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Abstract

This paper presents a new approach for solving the Lower and

Upper Bounded delay routing Tree (LUBT) problem using lin-

ear programming. LUBT is a Steiner tree rooted at the source
node such that delays from the source to sink nodes lie between

the given lower and upper bounds. We show that our proposed

method produces minimum cost LUBT for a given topology
under a linear delay model. Unlike recent works which control

only the di�erence between the maximum and the minimum

source-sink delay, we construct routing trees which satisfy dis-
tinct lower and upper bound constraints on the source-sink de-

lays. This formulation exploits all the 
exibility that is present

in low power and high performance clock routing tree design.

1 Introduction

Routing a�ects various aspects of design such as chip area,

performance and power dissipation. In the performance
driven global routing problem, the routing cost is minimized

while the maximum delay from the source to any sink is kept

within a given bound. In the zero skew clock routing problem,
the routing cost is minimized while the skew of the routing

tree, which is the di�erence between the minimum and max-

imum delay from the source to any sink, is made zero. In
practice, exact zero skew is not an actual design requirement.

We can allow some tolerable skew with which the system can

function correctly. Bounded skew clock routing methods are
presented in [4] and [5] to reduce the routing cost over zero

skew routing. These methods however only consider the skew

bound and do not control the maximum source-sink delay.
Long wires require more bu�ers and cause slower rise and fall

time. More bu�ers and slower switching result in higher power

dissipation. A power optimizing clock routing algorithm with
bounded skew and bounded maximum source-sink delay under

the Elmore delay model is presented in [6]. In this algorithm,

delays are controlled by bu�er sizing rather than by control-
ling the wire lengths, the clock tree is an equal source-sink
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path length Steiner tree (zero skew tree under linear delay)
regardless of skew bounds, and �nally the routing cost may

become large when non-zero skew is required.

Our proposed method allows the user to specify di�erent
delay bounds for each individual sink, which can lead to a

further reduction of the routing cost. In the case of clock

routing, clock arrival time to each 
ip/
op (FF) can be made
di�erent while in the case of global routing, the required sig-

nal arrival time among sinks are made di�erent. In addition,

if the combinational delay between two FFs violates the short
path delay constraint, common practice is to insert a delay

element on the short path. Instead, one can increase the wire
length to meet the short path delay constraint. Since nowa-

days routing delays dominate gate delays, wire-length control

is a more e�ective mean of introducing delays compared to
adding bu�ers. However, one cannot arbitrarily increase the

length a wire since it may violate required arrival time of other

sinks. These observations motivated us to develop a method
for controlling the path lengths such that any delays lie be-

tween given upper and lower bounds.

Mathematical programming in Manhattan metric has been
rarely used in practice. The reason is that the Manhattan dis-

tance between two points (x1; y1); (x2; y2) is jx1�x2j+jy1�y2j

and a mathematical programming problem with these abso-
lute valued functions is not easy to solve. These functions

are not di�erentiable and the correct sign of absolute valued

terms in the formulation, whether they appear in the objective

function or in the constraints, must be maintained during the

search for a solution. This slows down the optimization speed

signi�cantly. Many researchers have thus replaced Manhat-

tan distance with the less accurate Euclidean or Quadratic

distance or other approximations.

Our method, Edge-Based Formulation (EBF) overcomes

this problem. Variables of the mathematical programming

are not the positions of the Steiner points. Instead, the vari-

ables are edge lengths of the tree, eliminating any absolute
valued terms in the formulation. The proposed formulation

leads to a simple linear programming problem under the lin-

ear delay model which can be solved optimally in polynomial
time. Once the edge lengths are determined, the position of

Steiner points are determined from geometric considerations.

2 Terminology and Problem De�nition

Let T (S; E) be a given rooted tree topology. Let S =

fs0; s1; s2; : : : ; sng be the vertices of T . Among these vertices,

s0 is the root (source) of T whose location may or may not be
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given. fs1; s2; : : : ; smg are the sinks whose locations are given

and fsm+1; : : : ; sng are the Steiner points whose locations are
to be determined. The term points refer to the source, sinks

and Steiner points. Since T is a tree, there is a unique path

between any two points. We say si is the parent of sj if in the
path from s0 to sj, si comes immediately before sj. Inversely,

sj is a child of si.

Let E = fe1; e2; : : : ; eng be the set of edges in the tree. We
associate each point si, except s0, of the rooted topology T

with edge ei that connects si to its parent in T . When there

is no confusion, we use ei to refer to the ith edge or the edge
length of the ith edge.

Let dist(si; sj) be the Manhattan distance between si and
sj. The cost of a tree T is the sum of the edge lengths, i.e.

cost(T ) =
P

n

i=1
ei. Let path(si; sj) be the set of edges in the

path from si to sj in T . We de�ne the delay of a sink si as the
delay from the source to that sink and denote it as delay(si).

Since we are using a linear delay model, delay(si) is de�ned

by:

delay(si) =
X

ek2 path(s0;si)

ek (1)

Under a linear delay model, diameter is the distance between

the farthest two sinks. If the source location is not given, the
radius is de�ned as half of the diameter. Otherwise, radius

is the distance from the source to the farthest sink. We now

de�ne Lower/Upper Bounded routing Tree (LUBT) problem.

De�nition 2.1 Lower/Upper Bounded routing Tree

(LUBT) Problem: Given a rooted tree topology T(S,E)
and two sets of bounds L = fl1; l2; : : : ; lmg � R, U =

fu1; u2; : : : ; umg � R, �nd a tree embedding in the Manhattan

plane, i.e., �nd the locations of Steiner points and the values
of ei's, such that the tree cost is minimal and the delay from

the source s0 to any sink si satis�es the following inequalities:

li � delay(si) � ui i = 1; : : : ;m (2)

where li's and ui's satisfy the following:

0 � li � ui and ui � dist(s0; si) (3)

or 0 � li � ui and ui � radius: (4)

Equation 3 holds when the source location is given while Equa-

tion 4 holds when this location is not given.

It can be shown that for a given topology T , the solution

to a LUBT problem may not exist depending on the bounds.

However, if every sink is a leaf node in the topology, then,
under the linear delay model, it is always possible to �nd a

LUBT for any lower and upper bounds given by Equation (3)

or (4) [8].

3 Edge-Based Formulation(EBF)

We present an EBF formulation for the LUBT problem. The

edge lengths are determined such that they satisfy both the

Steiner constraints and the delay constraints as described

next.

3.1 Steiner Constraints

When we determine the edge lengths, it is important that

there exist valid locations for Steiner points that achieve those

edge lengths. The following is a necessary condition for edge

lengths.

X
ek2 path(si;sj)

ek � dist(si; sj) for every pair of sinks si; sj

(5)
Otherwise, the two sinks si; sj will get separated, breaking

the tree into two components. The above equation is also a
su�cient condition as described next. All proofs can be found

in [8].

Theorem 3.1 Let e�1; : : : ; e
�

n be a solution to the following set

of linear inequalities.

X
ek2 path(si;sj )

ek � dist(si; sj) for every pair of sink si; sj

(6)
Then there exist placements of steiner points sm+1; : : : ; sn

such that

e
�

k � dist(sk; sp) k = 1; : : : ; n (7)

where sp is the parent of sk.

3.2 Delay constraints

The delay constraints dictate that the delays from the source

to any sink are bounded. Under the linear delay model, we

have:

li �
X

ek2 path(s0;si)

ek � ui for all sinks si (8)

3.3 Summary of the Formulation

Our objective is to minimize the total sum of edge lengths. To-
gether with the Steiner constraints and the delay constraints,

we have the following mathematical formulation.

Min

nX
k=1

ek

Subject to
X

ek2 path(si;sj )

ek � dist(si; sj) 8 sinks si; sj

li � delay(si) � ui 8 sinks si
(9)

3.4 Optimality of Our Method

Our method constructs minimum cost LUBT for a given

topology since it uses mathematical programming.

Theorem 3.2 Our method gives minimum cost LUBT for a

given topology.

3.5 An example

Consider the tree topology of Figure 1. We want to �nd a
LUBT with a lower bound of 4 and an upper bound of 6 for

all the sinks. Assuming the source position is not given, we

have the following formulation.



-- Sinks

-- Steiner

s1(1,5)

s5(3,2)
s2(9,1)

s3(7,4)

s4(8,5)

root

e1

e5

e3

e4

e7

s7

s8
e2

e8

s6
e6

Figure 1: A 5 point example

Min e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8

Subject to
e1 + e6 + e8 + e2 � 12

e1 + e6 + e8 + e7 + e3 � 7

e1 + e6 + e8 + e7 + e4 � 7
e1 + e5 � 5

e2 + e7 + e3 � 5

e2 + e7 + e4 � 5
e2 + e8 + e6 + e5 � 7

e3 + e4 � 2

e3 + e7 + e8 + e6 + e5 � 6
e4 + e7 + e8 + e6 + e5 � 8

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Steiner Con-
straints

4 � e1 + e6 � 6

4 � e2 + e8 � 6
4 � e3 + e7 + e8 � 6

4 � e4 + e7 + e8 � 6

4 � e5 + e6 � 6

9>>>=
>>>;

Linear delay

Constraints

4 Placement of Steiner points

Once the edge lengths are determined, the actual positions of

Steiner points (and the root if its position is not given) should

be determined. Our method for placement of Steiner points is
similar to the Deferred Merge Embedding (DME) [3] algorithm

exploited by most zero skew and bounded skew clock routing
algorithms. In the DME algorithm, the feasible regions for

Steiner points and the edge lengths are found in a bottom

up fashion, and then Steiner points are placed in the feasible
regions in a top down fashion. Our method is di�erent in

that edge lengths are predetermined and the feasible regions

are rectangular regions instead of simple line segments (in
case of zero skew algorithms) or octilinear regions (in case of

bounded skew algorithms). Details can be found in [8].

5 Extensions of EBF to other problems

In this section, we consider extensions of the EBF method to

some interesting problems. In all cases, the Steiner constraints

remain the same. We need only make modi�cations to the

delay constraints or the objective function to obtain other

problems.

Using Elmore delay

The Elmore delay is de�ned as follows. Let Tk be the subtree

of the routing tree rooted at sk. We use Ck to denote the

total tree capacitance at sk, namely the sum of sink and edge
capacitances of Tk . Let the unit resistance and unit capaci-

tance of routing wire be rw and cw, respectively. Then the

delay at a sink sj is de�ned by:

[5] LUBT
skew shortest longest tree tree

bench bound delay delay cost cost

prim1 0.000 1.000 1.000 132565.0 132539.75
0.010 0.995 1.005 130060.2 129872.23
0.100 0.910 1.020 113805.0 112887.03
0.500 0.648 1.148 93650.0 93647.38
1.000 0.439 1.439 84915.0 84915.00

1 0.000 1 79810.0 79810.00

prim2 0.000 1.000 1.000 315630.0 315628.20

0.010 0.990 1.000 305332.0 303963.30
0.100 0.954 1.054 251540.0 249448.30
0.500 0.741 1.241 206140.0 205783.60
1.000 0.382 1.382 182490.0 182457.20

1 0.000 1 173200.0 173200.00

r1 0.000 1.000 1.000 1312498.0 1311913.38

0.020 0.996 1.023 1356429.8 1343863.00
0.100 0.947 1.032 1797884.9 1750177.80
0.500 0.714 1.214 932256.5 931271.69
1.000 0.444 1.444 848555.5 847653.00
1 0.000 1 780100.0 780100.25

r3 0.000 1.000 1.000 3331097.5 3330921.00

0.010 0.996 1.006 3227565.5 3212405.00
0.100 0.918 1.018 2732820.5 2709491.30
0.500 0.741 1.241 2261973.0 2254820.50
1.000 0.566 1.566 2137096.0 2135432.00
1 0.000 1 1929421.0 1929421.00

All bounds are normalized to the radius.

Table 1: Routing costs for [5] and for the LUBT method

delay(sj) =
X

ek2 path(s0;sj )

rwek (
cwek

2
+Ck): (10)

The delay equation is quadratic with respect to ek's (Note
that Ck itself is also a function of edge lengths). Since the El-

more delay function is quadratic and the sum of the quadratic

terms is positive (i.e. the function is posynomial in ek), the
delay function is strictly convex. The feasible set de�ned by a

convex function with both lower and upper bounds is however

not a convex set. So the EBF with Elmore delay constraints
is not a convex programming problem. However, if we don't

impose the lower bounds (li = 0), then our formulation will

remain a convex programming problem.

Di�erent weights on edges

In the EBF method, the objective is the cost of the tree where

each edge is equally weighted. However, some edges may
be given higher weights to account for wireability concerns,

blockage, type of metals used, crosstalk or switching activi-

ties. In that case, we can give di�erent weights w1; w2; : : : ; wn

to edges in the objective function. The resulting problem is

still a linear programming problem.

6 Experimental Results

The EBF is a Linear Programming problem which can be

solved e�ciently using a number of commercially available LP

solvers. Especially we have chosen LOQO [7] as our solver.

LOQO uses the interior point method which is known to be

faster than Simplex method for large problems. We have im-

plemented our algorithm in C for SPARC and HPPA work-

stations. To reduce the complexity of the problem, some tech-

niques are used to reduce the number of Steiner constraints [8].

Those techniques are based on geometric considerations.

The topology generator is taken from [5]. This topology

generator is based on the nearest neighbor merge technique



skew lower upper tree
bench bound bound bound cost

prim1 0.3 0.70 1.00 103219.5
0.80 1.10 102122.9

*0.89 *1.19 103051.8

0.95 1.25 103671.0
0.5 0.50 1.00 98120.7

0.60 1.10 93152.0
*0.65 *1.15 93647.4
0.75 1.25 94700.0

prim2 0.3 0.70 1.00 247834.4

0.80 1.10 237720.3
*0.85 *1.15 225650.0
0.95 1.25 230756.0

0.5 0.50 1.00 212068.8
0.60 1.10 211034.6

*0.74 *1.24 205783.6
0.85 1.35 207344.5

All bounds are normalized to the radius.
*: bounds produced by [5].

Table 2: Routing cost of LUBT for the same skew but

di�erent upper bounds

and dynamically changes the topology during the construc-

tion phase based on the skew. The topologies are full binary

trees in which every sink is a leaf node. Therefore as hinted in
Section 2, a solution will exist for any lower and upper bound

constraints. We tested our method on benchmark data prim1,

prim2 [1] and r1, r3 [2]. Our results are compared to those
reported in [5] in Table 1. Algorithm of [5] produces optimal

solutions for in�nite skew bounds and suboptimal solutions for

�nite skew bounds. Since [5] accepts only the skew bounds
and does not allow the user to specify lower/upper bounds,

we �rst ran their algorithm with a skew bound and extracted

the topology and the actual shortest/longest sink delays from
the solution. Then we ran our algorithm with those short-

est/longest sink delays as our lower/upper bounds of LUBT

for the same topology.

To show that our algorithm can produce di�erent

lower/upper bounds for the same skew, prim1 and prim2 were
tested. Results are shown in Table 2. Note that for the same

skew, the longest delay can be reduced with little increase in

the tree cost. Trees with zero lower bounds and some �nite
upper bounds are useful for global routing. Table 3 shows

results for some other interesting bound combinations useful

for global routings and bounded skew - bounded longest delay
routings. Note also that as the skew bound is tightened, the

tree cost increases.

7 Conclusion

We proposed a new method for solving lower/upper bounded

delay routing tree (LUBT) problems. The method is based on
linear programming in which variables are the edge lengths of

the tree. The LUBT problem is a generalization of global

routing and clock routing. Our method produces an optimal

LUBT for a given topology under the linear delay model. Due

to optimality of our method, we can immediately know the

existence of a solution for a given topology and bounds since,

in case there is no solution, there will be no initial feasible

solution to EBF.

Implementation of the EBF method under the Elmore de-

lay model is currently being investigated. Under the Elmore

delay, the optimality of the LUBT cost is assured only when

lower upper tree
bench bound bound cost

prim1 0.99 1.00 129818.3

0.95 1.00 121833.6
0.90 1.00 113728.9
0.50 1.00 98120.7
0.00 1.00 97234.1
0.00 2.00 79840.0

prim2 0.99 1.00 304058.7
0.95 1.00 269495.2

0.90 1.00 248388.0
0.50 1.00 212068.8
0.00 1.00 213276.0
0.00 2.00 173300.0

r1 0.99 1.00 1284095.9
0.95 1.00 1218575.8

0.90 1.00 1215419.9
0.50 1.00 963928.4
0.00 1.00 1099360.8
0.00 2.00 780288.8

r3 0.99 1.00 3211281.5
0.95 1.00 2924382.0

0.90 1.00 2707221.8
0.50 1.00 2374080.0
0.00 1.00 2197381.0
0.00 2.00 2025446.0

All bounds are normalized to the radius.

Table 3: Routing cost of LUBT for various other bounds

the lower bound is zero. When the lower bound is not zero, a

sequential quadratic optimization is needed to solve the EBF.

Our method requires an input tree topology. The topol-
ogy generator we have taken from [5] uses the amount of

skew to guide the topology generation, rather than the ex-

plicit lower/upper bounds. So future work will include better
topology generation which is guided by both lower and upper

bounds, and at the same time, results in lower tree cost.

Finally, the EBF method is a general-purpose approach
for solving optimization problem in Manhattan space. We

are also considering an application of the EBF to the

placement/
oor-planning problems.
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