
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

New Performance Driven Routing Techniques With Explicit Area/Delay Tradeo�

and Simultaneous Wire Sizing�

John Lillis, Chung-Kuan Cheng Ting-Ting Y. Lin Ching-Yen Ho

CSE Dept., UCSD ECE Dept., UCSD LSI Logic Corp.

La Jolla, CA 92093 La Jolla, CA 92093 Milpitas, CA 95035

Abstract

We present new algorithms for construction of perfor-

mance driven Rectilinear Steiner Trees under the Elmore de-
lay model. Our algorithms represent a departure from previ-

ous approaches in that we derive an explicit area/delay trade-

o� curve. We achieve this goal by limiting the solution space
to the set of topologies induced by a permutation on the sinks

of the net. This constraint allows e�cient identi�cation of

optimal solutions while still providing a rich solution space.
We also incorporate simultaneous wire sizing. Our technique

consistently produces topologies equalling the performance of

previous approaches with substantially less area overhead.

1 Introduction
In recent years, interconnect delay has become an increas-

ingly critical factor in VLSI systems, in some cases account-

ing for over 50% of overall delay. This trend is a result of
the increased resistance of interconnect as feature sizes en-

ter the sub-micron range and will become more dramatic in

the future. To combat this trend, many methods have been
proposed to reduce interconnect delay. Two such techniques

are the focus of this paper: performance driven routing (e.g.

[1],[4], [16],[11],[8]) and wire sizing (e.g. [3], [15], [13]).

Previous Work: Among performance driven routing tech-

niques, the SERT algorithm of Boese et. al. [1] has pro-
duced some of the best delay �gures reported in the litera-

ture. While the performance of the routing trees produced

by SERT is promising, the area overhead is discouragingly
large. Because of the greedy nature of the algorithm, it often

results in high area \star-like" topologies. The later work of

Hodes et. al. [8] had some success in reducing this tendency
of SERT by use wire sizing to drive the construction.

Other performance driven routing work includes the A-

Tree algorithm of Cong et. al. [4] which attempts to �nd
a min-area shortest paths tree. Thus, the A-Tree algorithm

uses a geometric abstraction and a linear delay model and

does not address such common phenomena as asymmetric
loads (and in fact does not take any technological parameters

into account). Nevertheless, the routing trees it produces

are often of high quality. The work of Vittal and Marek-

Sadowska [16] used the abstraction of Alphabetic Trees to

�This work was supported in part by Grants from the NSF
project MIP-9315794 and California MICRO program.

heuristically construct routing trees. Their reported results

are comparable to those of SERT in both delay and area.

Early work in wire-sizing includes that of Cong et. al.
(e.g., [3]) which established its e�ectiveness in optimizing a

static topology and provided theoretical insights. The prob-

lem formulation proposed was a weighted sum of source-to-
sink delays rather than maximum delay or required arrival

time. Later, in [15], Sapatnekar addressed the intuitively

appealing formulation of minimizing area subject to timing
constraints on the sinks. He studied the continuous variant

of the problem and solved it by convex programming tech-

niques followed by a heuristic mapping phase to discretize
the solution. Recently an e�cient dynamic programming so-

lution to the discrete wire sizing problem was given in [13]. A

novel feature of this algorithm is that it computes the entire
area/delay tradeo� curve rather than a single solution.

Contributions of This Paper: This paper presents two
algorithms: the P-TreeA algorithm whose goal is area min-

imization and the P-TreeAT algorithm which derives an

area/delay tradeo� curve under the Elmore delay model and
also incorporates simultaneous wire-sizing. Central to this

work is the notion of routing topologies being induced by a

permutation on the sinks of a net and the mapping of such
topologies to a routing domain. Thus, the routing topolo-

gies we produce are Permutation-constrained routing Trees,

giving rise to the name P-Tree.

The algorithm has achieved promising results versus pre-
viously proposed approaches in terms of area required to

achieve a given delay and the AT metric (the product of

area and max delay). For instance, previous approaches can
consume over 70% more area on average than the P-TreeAT
solution while achieving the same or worse delay.

2 Preliminaries
Delay Model: We adopt the Elmore delay model [5] be-

cause of its �delity with respect to physical delays [2] and

its ease of computation. For a wire segment e = (u; v), let

re and ce be the resistance and capacitance of e respectively

(both of which are proportional to wire length le). Further,
let c(Tv) be the load at node v. The Elmore delay of the

segment is expressed as re(
ce
2
+ c(Tv)).

When wire sizing is taken into account, we need a model

for resistance re, and capacitance ce as a function of width
we. A typical model is the following:

ce = �le �we re = �le=we

where � and � are characteristic constants. For consistency
with previous work, we adopt this model.

Delay of a driver g is de�ned similarly as dg + rg � cl
where dg is the intrinsic delay, rg is the output resistance of

the driver and cl is the capacitive load on g's output. Since
dg is constant, it may be neglected in relative comparisons

of routing algorithms.

The required arrival time for a routing tree T driven by
gate g is

q(T) = min
sinks u

fqu � delay(g ! u)g

where qu is the required arrival time at sink u. If q(T) � 0,
T is said to meet its timing requirements. A special case of

required arrival time is maximum delay: letting qu = 0 8u,
the max source to sink delay is �q(T).
Graphs, Trees and Permutations: From Hanan's the-

orem [7] we know that that there always exists a Rectilin-

ear Steiner Minimum Tree (RSMT) for a terminal set N

(n = jN j) where all Steiner points are drawn from the n
2

points formed by the intersection of horizontal and vertical

lines through the terminals. The grid formed by this set of
points forms the the Grid Graph of N [9], GG(N) where ver-

tices are the terminals and points of intersection and there

is an edge between pairs of vertices adjacent on a grid line;
the length of an edge is the distance between its end-points.

Our algorithms produce routing topologies embedded in

a graph structure such as GG(N). We use vfr;cg to denote
the vertex in GG(N) located at the r'th row and c'th column

(position (1; 1) being upper left). For convenience, we also

use vi and vd to denote the vertex in GG(N) coincident with
the i'th pin of a permutation and the vertex coincident with

the driving pin respectively.

As previously stated, we constrain routing topologies to
be induced by a sink permutation. We give the following

de�nitions relating permutations and routing topologies.

De�nition 1 Permutation Induced Abstract Topol-

ogy: Consider a permutation � on the sinks of terminal set

N . A binary tree T is an abstract topology induced by � if

its leaves are identi�ed with the terminals in N and it obeys
the ordering imposed by � when T is interpreted as a binary

search tree (the driver being implicitly attached to the root).

De�nition 2 Abstract Topology Embedding: Given
an abstract topology T and a graph G = (V; E) an embedding

of T into G is a mapping of the internal nodes of T to V .

To avoid confusion, we use the term \abstract topology"

to emphasize that such a topology is not a true routing topol-
ogy in that its internal nodes are not mapped. Only when

such a topology is embedded in the plane or a routing graph

such as GG(N), does a physical routing topology result.

The idea of consistency given in the following de�nition is

a convenient way of assessing the quality of a permutation.

De�nition 3 Consistency: Given terminals set N and a

tree T embedded in a routing graph and connecting N , a

permutation � on N is consistent with T if � can induce a

structure isomorphic to T (up to 0-length edges). Further,

let H be a binary tree with all points p 2 N represented as

leaves. We call H a hierarchical decomposition of N . H is

consistent with T if all possible depth-�rst traversals of H

visit the leaves in an order consistent with T .

Thus, if an algorithm for constructing a permutation ensures
consistency with the MST, we guarantee that the min area

solution induced by � is no worse than 3

2
times the optimal

Steiner tree [10]. Such an algorithm is sketched in the next

section. Previous permutation based approaches such as [16]

provide no such assurance. Rather, they use a circular or-
dering of the sinks which can result in unbounded overhead

vs. the MST.

3 Finding High Quality Permutations
The method we propose for constructing high quality per-

mutations is broken into three phases: (1) construction of

a hierarchical decomposition consistent with a given struc-

ture such as the MST, (2) reorientation of the hierarchical
structure such that the driver is attached to the root while

maintaining consistency and (3) application of a dynamic

programming algorithm to further optimize the induced per-
mutation. Pseudo-code of an algorithm for phase 1 appears

in Figure 2. The algorithm is easily generalized to produce

hierarchies consistent with a given Steiner tree.

Phase 3 is based on the following observation. Since the

hierarchy from step (1) is consistent with the given topology,
any depth-�rst traversal of the hierarchy yields a permuta-

tion consistent with the given topology (e.g., MST). We pro-

pose that an appropriate metric to choose from among these
possible permutations is the tour length in the traditional

sense of the Travelling Salesman Problem. The intuition

is that good TSP tours provide good clustering information
which identi�es good candidate sets for sub-trees of a Steiner

Tree. This problem can be solved in O(n4) time by dynamic

programming [14] { i.e., over all DFS orderings, we can iden-
tify the one with minimal tour length.

For space considerations we do not give the details of this

process here referring the reader to [14]. However, Figure 2
illustrates the process. In the upper left we have the MST of

a point set from which we construct a hierarchical decompo-

sition. Then the hierarchy is reoriented, placing the driver e
at the root and �nally, the permutation \d c b a" is selected

over all DFS traversals of the tree.

Algorithm: MST to hierarchy

Let Tm be a RMST on terminal set N
For each v 2 Tm, let h(v) be a single node tree labeled v

Repeat n� 1 times
1. select a leaf node v and its parent u in Tm
2. delete edge (u; v) from Tm
3. replace h(u) with a new tree t where

t:left= h(u) and
t:right= h(v)

return last tree formed

Figure 1: Constructing Hierarchy Consistent with MST

4 The P-Tree Algorithms
This section describes the P-Tree algorithms which take

as input a sink permutation established by the techniques of
the previous section. Using the the example point set begun

in Figure 2, we give Figure 3 where an abstract topology

is induced in 3(a) and is embedded in GG(N) to form the
routing topology in 3(b) (yielding, in this case, a min-area

a(0,3)

b(5,1)
c(12,0)

d(11,4)

e(14,6)

c d

d
a b

bd

e

c d a b

e

d c a b
c d b a
d c b a

PERM

c d a b

TOUR LEN

24
27
21
20

Figure 2: Construction of Sink Permutation

Steiner Tree). It is this process which the P-Tree algorithms

perform optimally.

c b ad

e

(a)

c

(b)

a

b

d

e

Figure 3: A permutation-induced abstract topology and
an embedding in GG(N).

Our algorithms inductively compute the following solu-

tions or solution sets for the given sink permutation:

S(v; i; j): the cost of the optimal solution(s) over all
permutation induced (and embedded) routing topolo-

gies driving sinks i::j and rooted at v (i � j).

Sb(v; i; j): the cost of the optimal solution(s) over all
permutation induced (and embedded) routing topolo-

gies driving sinks i::j and rooted at v where v is addi-

tionally constrained to to be a branching point (i < j).

When minimizing area only, S(v; i; j) and Sb(v; i; j) are
scalars giving the solution area. However, in performance

driven routing we are also interested in the capacitance and

timing properties of sub-solutions. To capture these proper-
ties of sub-solutions we maintain sets of load, required-time,

or (c; q), pairs much in the same manner as in [13].

While there are fundamental di�erences in the sub-

solutions computed by P-TreeA and P-TreeAT , both algo-

rithms follow the same basic structure given in Figure 4.

The details of the individual steps in Figure 4 for P-TreeA
and P-TreeAT are given in the next two sections respectively.

4.1 The P-TreeA Algorithm

The �rst step in P-TreeA is computation of base cases

S(v; i; i). Since we are just interested in the length of a wire
from v to pin i, we set

S(v; i; i) = d(v; vi) 8i 2 f1::n� 1g

1. Compute S(v; i; i) 8v 2 V; 1 � i < n

2. For I = 1::n� 2
3. For i = 1::n� 1� I

4. j = i+ I

5. Compute Sb(v; i; j) 8v 2 V
6. Compute S(v; i; j) 8v 2 V
7. S(vd; 1; n � 1) now gives the sub-solution(s)

to be paired with the driver.

Figure 4: Algorithm Framework

where d(v; vi) is the distance between vertices v and vi in

GG(N).
We compute Sb(v; i; j) by visiting all possible partition

points k as follows

Sb(v; i; j) = min
k2fi::j�1g

fS(v; i; k) + S(v; k+ 1; j)g

Note that since k� i < j� i and j � k� 1 < j� i, S(v; i; k)
and S(v; k+ 1; j) have been previously computed.

A naive approach to computing S(v; i; j) is to implement

the following.

S(v; i; j) = min
v02V
fd(v; v0) + Sb(v

0
; i; j)g

To compute S(v; i; j) for a �xed i; j and all v 2 V by this

method takes O(n4) time. Because of the structure of the

grid graph, this complexity is unnecessary.
In fact, we can compute S(v; i; j) for all v 2 V in O(n2)

time by noticing that the optimal branching point at v is

either v itself or the same as that of one of its neighbors.
Without loss of generality, assume that the wire connecting

v to its optimal branching point v
0 �rst travels along v's

column to v0's row and then �nishes the trip horizontally to
v
0. This leads to a four phase strategy given in Figure 5 (for

�xed i; j).

We compute intermediate solutions LS(v), RS(v) and
US(v), the meanings of which are summarized as follows.

LS(v): area of the optimal single-stem tree rooted at
v with branching point v0 constrained to be at

v or to v's left in v's row.

RS(v): area of the optimal single-stem tree rooted at
v with branching point v0 constrained to be in

the same row as v.

US(v): area of the optimal single-stem tree rooted at
v with branching point v0 constrained to be in

v's row or a row above v.
This is done in four linear passes over the graph where each

pass is similar to the computation of the pre�x sum or pre�x

max of a list of numbers.

This yields an O(jV j) = O(n2) complexity for computing,
S(v; i; j) for a �xed i; j and all v 2 V . Thus the overall

complexity of P-TreeA is dominated by the computation of

Sb(v; i; j) which is O(n) for each v; i; j triple. Since there are
O(n4) such triples, this gives an overall complexity of O(n5).

Finally, we can show the optimality of the solution com-

puted by P-TreeA inductively.

Lemma 1 S(vd; 1; n � 1) computed by the P-TreeA algo-

rithm is the minimum area over all possible Rectilinear
Steiner trees induced by given sink ordering �. This solu-

tion is computed in O(n5) time.

/* Phase 1 */
LS(vfr;1g) Sb(vfr;1g) 8r 2 f1::ng
for r = 1 to n

for c = 2 to n
LS(vfr;cg) minfSb(vfr;cg);

LS(vfr;c�1g) + d(vfr;cg; vfr;c�1g)g
/* Phase 2 */
RS(vfr;ng) LS(vfr;ng) 8r 2 f1::ng
for r = 1 to n

for c = n� 1 to 1
RS(vfr;cg) minfLS(vfr;cg);

RS(vfr;c+1g) + d(vfr;cg; vfr;c+1g)g
/* Phase 3 */
US(vf1;cg) RS(vf1;cg) 8c 2 f1::ng
for c = 1 to n

for r = 2 to n
US(vfr;cg) minfRS(vfr;cg);

US(vfr�1;cg) + d(vfr;cg; vfr�1;cg)g
/* Phase 4 */
S(vfn;cg; i; j) US(vfn;cg) 8c 2 f1::ng
for c = 1 to n

for r = n� 1 to 1
S(vfr;cg; i; j) minfUS(vfr;cg);

S(vfr+1;cg; i; j) + d(vfr;cg; vfr+1;cg)g

Figure 5: Computation of S(v; i; j) 8v 2 V in P-TreeA

4.2 The P-TreeAT Algorithm

The basic structure of P-TreeAT is essentially identical to

P-TreeA except in the primitives we use to manipulate solu-

tions. Recall that both Sb(v; i; j) and S(v; i; j) were scalars
in P-TreeA. In contrast, P-TreeAT manipulates sets of load,

required-time pairs. We refer to such sets as cq-sets and

introduce new primitives for manipulating them. For in-
stance, a load, required-time pair (c; q) 2 S(v; i; j) indicates
that there exists a legal routing topology rooted at v and

driving sinks i::j which has lumped capacitance c at v (also
proportional to routing area) and required-arrival time q at

v. Note that since we may be performing simultaneous wire

sizing, we not only need to determine a routing topology but
also the width of each wire segment between Steiner nodes.

In [17] van Ginneken gave the following simple property

of cq-sets (also used later in [13]).

Property 1 For (c; q); (c0; q0) 2 S, if c0 � c and q0 < q then

(c0; q0) is sub-optimal.

This property holds since a larger capacitance can only slow

down a path from the driver. Thus, given a cq-set S, all pairs
(c0; q0) as described by Property 4.1 may be eliminated. As

a result we can organize cq-sets in strictly increasing order
of c and q.

To manipulate cq-sets, we need some primitive operations

as follows.

join cq sets(S1; S2): Let solution sets S1 and S2 give
solutions rooted at v, where S1 (S2) drives sinks i::k

(k + 1::j) for some k 2 fi::j � 1g. This primitive pro-

duces a set of solutions rooted at v driving sinks i::j,
the size of which is proportional to jS1j+ jS2j.

augment cq set(S; l;w): This primitive takes cq-set

S and computes a new cq-set where each (c; q) 2 S is

augmented by a wire of length l and width w. This is
used in constructing single stem solution sets S(v; i; j).

prune cq set(S): This primitive takes a cq-set S and
eliminates sub-optimal solutions by Property 1.

The routine join cq sets(S1; S2) is similar to the merging

of two sorted lists. Pseudo-code appears in Figure 6 (sets S1
and S2 are in increasing order of c and q and indexed).

S ;
i 1 ; j 1
While (i � jS1j and j � jS2j)
Let (c1; q1) = S1[i]
Let (c2; q2) = S2[j]
S S [f(c1 + c2;min(q1; q2))g
If (q1 � q2) /* S1 Critical */

i i+ 1
If (q2 � q1) /* S2 Critical */

j j + 1
return S.

Figure 6: Primitive join cq sets(S1; S2)

The routine augment cq set(S; l;w) examines each (c; q) 2
S and produces (c0; q0) where

c
0 = c+ �wl q

0 = q �
�l

w
(
�lw

2
+ c):

Finally, we implement prune cq set(S) by making a linear

pass over S in increasing order of c eliminating sub-optimal
solutions as we go.

Given these primitives, we now describe the core of the

algorithm. To get started, we have the base case

S(vi; i; i) f(ci; qi)g 8i 2 f1::n� 1g

where ci and qi are the input capacitance and required ar-
rival time for sink i respectively. Computation of S(v; i; i)

where v 6= vi is done by calling augment cq set() W times

with S(vi; i; i), d(v; vi) and each w 2 f1::Wg as arguments
and taking the union of the resulting sets (W is the largest

allowable wire width as a multiple of the base wire width).
We then apply prune cq set() to the resulting set.

S ;
for k = i::j � 1

S S [join cq sets(S(v; i; k); S(v; k + 1; j))
S prune cq set(S)

Sb(v; i; j) S

Figure 7: Computation of Sb(v; i; j) in P-TreeAT .

Computation of Sb(v; i; j) is illustrated in Figure 7. The

algorithm visits the possible partition points k in the sub-

sequence and takes the union of the resulting cq-sets and

prunes the result per Property 4.1.

As in the min-area case we compute S(v; i; j) for all v 2 V
and �xed i; j in a four phase process. During the computa-
tion we partition the intermediate solution sets into W dis-

joint subsets to ensure that wire segments between Steiner

points are of uniform width.1 For instance, LS(v; w) is a

1The algorithm can be structured to allow multiple widths per

wire-segment. However, this is at the expense of higher computa-
tional complexity { such �ne-tuning might be more appropriate
at a later stage on a �xed topology.

/* Phase 1 */
LS(vfr;ng; w) Sb(vfr;ng) 8r 2 f1::ng; w 2 f1::Wg
for r = 1 to n

for c = 2 to n
d d(vfr;c�1g; vfr;cg)
for w = 1 to W
LS(vfr;cg; w) Sb(vfr;cg)

S

augment cq set(LS(vfr;c�1g; w); d;w)
LS(vfr;cg; w) prune cq set(LS(vfr;cg; w))

Figure 8: Computation of LS(v) in P-TreeAT

cq-set rooted at v where the wire to a branching point v
0

must have width w and v
0 is constrained to be at v or to v's

left in the same row. In the fourth stage of the algorithm we

collect in S(v; i; j) all solutions regardless of wire width.
For space considerations Figure 8 gives pseudo-code for

only the �rst phase { i.e., the computation of LS(v;w). The

other phases follow analogously as in the P-TreeA algorithm.
Notice that instead of taking scalar minimums, we now ap-

ply our cq-set primitives and we now must deal with the
parameterization of the sets by w.

To obtain the �nal area/delay tradeo� set S�nal we aug-

ment each pair (c; q) 2 S(vd; 1; n � 1) by considering the
resistance of the driver (much in the same way as we did

with an augmenting wire) as follows.

S�nal f(c; q � rd � c)j(c; q) 2 S(vd; 1; n� 1)g

S�nal prune cq set(S�nal)

Finally, we can show the optimality of the solutions de-

rived by the P-TreeAT algorithm analogously to Lemma 1.

Lemma 2 Consider (c; q) 2 S�nal computed by the P-

TreeAT algorithm. There exists no Rectilinear Steiner tree

induced by sink permutation � with Steiner points on the
Hanan Grid which yields required-time q

0 � q and capaci-

tance c0 < c (recall that load is proportional to area).

The complexity of P-TreeAT depends on the size of the
cq-sets it manipulates is reected in the next lemma.

Lemma 3 Letting m be a bound on the maximum size of
any cq-set, P-TreeAT executes

in time O(max(Wn
4
m;n

5
m)) = O(n5m) where W is the

number of allowed wire-widths (W assumed to be O(n)).

It can be argued that m is polynomially bounded if the indi-

vidual capacitive values are polynomially bounded integers

or can be mapped to such with su�cient precision. This
yields a pseudo-polynomial complexity [6]. However, this

does not give much insight into the running time and prac-

ticality of the algorithm. As will be seen in the next section,
the algorithm is quite practical for sized nets which make up

the vast majority of nets in typical VLSI systems.

However, depending on net-size and W , cq-sets can grow
to be quite large. To combat this we have implemented a

simple heuristic to limit cq-sets to be no larger than a pre-

speci�ed size. Given a maximum allowable cq-set size of m
and a cq-set S with jSj > m we �rst select m=2 entries in

S uniformly by their ordering (always including the �rst en-

try) and select the remaining m=2 by their \marginal ben-
e�t"; i.e., the marginal bene�t of i'th entry (ci; qi) 2 S is

(qi� qi�1)=(ci� ci�1). This strategy has proved e�ective in
improving run-time while maintaining high solution quality.

Before giving experimental results, we would like to point
out that the P-TreeA algorithm is in a sense \performance

oriented". By using required-time as a tie-breaker, we can

�nd the maximum performance tree among the min-area
trees at no extra cost. It is typically the case that there are

many distinct min-area topologies induced by a permutation

and thus we propose that this is a useful property.

5 Experiments
Our main experimental results appear in Table 1. Tech-

nology parameters are the same as those used in previous
works such as [8] and [1]. For each net-size and technology

pair we routed 25 nets (with terminal positions generated

randomly and uniformly). In cases with wire sizing, we com-
pared P-Tree with the dynamically wire sized variant SERT

and the statically wire-sized variant of A-Tree described in

[8]. Since the algorithms we compare with are designed to
minimize maximum source to sink delay, we use that as our

timing metric (but we note that the ability of P-Tree to deal

with varying required times is one of its main advantages).
In the �rst set of experiments, we ran SERT and A-Tree

(and their wire-sized variants) on each net and recorded the

resulting max delay and area; we then ran P-TreeAT on those
same nets and recorded the min-area solution which was able

to match the max delay of SERT; we did the same versus

A-Tree. The �gures in the tables denote the average ratio
of the area of the corresponding solution to the area of the

competing P-Tree solution. For instance, for 12-pin nets in
MCM technology without wire sizing, the SERT solutions

used 66% more area on average than the P-Tree solution.2

The second set of experiments examine another way of
assessing area/delay tradeo�: the AT metric { i.e., we take

the product of a topology's area and its max delay. We

choose the solution produced by P-Tree which minimized
the AT metric and report the ratio of the AT value of the

other algorithms to that of P-Tree. Again we see signi�cant

improvements.
Figure 9 shows an area/delay tradeo� curve from the P-

TreeAT algorithm when run on a 12 pin MCM net with wire

sizing. We also show the wire-sized SERT and A-Tree so-
lutions. It is interesting to see that the solution produced

by SERT lies near the at portion of the P-TreeAT curve

while the P-TreeAT solution with the same delay is near the
steep portion of the curve. The same phenomenon holds to

a lesser degree vs. A-Tree.

Finally, we mention that more extensive experimental re-
sults appear in [14]. In particular, [14] also reports min-area

and min-delay results and gives data on the improvement

a�orded by allowing Steiner points o� of the Hanan grid.
Run-Times: Finally, we give an idea of the run-time com-

plexity of our algorithms in practice. We implemented the

2In two of the 12-pin 1:2�m trials and three of the 0:5�m trials,
the min-delay P-TreeAT solution was beaten by A-Tree. In these

cases the di�erence in delay was less than 3% percent on average
and never greater than 7%; area overhead was comparable to that
in the table. We suspect that this is an artifact of the heuristic
for limiting cq-sets used in these cases. The �gures in the table
reect the nets for which P-TreeAT equaled or bettered A-Tree
skewing the results in favor of P-Tree. However, there is no such
skew under the AT metric.

Average Area Overhead vs. P-Tree

MCM 1:2�m 0:5�m

jN j S A S A S A

w/o 6 1.67 1.06 1.35 1.12 1.38 1.08
wire 9 1.41 1.06 1.61 1.16 1.53 1.08
sizing 12 1.66 1.08 1.63 1.17 1.66 1.16

with 6 1.29 1.12 1.46 1.17 1.64 1.17
wire 9 1.30 1.11 1.57 1.19 1.70 1.18
sizing 12 1.36 1.05 1.57 1.19 1.73 1.20

Comparision under AT metric

MCM 1:2�m 0:5�m

jN j S A S A S A

w/o 6 1.41 1.13 1.54 1.17 1.57 1.12
wire 9 1.70 1.17 2.01 1.23 1.75 1.16
sizing 12 1.91 1.21 2.01 1.24 1.95 1.23

with 6 1.53 1.37 1.78 1.26 1.86 1.29
wire 9 1.50 1.28 1.93 1.29 1.87 1.26
sizing 12 1.58 1.21 1.84 1.28 1.94 1.23

Table 1: Comparision under two metrics. Values are
relative to P-Tree solutions. S=SERT and A=A-Tree.

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
Area (x10,000 sq. microns)

5.0

7.0

9.0

11.0

13.0

15.0

Ma
x D

ela
y (

ns
)

SERT
A-Tree

P-Tree

Figure 9: Area vs. Delay for a 12 pin MCM net (with
wire-sizing)

P-Tree algorithms in C on a Sun SPARC 20 workstation.

Representative run-times for P-TreeA range from 0:05 cpu

seconds for n = 6 to 1:8 cpu seconds for n = 15 and 49 cpu
seconds for n = 30. In the case of P-TreeAT without wire

sizing, run times ranged from 0:1 cpu seconds for n = 9, 7:3

cpu seconds for n = 12 and 120 cpu seconds for n = 20.
When running P-TreeAT with wire sizing, run-times ranged

from 0:8 cpu seconds for n = 6 to 70 cpu seconds for n = 12

and 150 cpu seconds for n = 15.

While our algorithms have higher computational com-
plexity than the other algorithms evaluated in this paper, we

suggest that they are quite practical for the vast majority of

net-sizes typically seen in VLSI systems (particularly when

the distribution of those net-sizes is taken into account). In

addition, we have shown that the payo� for this additional

computational complexity in terms of reduced area and im-

proved timing can be very high. Nevertheless, it is the topic

of on-going research to derive comparable results in terms of

delay and area in less cpu time and for larger nets.

6 Conclusions/Comments
We have proposed the P-TreeA and P-TreeAT algorithms

for �nding high performance, low area Rectilinear Steiner

Trees. The algorithms �nd optimal solutions in the rich so-
lution space of routing topologies induced by a permutation

on the sinks of the net. We have sketched a technique for
�nding high-quality sink permutations. Experimental re-

sults versus previously proposed approaches are promising

in terms of both delay and routing area.

We would like to thank Professor Gabriel Robins of the Uni-

versity of Virginia and Todd Hodes of UC Berkeley for pro-

viding implementations of the One Steiner, SERT and A-
Tree algorithms. We also thank Rebecca Malley for help in

tabulating the experimental results and Robert Carragher

for help in proof reading this manuscript.

References
[1] K. D. Boese, A. B. Kahng, G. Robins, \High-Performance

Routing Trees With Identi�ed Critical Sinks," Proc.
ACM/IEEE Design Automation Conf., 1993, pp. 182-187.

[2] K. D. Boese, A. B. Kahng, B. A. McCoy, G. Robins, \Fi-
delity and Near-Optimality of Elmore-Based Routing Con-
structions," Proc. Proc. IEEE Intl. Conf. Computer-Aided
Design, 1993.

[3] J.J. Cong, K.S. Leung, \Optimal Wiresizing Under Elmore
Delay Model," IEEE Trans. on CAD, v. 14 no. 3 (1995) pp.
321-336.

[4] J.J. Cong, K.S. Leung, D. Zhou, \Performance-driven inter-
connect design based on distributed RC delay model," Proc.
ACM/IEEE Design Automation Conf., 1993 pp. 606-611.

[5] W.C. Elmore, \The Transient Response of Damped Linear
Network with particular Regard to Wideband Ampli�ers,"
J. Applied Physics 19 (1948), pp 55-63.

[6] M. R. Garey, D. S. Johnson, \Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness," W. H.
Freeman, San Francisco (1979).

[7] M. Hanan, \On Steiner's Problem With Rectilinear Dis-
tance," SIAM J. Applied Math., 14 (1966), pp. 255-265.

[8] T. D. Hodes, B. A. McCoy, G. Robins, \Dynamically-
Wiresized Elmore-Based Routing Constructions," Proc.
IEEE Intl. Symp. Circuits and Systems, 1994.

[9] F. K. Hwang, D. S. Richards, P. Winter, \The Steiner Tree
Problem," Elsevier Science Publishers, (1992), pp. 213-214.

[10] F.K. Hwang, \On Steiner Minimal Trees with Rectilinear
Distance," SIAM J. Applied Math. 30 (1976), pp. 104-114.

[11] M. A. B. Jackson, E. S. Kuh, M. Marek-Sadowska, \Timing-
Driven Routing for BuildingBlock Layout,"Proc. IEEE Intl.
Symp. Circuits and Systems, 1987, pp. 518-519.

[12] A. B. Kahng, G. Robins, \A New Class of Iterative Steiner
Tree Heuristics With Good Performance," IEEE Trans.
Computer-Aided Design, 11 (1992), pp. 893-902.

[13] J. Lillis, C. K. Cheng, T. T. Lin, \Optimal Wire Sizing for
Low Power and a Generalized Delay Model," Proc. IEEE
Intl. Conf. Computer-Aided Design, 1995.

[14] J. Lillis, C. K. Cheng, T. T. Lin, C.-Y. Ho, \New Techniques
for Performance Driven Routing with Explicit Area/Delay
Tradeo� and Simultaneous Wire Sizing," Technical Report
#CS96-469, CSE Dept., UCSD.

[15] S.S. Sapatnekar, \RC Interconnect Optimization under the
Elmore Delay Model," Proc. ACM/IEEE Design Automa-
tion Conf., 1994, pp. 387-391.

[16] A. Vittal, M. Marek-Sadowska, \Minimal Delay Interconnect
Design Using Alphabetic Trees," Proc. ACM/IEEE Design
Automation Conf., 1994, pp. 392-396.

[17] L.P.P.P vanGinneken, \Bu�erPlacement in DistributedRC-
tree Networks for Minimal Elmore Delay," Proc. Interna-
tional Symposium on Circuits and Systems, 1990, pp 865-
868.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

