traditional simulation-based
technique. On the other hand, because we compactly
characterize the randomness of data inputs into two
parameters, we keep the e�ciency, just like the case
in a traditional probability-based technique.

4 BDDs in terms of internal nodes

In both the symbolic simulation technique and our
hybrid algorithm discussed so far internal signal cor-
relations have not been a problem because complete
BDDs, in terms of PIs, are built. In dealing with
large circuits where complete BDDs cannot be built,
we propose a heuristic that builds BDDs in terms of
internal signals. Our heuristic is extended and gener-
alized from the supergate analysis [9][2], which will be
brie
y reviewed in Section 4.1.

4.1 Supergate

Informally, the supergate of a node X, denoted by
SG(X), is the minimal subcircuit in X's transitive
fanin, feeding X, such that the subcircuit's fanins, de-
noted by SGFI(X), are logically independent ([9]).
As an example, consider Fig. 3 and ignore the dotted
circle for now. The supergate of node 13 is the subcir-
cuit consisting of SG(13) = f13;11; 8g, which is the
minimal subcircuit in 13's transitive fanin such that
the fanins, SGFI(13) = f7; 4; 3g, are indeed logically
independent. As another example, node 18's super-
gate consists of the subcircuit of itself only, SG(18) =
f18g, whose fanins are SGFI(18) = f17; 15g. The su-
pergate of each node is unique ([9]). As illustrated by
the above example, some nodes have smaller super-
gates while others have bigger ones. Node 19 has the
largest supergate in Fig. 3, SG(19) = f19; 18; 16;15g
and SGFI(19) = f17; 14; 13; 12g, which is marked by
the dotted circle.

[2] presents an e�cient algorithm to �nd the su-
pergate for every node in a circuit. In estimating
the switching probabilities, the algorithm therefore
enables us to build BDDs in terms of the minimal
number of independent internal signals (i.e., SGFI)
for each node. For example, in Fig. 3, we build
the BDD for node 19 in terms of nodes SGFI(19) =
f17;14; 13; 12g. After obtaining the transition densi-
ties of these four nodes, we can then calculate that of
node 19. Since SGFI's are independent by de�nition,
we keep the same accuracy for all nodes, while at the
same time building smaller BDDs. The problem with
the supergate analysis, however, is that very often the
supergates of some nodes in a circuit are still too large
to be practical.

4.2 k-level heuristic
Correlations among internal signals are caused by

reconvergent fanouts, which in turn cause the super-
gates of certain nodes to be large. By assuming cer-
tain reconvergent signals independent, which sacri�ces
some accuracy, we can shrink the sizes of large super-
gates. The important thing on making such assump-
tions on certain internal signals is that we want to
shrink the supergate sizes as much as possible, while
sacri�cing as little accuracy as possible. Our modi�ca-
tion on the supergate analysis is based on the following
observations.
Fact 1 Given a node n, for all the signals in
SGFI(n) which are not immediate fanins of n, there
exists at least one that is a multiple fanout point and
that reconverges inside SG(n).
For example, in Fig. 3, node 13 is such a reconvergent
node among SGFI(19) = f19; 18; 16; 15g. We will call
these nodes the reconvergent nodes in SGFI . For a
node n with a large supergate, the reconvergent nodes
in SGFI(n) must propagate through multiple levels
of logic.
Fact 2 Given a node n, if node i is a reconvergent
node in SGFI(n), then assuming node i's multiple
fanouts independent will shrink the size of SG(n).
For example, in Fig. 3, if we make the assumption
that node 13's two fanouts are independent, the su-
pergate of node 19 would shrink to SG(19) = f19g
and SGFI(19) = f16; 18g.

Our heuristic is based on the above two observa-
tions. Let the distance between two nodes n1 and
n2 be the maximal number of levels of nodes along
all paths between n1 and n2. For each node n, we
�rst �nd the supergate SG(n) using the algorithm in
[2]. If the maximal distance between node n and any
node in SGFI(n) is greater than a given threshold k,
we regard the supergate as too large. We then �nd
the reconvergent signals in SGFI(n) with a distance
to node n longer than k and assume their fanouts
as independent. The algorithm in [2] is then called
again. Repeatedly, we shrink the supergate size until
the given k-level constraint is met. Given a node n
whose supergate is large, since the reconvergent sig-
nals in SGFI(n) with a long distance to n are the
main cause of the largeness of SG(n), assuming inde-
pendence on these signals, as opposed to any other re-
convergent signals in the whole circuit, shrinks SG(n)
the most. The lost accuracy on making such inde-
pendent assumptions is, on the other hand, the least.
To see this, we �rst note that the correlations of sig-
nals, when propagating through di�erent paths, are
\diluted" by other uncorrelated signals and thus be-
come weaker when reconverged. The degree of dilution
is somewhat related to the distance between the recon-
vergent signals and the target node n. For example,
in Fig. 3, consider the two fanout signals of node 13.
One of the fanout signals propagates through nodes 15
and 18 (the upper path) and the other through node
16 (the lower path). The two fanout signals �nally
reconverge at node 19. The probabilities of the fanout
signal of the upper path are mixed with the probabili-
ties of nodes 14 and 17, while that of the lower path are
mixed with the probabilities of node 12. When arriv-
ing at node 19, the correlation of these two signals are



therefore much weaker (\diluted") than it was when
they �rst forked. For a given node n, each time in
our algorithm we only make the independent assump-
tions on some signals in SGFI(n) with a distance to
n greater than k and all other reconvergent signals
inside SG(n) are kept intact.

5 Sequential Circuits

Recall that the symbolic simulation technique as-
sociate each PI with two BDD variables, one repre-
senting the value of the current time frame and the
other representing the next time frame. When dealing
with sequential circuits, [4] and [6] propose a prepend-
ing mechanism. For each present state (PS) line, the
BDD variable representing the the current time frame
is kept intact, while the BDD variable representing the
next time frame is replaced by the corresponding next
state function. In other words, the whole next state
logic is \prepended" before the symbolic simulation
equations. In this manner every setup stays the same
as in the combinational case except that we need the
probabilities of the PS lines. The PS line probabili-
ties are obtained by iterations over a set of implicit
nonlinear equations that characterize the whole next
state functions ([6]). Assuming the PS lines are spa-
tially independent, the state probabilities can then be
approximated by the PS line probabilities.

Our hybrid algorithm uses the same setup for the
PS lines as discussed above. The only di�erence be-
tween our hybrid algorithm and the original symbolic
simulation technique is that we propagate the prob-
abilities at the data inputs through the whole circuit
while simulating the deterministic values at the con-
trol inputs. This applies to both the iterations on
�nding the PS line probabilities and the �nal calcula-
tion of the transition density of every internal node.
When BDDs are built in terms of the PIs, we replace
the BDD variable representing the next time frame at
every PS line with the corresponding next function.
When BDDs are built in terms of internal signals, we
simply view the prepended next state logic as part
of the whole circuit and hence BDDs could be built
across PS line boundary into the internal signals of
the prepended logic. Due to space limitation, see [3]
for more details and a discussions of the issues related
to arbitrary delays.

6 Experimental Results

In this section we present the experimental results
on our algorithms. Table 1 shows the characteristics
of the circuits we conduct the experiment on. The �rst
�ve circuits in Table 1 are industrial circuits and the
remaining ones are from ISCAS benchmark circuits.
Columns \PI", \PO", \nodes", and \FF" list the num-
ber of primary inputs, primary outputs, nodes, and
latches, respectively. Columns \c PI" and \c seq" list
the number of control inputs and the length of the
control sequence. For the �rst �ve industrial circuits,
the control inputs and the control sequence are speci-
�ed by the circuit designers. For the remaining ISCAS
circuits, we �rst optimize them with script.boolean in
SIS, then we map the circuits using lib2.genlib library
([8]). Since we do not know the details of what these
benchmark circuits are, we randomly selected 1=3 of
the PIs, up to maximally 30, as control inputs and
randomly generated 100 patterns as control sequence

b PI PO nodes FF c PI c seq low tr high tr

i1 14 8 63 0 6 6 4 59

i2 83 103 799 0 34 47 205 594

i3 19 11 159 15 7 10 17 142

i4 40 20 374 42 10 140 174 200

i5 34 31 1020 53 4 402 602 418

C1355(c1) 41 32 276 0 14 100 66 210

C1908(c2) 33 25 282 0 12 100 65 217

C2670(c3) 233 140 366 0 30 100 10 356

C3540(c4) 50 22 601 0 17 100 62 539

C6288(c5) 32 32 2090 0 11 100 7 2083

C7552(c6) 207 108 1154 0 30 100 13 1141

C880 (c7) 60 26 203 0 21 100 19 184

s1196(s1) 14 14 281 18 5 100 71 210

s1238(s2) 14 14 305 18 5 100 86 219

s1423(s3) 17 5 364 74 6 100 152 212

s5378(s4) 35 49 721 162 12 100 300 421

s9234(s5) 36 39 632 135 13 100 264 368

Table 1: Circuit characteristics

on these selected control inputs. For each of the cir-
cuits listed in Table 1, a very long logic simulation
was then performed using randomly generated pat-
terns applied to the data inputs with repeated control
sequence applied to the control inputs. The transi-
tion density obtained from the long simulation was
then regarded as the accurate result. To compare the
average error of each node in our algorithms against
the accurate result, we would like to use this met-

ric of relative error de�ned by
Pn

i=1

jT
e

i
�T

a

i
j

Ta

i

, where

n is the number of nodes in a given circuit and T e

i

and T a

i are the estimated and the accurate transition
density of node i, respectively. However, as was also
pointed out by other researchers (e.g.: [5]), the metric
tends to overemphasize the nodes with low transition
density. We therefore decided to measure our results
by separating the nodes into two groups. The nodes
whose transition density is low, de�ned by Ta

i
< 0:08,

are classi�ed into one group, and the remaining nodes
into the other. The last two columns of Table 1,
\low tr" and \high tr", list the number of nodes, re-
spectively, in these two groups. This classi�cation al-
lows us to fairly use the metric of relative error on the
higher transitioned (\high tr") group. For the nodes
in \low tr", we would like to use the metric of absolute

error de�ned by

P
n

i=1
jT

e

i
�T

a

i
j

n
; however for the conve-

nience of comparison using percentage, we divide the
above absolute error by the threshold value 0.08.

Table 2 lists the result of our hybrid algorithm com-
pared with the probabilistic symbolic simulation tech-
nique, both with complete BDDs built. The circuits
that are in Table 1 but not in Table 2 are the ones
whose BDDs cannot be built due to memory limita-
tion. In Table 2, we contrast the results of our hy-
brid algorithm (column \hyb") and the probabilistic
symbolic simulation (column \prb"), under the cate-
gories of low transition nodes (column \low tr") and
high transition nodes (column \high tr"). The result
of each of the two algorithms is reported by the aver-



low tr high tr

hyb(%) prb(%) hyb(%) prb(%)

b av mx dv av mx dv av mx dv av mx dv

i1 0.5 0.9 0.6 3.9 4.6 4.0 0.3 1.0 0.4 16.0 179.4 33.4

i2 0.3 3.6 0.6 0.5 11.3 1.9 0.5 2.8 0.7 3.8 18.3 8.9

i3 1.5 8.7 2.3 6.0 19.9 8.2 1.2 9.8 3.2 8.0 43.6 14.4

c1 0.4 2.0 0.6 2.6 98.2 12.7 0.2 2.8 0.4 4.4 95.2 12.4

c2 0.8 4.2 1.2 0.9 4.6 1.4 0.2 1.7 0.3 3.4 61.6 9.5

c4 0.2 1.7 0.5 44.5 246.3 69.4 0.4 2.6 0.5 9.7 258.6 24.2

c7 0.1 0.3 0.2 40.6 170.0 58.6 0.2 1.3 0.2 10.1 77.5 13.0

s1 1.1 15.6 2.8 4.1 48.2 8.6 0.8 10.1 1.7 6.3 55.7 11.0

s2 1.0 10.2 2.0 7.6 257.0 30.7 0.9 11.5 1.8 7.3 60.0 12.3

av 0.6 5.2 1.2 12.3 95.6 21.7 0.5 4.8 1.0 7.7 94.4 15.5

Table 2: Complete BDDs built in terms of PIs

age error (column \av"), the maximal error (column
\mx"), and the standard deviation of errors (column
\dv"). Take c4 (C3540) as an example. For the low
transition nodes (57 nodes, from Table 1), on aver-
age the absolute error is 0.000191. Dividing 0.000191
by the threshold value 0.08, we have 0.2% of error
on average. The maximal error, 0.001380, and the
standard deviation on the errors, 0.000360, are there-
fore 1.7% and 0.5%, respectively. Similarly, using the
probabilistic technique, the average error, the maxi-
mal error, and the standard deviation are 0.035578,
0.197040, and 0.055537, which after divided by 0.08
give the entries 44.5%, 246.3%, and 69.4%. For the
high transition nodes, the metric of relative error is
used. In the case of C3540, the average error, the
maximal error, and the standard deviation of the er-
rors of the higher transitioned 539 nodes (Table 1)
are, respectively, 9.7%, 258.6%, and 24.2%. From Ta-
ble 2, we can see that our hybrid algorithm not only
uniformly improves the average error on both low and
high transition nodes, but also reduces the standard
deviation and maximal error greatly. The last row in
Table 2 shows the overall quantitative improvement.

The results of running our k-level heuristic are
listed in Tables 3 for k = 4. For comparison, we ap-
plied the k-level heuristic to both our hybrid algorithm
and the probabilistic symbolic simulation technique.
Again we see that our hybrid algorithm improves the
probabilistic technique in almost all the cases2.

7 Conclusions

In this paper, we describe a new model, which sep-
arates data inputs and control inputs, for calculat-
ing the switching activities of the internal nodes in
a logic circuit. The control inputs tend to have very
strong temporal and spatial correlations in typical sys-
tem operations and thus cannot be accurately charac-
terized by a probabilistic model. We use the control
sequence, provided by the designers, and the proba-
bilistic characteristics of the data inputs as the input
to our approach and developed an algorithm to han-
dle the hybrid model in an integrated manner. Using
the control sequence explicitly for simulation increases
the estimation accuracy because the strong tempo-

2Due to space limitation, see [3] for a more extensive comparison,
including various k values and CPU/memory usage

low tr high tr

hyb(%) prb(%) hyb(%) prb(%)

b av mx dv av mx dv av mx dv av mx dv

i1 0.5 0.9 0.6 0.5 0.9 0.6 1.1 20.1 3.6 11.9 95.7 28.3

i2 0.6 8.7 1.2 0.9 11.7 2.0 1.9 32.7 9.0 2.3 44.6 8.9

i3 9.2 50.2 12.6 19.8 60.2 15.2 6.3 20.7 10.3 12.7 29.6 24.3

i4 12.7 35.8 16.4 28.3 100.2 30.8 10.3 88.8 20.2 18.3 21.3 33.9

i5 30.2 133.7 45.6 48.9 190.3 60.3 15.7 64.8 32.3 33.8 75.3 49.9

c1 4.6 9.2 6.0 6.8 108.2 15.2 0.5 13.5 1.6 3.2 90.0 9.5

c2 3.1 11.1 3.9 3.2 15.1 3.9 0.9 10.9 3.7 2.3 32.9 6.0

c3 1.2 4.1 2.0 1.3 5.2 2.4 3.0 30.5 5.7 3.3 40.5 7.0

c4 2.7 45.4 8.9 50.4 344.8 80.3 7.3 162.3 21.5 17.6 294.8 36.4

c5 15.3 119.2 20.9 27.6 125.2 24.4 8.0 67.3 18.3 11.9 92.3 24.9

c6 20.8 115.1 30.7 29.8 135.7 62.9 2.6 109.9 9.0 4.9 200.8 15.8

c7 0.1 0.3 0.2 40.1 174.2 50.0 0.8 11.1 1.9 4.9 77.5 14.4

s1 7.0 58.8 13.0 10.3 58.8 16.0 2.8 94.4 21.9 7.8 66.6 14.1

s2 2.4 20.8 4.5 11.3 170.1 35.1 2.9 23.7 5.3 8.1 104.7 16.5

s3 26.3 200.3 51.3 29.3 190.3 61.3 13.7 123.3 27.3 32.9 162.5 47.2

s4 8.1 145.7 19.4 12.1 155.6 23.7 9.5 206.3 20.6 19.7 236.2 31.9

s5 11.7 170.8 21.7 22.3 210.7 36.8 11.3 148.7 26.5 30.1 217.8 48.8

av 9.2 66.5 15.2 20.1 171.4 30.6 5.8 72.3 14.0 13.3 110.8 24.6

Table 3: BDDs built in terms of internal signals, k=4

ral and spatial correlations at control inputs are well
taken into consideration. We also propose a k-level
heuristic, based on topological analysis, for handling
large circuits. Moreover, our methods do not much in-
crease the computational complexity as compared to
probability-based approaches, and are applicable to
sequential circuits and circuits with an arbitrary de-
lay model. Experimental results justify that the new
method produces results with high accuracy.
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