
Useful-Skew Clock Routing With Gate Sizing for Low Power Design

Joe G. Xi* Wayne W.-M. Dai

Computer Engineering

University of California, Santa Cruz

Abstract

Instead of zero-skew or assuming a �xed skew bound, we
seek to produce useful skews in clock routing. This is moti-

vated by the fact that negative skewmay allow a larger tim-

ing budget for gate sizing. We construct a useful-skew tree

(UST) such that the total clock and logic power(measured
as a cost function) is minimized. Given a required clock pe-

riod and feasible gate sizes, a set of negative and positive

skew bounds are generated. The allowable skews within

these bounds and feasible gate sizes form the feasible solu-
tion space of our problem. We use a merging segment per-

turbation procedure and a simulated annealing approach to

explore various tree con�gurations. This is complemented

by a bi-partitioning heuristic to generate appropriate con-

nection topology and take advantage of useful skews. Ex-
perimental results have shown 11% to 22% total power re-

duction over previous methods of clock routing with zero-

skew or single �xed skew bound and separately sizing logic

gates.

1 Introduction

Carrying the heaviest load and switching at high fre-
quency, clock distribution is a major source of power
dissipation in synchronous digital systems. The switch-
ing logic gates contribute to the rest of the power dis-
sipation. On the other hand, control of clock skew and
critical path timing are also critical issues for high per-
formance circuits.
There have been active research in the area of high-

performance and low-power clock routing. First, zero-
skew tree (ZST) clock routing was proposed[10, 1, 5].
Recently, it has been pointed out that it is almost im-
possible to achieve exact zero-skew in real designs[11].
In fact, it is neither necessary nor desirable to achieve
zero-skew[6, 12]. For low power designs, bounded-skew
tree (BST), rather than ZST has been proposed to re-
duce clock power[7, 3].
The BST algorithms assume a �xed non-zero skew

bound. No indication was given as to how the bound is

�A�liated with National Semiconductor Corp, CA.

derived and what appropriate value should be assigned
to the bound. Moreover, if we study clock skew more
closely, we �nd (i) Because the logic delay varies from
one block to another, the allowable skew for correct
clock operation varies from one pair of clock sinks
to another[6]. (ii) Skew could be either negative or
positive with respect to the logic path direction. The
allowable negative skew can be used to increase the
e�ective clock period and therefore can be considered
useful skew; (iii) The allowable skew bounds can be
adjusted by adjusting the logic path delays, e.g. by
gate sizing.
In the related area, clock skew optimization was

proposed which uses allowable negative skews to im-
prove synchronous circuit performance or reliability[6].
Later, clock skew optimization was incorporated in gate
sizing[2] to take advantage of the larger timing budget.
However, either arbitrary or bounded skew values are
assumed and the cost and power of clock routing are
overlooked. To produce negative skews, a common ap-
proach is to insert bu�ers as delay elements[2]. But this
results in increased bu�er power and process variation
induced skew uncertainties[11].
In this paper, we formulate and solve the Useful-

Skew Clock Routing with Gate Sizing for Power
Minimization (UST) problem. Clock routing can
take advantage of the allowable skew bounds while
the useful skews can be used to allow a larger timing
budget for gate sizing. We will show that this approach
mitigates the unfavorable tradeo� of circuit speed and
power. Savings on both logic power and clock routing
cost can be achieved.
The rest of this paper is organized as follows. In

section 2, we discuss the motivation of this work and
give the formulation of the UST problem. In section
3, we present the routing algorithm and a topology
generation heuristic. Experimental results are given in
section 4.

2 Problem Formulation

Consider a simple synchronous circuit as shown in
Figure 1. We assume positive edge-triggered
ip-
ops
are used in this example and throughout this paper.
Due to interconnect delays, skew may result between
clock terminals such as C01 and C02 of
ip-
ops, FF01
and FF02. Figure 2 illustrates the clock operations in
two cases of skews. In both cases, skews are consid-
ered allowable if correct data are produced under the

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

given clock frequency. With excessive skew in either
cases, incorrect operations may occur when data are
produced either too early (known as double-clocking) or
too late (known as zero-clocking) fromFF01 to FF02[6].

C01 C02

C11 C12

D11

D01

D12Q11

D02

Q12
Logic

Logic

C0

D21

D22

Q21

Q22

C21

C22

FF02

FF11 FF12

FF11

FF22

Q01 Q02

FF01

Logic

Figure 1: A synchronous circuit example.

C01

C02

D01

D02

Q01

Correct Data

C0

dlogic

Skew Double-Clocking

C01

C02

D01

D02

Q01

Correct Data

C0

dlogic

Skew

Zero-Clocking

(a) (b)

Figure 2: (a) negative skew; (b) positive skew.

In general, to ensure correct clock operation under
a required clock period, P , the allowable clock skews
between two adjacent
ip-
ops, FFi and FFj, are:
To avoid double-clocking with negative skew, di � dj:

dj � di �MIN (dlogic) + dff � dhold (2:1)

To avoid zero-clocking with positive skew, di � dj:

di � dj � P � (dff +MAX(dlogic) + dsetup) (2:2)

where di and dj are the clock arrival times,MAX(dlogic)
and MIN (dlogic) denote the longest and shortest path
delays of the combinational block between FFi and
FFj.
We notice the following properties of clock skew.

First, both the negative and positive skew bounds vary
from one pair of clock terminals to another since com-
binational logic path delays vary from one to another.
To use a single �xed skew bound, one has to choose
the smallest skew bound of all sink pairs, both nega-
tive and positive. Secondly, negative skew can be con-
sidered useful skew since it can allow circuits to run
at a clock period less than the critical path delay[6].
Lastly, the skew bounds can be adjusted by sizing the
logic gates. The positive skew bound can be enlarged
by sizing the gates to reduce MAX(dlogic). The neg-
ative skew bound can be enlarged by sizing the gates
to increase MIN (dlogic). Increasing the logic path de-
lays can generally be done by reducing gate sizes which
generally also reduce the dynamic power. This can be

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
2.2

2.4

2.6

2.8

3

3.2

3.4

Skew (ns)

P
ow

er
 (

m
W

)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Skew (ns)

A
re

a
(m

m
^2

)

(a) (b)

Figure 3: The minimum power and area vs. al-

lowable skews within the negative and positive skew

bounds for a combinational block between two
ip-

ops.

seen from Figure 3 which shows the relationship be-
tween minimum power, area of a combinational block
and the allowable skew values.
These properties motivate us to consider the clock

routing problem together with gate sizing. We realize
that if negative skew and positive skew are treated the
same, then a bounded-skew clock tree may produce
skews that impose even tighter timing budget for gate
sizing. Therefore, negative and positive skew bounds
rather than a �xed unsigned skew bound should be
considered in clock tree construction. With negative
skews between certain clock sinks, e.g. the sinks that
entail critical logic paths, a larger timing budget can
allow gate sizing to further reduce logic power. We now
de�ne the Useful-Skew Clock Routing with Gate
Sizing for Power Minimization (UST) problem:
Given a standard-cell based design and a library
which consists of a set of gates and a set of fea-
sible sizes(templates) for each gate, a required clock
period, P , and a set of clock sink locations S =
fs1; s2; � � � ; sng, the clock source s0, we seek a tree
topology G (a rooted binary tree with n leaves corre-
sponding to the sinks in S), a clock tree T which em-
beds G, i.e. each internal node v 2 G is mapped to
a location in the Manhattan plane, and a set of sizes
X� = fx�

1
; x�

2
; � � � ; x�mg for all gates in the design. The

objective is to minimize a cost function C given by:

C(T;X) = �L(T) +
�(X) (2:3)

where L(T) is the total wire length of the T , �(X) is
the total power of logic gates and � and
 are weight
coe�cients. Meanwhile, the skew between any sink
pair, si and sj satis�es their corresponding negative
skew bound, NSBij and positive skew bound, PSBij .

3 The UST Solution

3.1 Overview

Our useful-skew clock routing (UST) algorithm in-
volves four tasks: (i) generating an appropriate clock
tree topology; (ii) �nding the locations of internal
nodes of the tree; (iii) preserving the negative and
positive skew bounds for correct clock operations un-
der a given frequency and (iv) selecting the sizes of

logic gates for minimum power. Figure 4 gives a high
level description of our algorithm. The main idea is
as follows. First, in generating a topology, we try to
maximize the the feasible regions for possible internal
node locations. Then, in the process of embedding
the topology, we explore feasible placements of inter-
nal clock tree nodes. This is equivalent to exploring
allowable skews between various clock sinks. The re-
sulting skews are used in gate sizing to determine the
minimum logic power. The search of the internal node
locations is inspired by the Deferred-Merge Embedding
(DME) based algorithms[1, 7]. A ZST constructed by
the DME algorithm[1] is used as the initial starting
point. A simulated annealing approach is used to iter-
atively search for better placements of internal nodes
and produce useful skews[8]. Because it is time pro-
hibitive to perform gate sizing on the
y, we predeter-
mine the gate sizing result of each combinational block
for a known skew value. The cost function is updated
in constant time at each iteration.

Input :

S = set of clock sinks, n = jSj,
P = the required clock period, P = 1=f ,

X0 = the initial sizes of logic gates.
Output :

a UST, T �, sizes of logic gates, X�.
PROCEDURE BuildUSTwithGateSizing (S; P;X0) f

X = X0;
G = GenerateTopology(S);

T = BuildInitialZST(G;S); /* according to [1] */
t = t0;

while (not Frozen) f
while (not Equilibrium) f

Pick a node, v;
T 0 = PerformMSP(v;G; T);

X 0 = GateSize(T 0; X;P); /* table look-up */
�C = C(T 0; X 0)� C(T;X);

If (�C � 0 or e��C=(kBt) � random(0;1))

T = T 0; X = X 0;
g
t = �(t)� t;

g
T � = T ; X� = X;

g

Figure 4: High-level Description of UST Algorithm

3.2 Negative and Positive Skew Bounds

The negative and positive skew bounds de�ne the
feasible solution space. We say the clock sinks, si of

ip-
op FFi and sj of
ip-
op FFj are adjacent if
there exists a combinational logic path from FFi to
FFj. Let di and dj be the delays from clock source to
sinks si and sj, the skew between si and sj is negative
skew if di � dj, and is positive skew if di � dj. We
de�ne the negative skew bound (NSB) between si and
sj as the maximum value of negative skew between si
and sj with which the clock operates correctly under
a required clock frequency. Similarly, the positive skew
bound (PSB) is the maximum value of positive skew
with which the clock operates correctly under a given
frequency.

If si; sj are adjacent, then,

NSBij = max(MIN (dlogic)) + dff � dhold (3:4)

PSBij = P �min(MAX(dlogic))� dsetup� dff (3:5)

where max(MIN (dlogic)) is the maximumdelay of the
shortest combinational logic path achievable with feasi-
ble gate sizes while satisfying the long path constraint.
min(MAX(dlogic)) is the minimumdelay of the longest
combinational logic path achievable with feasible gate
sizes while satisfying the short path constraint.
If si and sj are not adjacent, then,

NSBij =1; PSBij =1 (3:6)

In addition, we also de�ne NSB(v) and PSB(v)
associated with each node v of a binary tree as the
maximum allowable delay di�erence from v to its two
children, a and b.
(I) If the two children nodes of v are sinks, i.e. si; sj,
then NSB(v) = NSBij and PSB(v) = PSBij .
(II) If one or more of the children nodes of v are not
sinks, i.e. a and b with subtrees, TSa and TSb, then,

NSB(v) = min(di(a)�dj(b)+NSBij ; dl(a)�dk(b)+PSBkl)
(3:7)

PSB(v) = min(dj(a)�di(b)+PSBij ; dk(b)�dl(a)+NSBkl)
(3:8)

for all sink pairs, si; sl 2 TSa; sj; sk 2 TSb.
Obviously, a feasible placement of v has to satisfy

NSB(v) and PSB(v). As we will discuss later, the
existence of this feasible region depends on the tree
topology and the placements of v's descendent nodes.

3.3 Merging Segment Perturbation

A merging segment (MS), as de�ned in the DME
based algorithms[1, 7, 3], is a line segment associated
with an internal node in a clock tree and represents
the loci of possible locations of this node. In the Man-
hattan plane, a merging segment is a Manhattan Arc
which is a line segment (possibly a single point) with
a slope of +1 or �1. Let ms(v) be the merging seg-
ment of a node v, a and b be the children nodes of v. To
construct a ZST, the DME algorithm constructs ms(v)
from ms(a) and ms(b) in a bottom-up process[1]. Any
point on ms(v) satis�es the zero-skew property and at
the same time, its two children are merged with mini-
mum added wire. A ZST example is shown in Figure
5(a).
For a BST with non-zero skew bound, a merging

region is associated with a node which contains all the
feasible merging points for a given skew bound[7]. To
construct mr(v), the shortest-distance region (SDR)
between v's children, mr(a) and mr(b) is �rst found.
mr(v) is formed by the set of points within SDR(v)
that have minimum merging cost while satisfying a
�xed skew bound.
We now assume the Manhattan plane is gridded and

there are discrete number of points. Given two Man-
hattan Arcs, l1 and l2, the shortest distance region be-
tween l1 and l2, denoted SDR(l1 ; l2) is the set of points

s6

s1

s2

s3

s4

s8

s7

s5

ms(12)

ms(34)

ms(78)

ms(56)

ms(58)
ms(14)

ms(18)
root

s6

s1

s2

s3

s4

s8

s7

s5

FMSS(34)

FMSS(12)

FMSS(58)

FMSS(14)

FMSS(18)

FMSS(78)

FMSS(56)

(a) (b)

Figure 5: (a) A zero-skew tree constructed with

merging segments using the DME algorithm. (b)
The feasible merging segment set of each node

when the lower-level merging segments are �xed.

that have minimum sum of Manhattan distance to l1
and l2. SDR(l1 ; l2) thus contains a discrete number of
Manhattan Arcs. For a given topology,G, we construct
a tree of feasible merging segment sets (FMSS). Each
node v 2 G, is associated with a FMSS(v). If v is a
sink, si, then FMSS(v) = fsig. If v is an internal node
with children a and b and the merging segment ms(a)
and ms(b) are chosen, then a feasible merging segment
(FMS) of v is a Manhattan Arc which contains possi-
ble locations of v such that (i) the negative and posi-
tive skew bounds, NSB(v) and PSB(v) given by (3.7)
and (3.8) are satis�ed; (ii) the merging cost(or added
wire) is minimized. Therefore, FMSS(v) is de�ned
by its children, ms(a) and ms(b) in a bottom-up pro-
cess. For any two FMSS's, FMSS(a) and FMSS(b),
the shortest distance merging segments, denoted as
SDMS(a) and SDMS(b), are a pair of Manhattan
Arcs in FMSS(a) and FMSS(b) which are closest to
each other. Figure 5(b) shows the FMSS for each node
when the lower-level merging segments are �xed.
Lemma 1: If every node v 2 T is chosen within
FMSS(v), then skew between any two sinks in T sat-
is�es either their negative skew bound or their positive
skew bound.
Under the linear and Elmore delay, we have the

following lemmas regarding FMSS(v).
Lemma 2: Under both the linear and Elmore delay,
the FMSS(v) for any node v 2 G exists, i.e. there
is at least one FMS, ms(v), if and only if NSB(v) +
PSB(v) � 0.
Lemma 3: Under both the linear and Elmore delay
models, for any FMS within SDR(ms(a);ms(b)), the
di�erence in delay from v to its two children, a and
b is a linear function of the position of the FMS. If
FMSS(v) exists, it can be constructed in constant
time.
Due to space limitation, we relegate the detailed

computation of FMSS(v) to [12].
A merging segment perturbation associated with a

node v, denoted as MSP (v) is a move that selects
another FMS within FMSS(v). Figure 6(a) shows two
MSPs as examples. When selecting another merging

s6

s1

s2

s3

s4

s8

s7

s5

ms(34)

ms(12)

ms(14)

ms(78)

ms(58)

ms(56)

FMSS(18)

FMSS(14)

s6

s1

s2

s3

s4

s8

s7

s5

ms(34)

ms(12)

ms(14)

ms(58)

ms(56)

root

ms(78)

(a) (b)

Figure 6: (a) Examples of MSP. The arrow indicate

the selection of a new FMS within the FMSS(34)
or FMSS(12). The new FMSS of the parent node,

FMSS(14), is formed and SDMS(14) is chosen as

ms(14) which is the closest to its sibling, ms(58).
(b) The �nal UST which minimizes cost function

after a sequence of MSP's.

segment of v, the FMSS's of v's parent and ancestor
nodes are updated. This results in a new con�guration
of the clock tree, T , and hence a new set of skews.
They are also allowable skews according to Lemma 1.
Let p denote the parent node of v and u be the sibling
of p. During an MSP, FMSS(p) is rede�ned by the
new ms(v) and v's sibling. Then SDMS(p) which is
the closest to ms(u) is chosen as the new ms(p). As
shown in Figure 6(a), SDMS(14) is chosen as ms(14),
since it is the closest to ms(58). The new ms(p) and
ms(u) form the FMSS of their parent node, i.e. the
grandparent of v. This process is iterated in a bottom-
up process until the root node of T is updated. Lemma
2 points out that the FMSS of a node may not always
be found. An MSP (v) is acceptable only if all the
FMSS's of v's ancestors are found. A top-down process
connects the merging segments by shortest distance,
analogous to DME[7]. Note that the variable bounds
of NSB and PSB are used at each node and only
v's ancestor nodes are updated. With a binary tree
topology, one MSP takes O(n) in the worst case and
O(logn) in the average case. Figure 6(b) shows a �nal
tree after a sequence of MSPs and the cost function is
minimized.
The following Theorem suggests that the entire fea-

sible solution space can be asymptotically explored.
Theorem 1: For a given tree topology, any con�gura-
tion of the clock tree that result in allowable skews can
be transformed to another by performing a sequence of
MSPs.

3.4 Topology Generation

From the de�nitions of NSB(v) and PSB(v), it
is evident that the skew constraints at higher level
nodes(closer to the root) are tighter. If the the high
level nodes are given small skew budget, they will have
fewer feasible merging segments. If the topology is very
asymmetric, then the delay di�erence of two subtrees

under Elmore model may become so large that feasible
merging segments are limited or can not even be found
according to Lemma 2,
More importantly, our objective is to produce useful

skew { the negative skew. If at an internal node, v,
there are two or more pairs of sinks between the two
subtrees which have opposite logic path direction, then
the NSB of one sink pair is constrained by the PSB of
another. The negative skew of one pair of sinks results
in the positive skew of another pair of sinks. Good
results are unlikely in this case.
These observations indicate that the tree topology

is very important to the success of the UST solution.
Intuitively, we would like to partition the sinks into
groups that have loose skew bounds with each other.
Most of the adjacent sinks across two groups should
have the same logic path direction(either forward or
backward) such that negative skew can be maximally
produced. This suggests that a top-down partitioning
rather than a bottom-up clustering approach should
be used since the skew bounds between sinks can be
evaluated globally. We therefore adopt a partitioning
heuristic for the UST problem[1, 12].
We consider recursively cutting the sink set S into

two subsets S1 and S2 in the Manhattan plane. Each
cut would result in an internal node of the tree topol-
ogy. At each partition, we choose a cut to (i) max-
imize the skew bounds for the resulting node, and
(ii) maximize the number of forward(or backward)
sink pairs across the cut. For a bipartition, S =
S1 [S2, let FW12 and BW12 denote the number of
sink pairs across the cut that have logic path from S1
to S2(forward) and from S2 to S1(backward). The to-
tal number of adjacent sink pairs across the cut is then,
SP12 = FW12 +BW12. We de�ne the skew bound be-
tween S1 and S2 as SB12 = min(NSBij ; PSBkl) +
min(PSBij ; NSBkl); 8si; sl 2 S1; sj ; sk 2 S2. We use
a weighted function to evaluate a cut,

W12 = w1(SB12=SP12) + w2jFW12 �BW12j (3:9)

where w1; w2 are determined by experiment. For
lower level nodes, the partition between the two sub-
sets should also be balanced to keep the delay di�er-
ence small. Let Cap(S1) and Cap(S2) be the total
capacitance of S1 and S2, respectively. jCap(S1) �
Cap(S2)j � �, where � is gradually reduced with each
level of cuts.
An example of using this bi-partitioning heuristic

is shown in Figure 7. Figure 7(a) shows the NSB
and PSB between the sinks. The clock tree using the
topology generated by a clustering based algorithm is
shown in Figure 7(b)[5]. It results in an undesirable
positive skew between s3 and s4. In contrast, the bi-
partitioning heuristic generated all negative skews and
reduced the routing cost.

3.5 Gate Sizing

Unlike previous approaches in gate sizing with clock
skew optimization[2], our feasible solution space is de-
�ned by a clock tree with reasonable cost(wire length)

s4

s3s2

s1

(4.0, 2.0)

(2.0, 1.0)

(4.5, 3.0)

s1

s2

s4

s3

80fF

80fF

(5.6ps)

(8.0ps)

root

Length = 33

10fF

(10.0ps)

(2.0ps)

40fF

s1

s2

s4

s3

(7.9ps)

80fF

40fF

(6.2ps)

root

Length = 29

(6.5ps) (10.3ps)

10fF

80fF

(a) (b) (c)

Figure 7: An example showing the e�ects of topol-

ogy. (a) (NSB, PSB) between sinks. (b) The tree
resulted from the clustering method. s3 and s4 have

a positive skew of 2:4. (c) The tree resulted from

the bipartition heuristic. All sink pairs have negative
skew.

and feasible gate sizes. Our approach has two advan-
tages: (i) With the feasible solution region controlled
by clock routing, we may take into account both the
logic and clock power; (ii) With known skews between
each pair of
ip-
ops, we may decompose the sequen-
tial circuit into subcircuits which are individually com-
binational circuits.
Because gate sizing is a time consuming process, we

predetermine the minimum power of each combina-
tional block. The logic power for an allowable skew
value and the corresponding gate sizes are stored in a
look-up table. At each iteration of our UST routing
algorithm, the cost function can be updated in con-
stant time. Finally when the minimumcost function is
achieved and the skews between each pair of
ip-
ops
are known, the gate sizes which results in minimum
power under the closest skew value are chosen. Due to
space limitation, our gate sizing solution is relegated
to [12].

4 Experimental Results

Our algorithms have been implemented in C in a Sun
Sparcstation10 environment and has been tested on 2
industry circuits and 3 ISCAS89 benchmark circuits
as shown in Table 2. The ISCAS89 circuits were
�rst translated with some modi�cations to a 0:65�m
CMOS standard-cell library[4]. We implemented a
previous standard-cell gate sizing algorithm[9] to be
used with the DME based ZST and BST clock routing
algorithms[1, 3], to compare with our UST solution.
Table 1 compares the results of UST with two other
approaches: (i) ZST clock routing[1] and gate sizing;
(ii) BST clock routing[7, 3] and gate sizing. To ensure
correct clock operation, the smallest allowable skew
bound(both negative and positive) of all clock sink
pairs has to be chosen as the �xed skew bound in the
BST/DME algorithm. Note that since BST does not
recognize the di�erence between negative and positive
skew, it may even produce skews that result in worse
power in gate sizing. Table 3 compares the routing
results of ZST, BST algorithms, and the UST routing

Table 1: Power reduction of UST over ZST and BST. The topology in UST-CL is generated by the clustering algorithm.

UST-BP uses the bi-partitioning heuristic.

Circuits Clock Power (mW) Logic Power (mW) Reduction

ZST BST UST-CL UST-BP ZST BST UST-CL UST-BP UST
ZST

UST
BST

Ckt1 43.53 43.32 43.41 43.22 58.35 55.45 46.08 41.9 16% 14%

Ckt2 20.95 20.66 20.69 20.54 102.66 93.34 85.87 83.36 16% 11%

s1423 5.224 5.161 5.182 5.170 22.48 24.70 18.69 18.17 16% 22%

s5378 11.03 10.82 10.86 10.79 124.4 126.5 114.0 110.2 11% 12%

s15850 32.93 32.44 32.38 32.25 416.5 421.3 356.1 338.9 17% 18%

results with topology generated by both the clustering-
based algorithm[5] and the bipartitioning heuristic.
BST only achieves small savings in wire length over
ZST due to the small value of the �xed skew bound.
In contrast, the UST approach reduces wire length in
all but one case.

Table 2: Five circuits tested by the UST algorithm.

Circuits Frequency # of FF's # of gates Supply

Ckt1 200 106 389 5.0

Ckt2 100 391 3653 3.3

s1423 33 74 657 3.3

s5378 100 179 2779 3.3

s15850 100 597 9772 3.3

Table 3: Comparison of clock tree wire lengths(�m).

Circuits ZST BST (Bound) UST-CL UST-BP

Ckt1 3982 2998 (0.1ns) 3051 2755

Ckt2 17863 16002 (0.2ns) 16217 15924

s1423 8823 6651 (1.4ns) 6830 6756

s5278 12967 10645 (0.3ns) 11068 10229

s15850 30579 28348 (0.2ns) 27369 25580

In the implementation of simulated annealing, the
outer loop stopping criterion (frozen state) is satis�ed
when the value of the cost function has no improvement
for �ve consecutive steps. The inner loop stopping
criterion (Equilibrium state) is decided by specifying
the number of iterations at each temperature. We use
n�TrialFactor in the experiments, where n = jSj. For
all tested cases, the TrialFactor ranges from 100 to
600. We choose the initial temperature as t0 = ��C

ln�
,

where �C is obtained by generating several transitions
at random and computing the average cost increase per
generated transition, and � is the acceptance ratio. In
choosing the cooling schedule, we start with �(t) =
0:85, then gradually increase to �(t) = 0:95, and stay
at this value for the rest of the annealing process.

5 Conclusion

Assuming zero-skew or a �xed skew bound in clock
routing could lead to pessimistic results of logic and
clock power. On the other hand, clock skew optimiza-
tion with arbitrary skew values could be too costly for
clock distribution. We have shown that useful-skew

clock routing with gate sizing based on allowable neg-
ative and positive skew bounds can achieve savings in
total power and clock routing cost.

6 Acknowledgement

We are grateful to C. W. Albert Tsao and Prof.
Andrew Kahng of UCLA for providing us with the
program of BST algorithms for comparisons.

References

[1] T.H. Chao, Y.C. Hsu, J.M.Ho, K. D. Boese, and A. B.
Kahng. Zero skew clock net routing. IEEE Trans. on

Circuits and Systems, 39(11):799{814, Nov. 1992.

[2] W. Chuang, S. S. Sapatnekar, and I. N. Hajj. A uni�ed

algorithm for gate sizing and clock skew optimization.
In IEEE Intl. Conf. on CAD, pages 220{223, Nov. 1993.

[3] J. Cong, A.B. Kahng, C.K. Koh, and C-W. A. Tsao.
Bounded-skew clock and steiner routing under elmore

delay. In IEEE Intl. Conf. on CAD, 1995.

[4] National Semiconductor Corp. cs65 CMOS Standard

Cell LibraryData Book. National Semiconductor Corp,
1993.

[5] M.Edahiro. A clustering-based optimization algorithm
in zero-skew routings. In Proc. of 30thDesignAutoma-

tion Conf., pages 612{616, 1993.

[6] J. P. Fishburn. Clock skew optimization. IEEE Trans.

on Computers, 39(7):945{951, 1990.

[7] D. J.-H. Huang, A. B. Kahng, and C-W. A. Tsao. On

the bounded-skew clock and steiner routing problems.
In Proc. of 32nd Design Automation Conf., pages 508{

513, 1995.

[8] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vec-

chi. Optimization by simulated annealing. Science,
220(4598):458{463, May 1983.

[9] Shen Lin and Malgorzata Marek-Sadowska. Delay and
area optimization in standard-cell design. In Proc. of

27th Design Automation Conf., pages 349{352, 1990.

[10] R-S. Tsay. An exact zero-skew clock routing algorithm.

IEEE Trans. on CAD, 12(3):242{249, 1993.

[11] Joe G. Xi and Wayne W.M. Dai. Bu�er insertion and

sizing under process variations for low power clock
distribution. In Proc. of 32nd Design Automation

Conf., June 1995.

[12] Joe G. Xi and Wayne W.M. Dai. Low power design

based on useful clock skews. In Technical Report,

UCSC-CRL-95-15, University of California, Santa

Cruz., 1995.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

