
Power Optimization in Programmable Processors and ASIC
Implementations of Linear Systems: Transformation-based Approach

Mani Srivastava Miodrag Potkonjak
AT&T Bell Laboratories Computer Science Department
600 Mountain Avenue University of California
Murray Hill, NJ 07974 Los Angeles, CA 90095-1596

Abstract - Linear computations form an important type of
computation that is widely used in DSP and communications. We
introduce two approaches for power minimization in linear
computations using transformations. First we show how unfolding
combined with the procedure for maximally fast implementation
of linear computations reduces power in single processor and
multiprocessor implementations by factors 2.2 and 8 respectively.
To accomplish this we exploit a newly identified property of
unfolding whereby as a linear system is unfolded, the number of
operations per sample at first decreases to reach a minimum and
then begins to rise. For the custom ASIC implementation even
higher improvements are achievable using the second
transformational approach, which builds upon the unfolding based
strategy of the first approach. We developed a method that
combines the multiple constant multiplication (MCM) technique
with the generalized Horner’s scheme and unfolding in such a way
that power is minimized.

1.0 Throughput and Power in Linear Systems

Linear computations form an important type of computation
that is widely used in video and image processing, DSP, control,
communications, and many other applications. A large fraction of
systems in these application domains are either linear, or have
subsystems that are linear. This paper explores the relationship of
throughput with increasingly important design metric - power. In
particular, we seek to find the extent to which power consumption
of linear systems can be reduced, both independently and in
conjunction with throughput improvement, and to develop
techniques for doing so.

To explore the throughput and power relationship in linear systems
we take a more thorough and systematic approach. First, we
consider analytically as well as empirically the effect of several
algorithm transformations that can be considered as the building-
blocks for exploring the power-throughput space. Specifically, we
consider unfolding, which is the underlying transformation behind
arbitrary throughput improvement, both separately and in
combination with decomposition of multiplication-by-constants
into primitive sequences of shifts and additions, factorization,
common sub-expression elimination. Second, we consider
implementations not just in the form of ASICs with application-
specific datapaths as is usually the case, but also implementations
based on single programmable processor and mult ip le
programmable processors. This is important because increasingly
programmable processors such as DSP-cores are the preferred
medium of implementation as opposed to custom datapaths.

1.1 Where does the Power Go, and How to Reduce It?
In CMOS technology there are three sources of power

consumption: switching current, short-circuit current, and leakage
currents. The switching component not only dominates in most
designs, but is also the only one which cannot be made negligible
even when proper circuit design techniques are used. The average
power consumption of a CMOS gate due to the switching
component is given by:

(EQ 1)

where is the system clock frequency, is the supply voltage,

 is the load capacitance, and is the switching activity (the

probability of a 0→1 transition during a clock cycle). The term
 is often lumped into a single parameter called effective

switched capacitance. Further, it is well known that the delay
through a gate has a monotonically inverse relationship to the
supply voltage. Fig. 1 plots the gate delay as a function of voltage

normalized to gate delay at 5.0 Volts. Therefore, the maximum rate
at which a circuit can be clocked will monotonically decrease as
the voltage is reduced.

The above expression suggests several behavior level approaches
to reduce power consumption of a computation. First is to shut the
system down during periods of inactivity either by shutting off the
clock () or by shutting off the power supply ().

Second is to reduce the effective switched capacitance by

restructuring the computation, communication, and/or the memory
hierarchy, and by changing data encoding and a data formats. The
third is to exploit the quadratic dependence of power consumption
upon the supply voltage and operate at a reduced voltage

P αCLVdd
2 f=

f Vdd

CL α

αCL

Figure 1: Normalized Gate Delay (delay @ 5V = 1) vs. Voltage

Supply Voltage, V

N
or

m
al

iz
ed

 D
el

ay

1.0 2.0 3.0 4.0 5.0
0.0

10.0

20.0

30.0

f 0= Vdd 0=

αCL

Vdd

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

while compensating for the resulting loss in circuit speed by
techniques that increase the throughput.

Noting that throughput is the sole metric of speed that is important
to us, one can combine the latter two approaches to minimize
power at the behavioral level in the following fashion: First, apply
a behavior transformation to reduce the effective switched
capacitance (by reducing the number of operations) or to increase
the throughput (by reducing the critical path). Next, in the case of
increased throughput, we lower the supply voltage just the right
amount so as to decrease the clock speed to an extent that the
throughput reverts back to what it was before. The net power
consumption is reduced if either the effective switched capacitance
is reduced at a constant voltage, or if the reduction due to reduced
voltage and frequency overshadows any increase effective
capacitance penalty paid for increase in throughput. When voltage
reduction is not possible, one can trade-off the extra throughput
obtained with lower clock frequency or with shutdown, both of
which will result in linear reduction.

1.2 Linear Systems
In high-level synthesis terminology, a system is linear if it can

be realized by a control-dataflow graph (CDFG) such that at any
time instantn, the output samples and the next state values are
computed by linear combinations of input samples and previous
state values. Equivalently, all the operators in the CDFG are either
addition of two variables, or addition of a variable and a constant,
or multiplication of a variable and a constant. For analysis in this
paper we shall use an equivalent representation of the linear
computation as a set of discrete-time finite-dimensional state-
space equations. Specifically, a input, output, and
state real-valued linear computation can be expressed by the
following matrix equations for :

(EQ 2)

where , , and are the

input, output, and state vectors respectively, and , , ,
and are constant coefficient matrices. Note that the
throughput of the system, or the maximum rate at which it can
process incoming samples, is decided solely by the critical path of
the feedback sec t ion cor respond ing to the te rm

. The remaining terms are not in the
feedback loop and therefore can be pipelined away.

This is the base or reference case for our analysis, and has
following characteristics:

and,

For the critical path we assumed that the time for an addition is 1,
and the time for a multiplication is . The expressions are
obtained by considering the worst case where the coefficient
matrices , , , and are dense matrices with arbitrary non-
trivial coefficients (not 0, or 1, or -1). The maximum throughput
expression is obtained by organizing the required linear
combinations in a maximally fast fashion by first doing the
constant-variable multiplications in parallel, and then the additions
in a fully balanced binary tree.

1.3 Related Work
The related work can be traced along two lines of research:

transformations and low power CAD and compilation techniques.
Transformations are widely used technique to improve design
parameters during high level synthesis [Wal89]. While power
optimization was rarely addressed in the past (e.g. [Gla84]), it has
recently attracted attention due to the growing demands from
portable computing and communication products. Chandrakasan
et al. [Cha92] demonstrated the effectiveness of transformations
by showing an order of magnitude reduction in several DSP
computationally intensive examples using simulated annealing-
based transformational script. More recently Raghunathan and Jha
[Rag94] also proposed methods for power minimization which
explore trade-offs between voltage scaling, throughput, and power.

2.0 Unfolding-Driven Voltage-Throughput Trade-Off

Unfolding together with block processing or with look-ahead has
been shown by various researchers [Par89] to be effective in
obtaining arbitrary improvement in throughput. Essentially,
several consecutive input samples are processed together as a
batch to produce a batch of output samples together with the input
state value for the next batch. In the original non-unfolded
computation and are used to compute

and . In a system that has been unfolded times, a batch of

 input samples together with

is used to compute a batch of output samples

and the next state . The batch processing itself can be
done in various ways: in a block processing [Rob87] fashion
where the batch processing is begun only after all the input
samples have been collected in a buffer, or in an on-arrival
processing [Sri94] fashion where batch processing is begun as
soon as the first relevant data is available. Independent of how the
processing is organized, the basic computation executed by a
linear system that has been unfolded times can be represented by
the following state-space equations:

(EQ 3)

Note that these equations process data samples for each
execution. For the times unfolded system we get the following
characteristics, where is the number of additions, is
the number of multiplications, is the feedback critical path,
and i s the max imum
throughput :

As expected, when the above equations reduce to those for
the unfolded case presented earlier. Further, the maximum
achievable throughput is arbitrarily increased as the amount of
unfolding increases because the feedback critical path remains the
same while more samples are processed.

P Q R

n 0 1 2 3 …, , , ,{ }∈

S n[] AS n 1–[] BX n[]+=
Y n[] CS n 1–[] DX n[]+=

X n[] ℜP 1×∈ Y n[] ℜQ 1×∈ S n[] ℜR 1×∈
A B C

D

S n[] AS n 1–[]=

of muls R P+() R Q+()=

of adds R P 1–+() R Q+()=

feedback critical path m log2 1 R+()+=

max throughput 1
feedback critical path
--- 1

m log2 1 R+()+
--= =

m 1≥

A B C D

X n[] S n 1–[] Y n[]

S n[] i

i 1+ X n[]…X n i+[] S n 1–[]

Y n[]…Y n i+[]

S n i+[]

i

S n i+[] Ai 1+ S n 1–[] AiBX n[] Ai 1– BX n 1+[] … BX n i+[]+ + + +=
Y n[] CS n 1–[] DX n[]+=
Y n 1+[] CAS n 1–[] CBX n[] DX n 1+[]+ +=
…
Y n i+[] CAiS n 1–[] CAi 1– BX n[] … CBX n i 1–+[] DX n i+[]+ + + +=

i 1+

i

+ i,() # * i,()

CP i()

MaxThroughputi()

* i,() R2 i 1+()PR i 1+()QR i 1+() i 2+()
2

----------------------------PQ+ + +=

+ i,() R2 i 1+()PR i 1+()QR i 1+() i 2+()
2

----------------------------PQ R– i 1+()Q–+ + +=

CP i() m log2 1 R+()+=

MaxThroughputi() i 1+()
m log2 1 R+()+
--=

i 0=

An interesting observation is that the effective number of
operations per input sample is lower in the unfolded case when the
amount of unfolding is less than a certain threshold. In
particular, the increase in number of multiplication operations per
sample due to times unfolding is:

(EQ 4)

and, the increase in number of addition operations is:

(EQ 5)

It should also be noted that above expressions for differences in
numbers of * and + per sample achieve minimum at certain
below the shown thresholds - in other words,as one unfolds, the
number of operations per sample at first decreases to reach a
minimum and then begins to rise.

The above observations lead to the following strategies for low
power implementations.

3.0 Implementation on a Single Processor

In the case of a single programmable processor the
throughput that is achieved is solely decided by the number of
operations. It follows that the throughput is maximized by using
the value of that minimizes the total number of instructions. If
one assumes that + and * are the basic processor instructions (they
need not take the same number of cycles), it can be shown that the
optimum value of unfolding is one of the following two

values: depending

on whichever leads to a smaller value of . If

both lead to same value, we pick the smaller so as to save on

coefficient memory because larger unfolding leads to more
constant coefficients.

From this one can obtain the following expression for maximum
improvement in throughput for the single processor case:

Finally, the processor voltage can be reduced just the right amount
so that the clock frequency is reduced by a factor of . This

leads to a reduction in power because in the expression for power

 the terms and are reduced whereas the

other two terms remain constant. It must be mentioned that in we
are implicitly assuming that the processor power consumption is
dominant compared to coefficient and data memory power
consumption, an assumption that is true in most CPU-memory
systems as found in DSP and control processing systems.

As an example, consider a hypothetical linear computation with
 input, output, states. Then, from the

approach above one can show that which leads to

. One can therefore reduce the voltage such that

the clock frequency is reduced by a factor of 4.0007 so that the
throughput reverts back to the original throughput. If the initial
voltage is 3.0V, then from Fig. 1 it follows that the voltage
reduction to 1.5V will result in the desired clock slowdown. The
processor operating at 1.5V and computing the equations that have
been unfolded 16 times will have the same throughput as the
processor operating at 3.0V and computing the initial non-
unfolded equations. However, in the unfolded case one obtains a

power reduction of , or a factor of 16 over the initial

power consumption. If the initial voltage was 5.0V, then our
technique will result in a processor operating at 1.9V, with an even

larger power reduction of .

As mentioned earlier, the above result is based on analysis that
assumed that the coefficient matrices , , , and are dense
matrices with arbitrary non-trivial coefficients. While this is
certainly true of linear systems that are found in process
controllers, it is often not the case with filters found in DSP
applications where these matrices often tend to be sparse and have
coefficients that are trivial (for example, coefficients of 1 or -1 do
not need multiplication). Unfortunately, it is not possible to come
with meaningful analytical expressions for the non-dense case.

However, we have empirically found that unfolding helps in
reducing the number of operations and the power even in such
cases - although by smaller factors. The optimum level of
unfolding and the number of operations can no longer be found by
merely evaluating closed-form formulas. We therefore use the
following heuristic to find the desired level of unfolding in the
non-dense cases: first pick the best performing level of unfolding
form amongst all values of from through , the optimum

value analytically predicted for the dense case. If the best level
turns out to be , then we continue to unfold further using

binary search as long as the number of operations continues to
decline. Since the run times are low, the preceding linear search
strategy is quite acceptable. In any case, more sophisticated search
techniques such as binary search could be employed if desired.

In case unfolding results in such a large increase in throughput
(reduction in number of operations) that even after reducing the
voltage to the minimum feasible (about 1V in the technology that
we used) the new system has higher throughput than the original,
then one can obtain a further reduction in power by operating the
processor at an even lower frequency (or, equivalently, by shutting
the processor for part of the time). This, however, did not happen
for any of our examples.

The following results summarize the power reduction obtained for
several real-life examples listed in Table 1. In Table 2 we give the

empirically obtained numbers for the actual coefficients from the

i

i

* i,()
i 1+

------------- # * 0,()– i
i 1+
---------R2– i

2
---PQ+=

0< for i 2R2

PQ
--------- 1– 

 <

+ i,()
i 1+

-------------- # * 0,()– i
i 1+
---------R R 1–()– i

2
---PQ+=

0< for i 2R R 1–()
PQ

---------------------- 1– 
 <

i

i

iopt

iopt
2R 1–()R

PQ
---------------------- 1–= or 2R 1–()R

PQ
---------------------- 1–

iopt PQ R 2R 1–()
iopt 1+

----------------------– 
 

iopt

Smax iopt 1+() # * 0,() # + 0,()+
* iopt,() # + iopt,()+
--=

f Smax

P αCLVdd
2 f= Vdd

2 f

P 1= Q 1= R 12=

iopt 16=

Smax 4.075=

 Name Description P Q R

ellip 4-state 1-input linear controller 1 1 4

iir5 (wdf5) 5th order elliptic wave digital filter 1 1 5

iir6 6th order low-pass elliptic cascade IIR filter 1 1 6

iir10 10th order band-stop Butterworth IIR filter 1 1 10

iir12 12th order band-pass Chebyshev IIR filter 1 1 12

steam power plant controller 1 1 5

dist distillation plant linear controller 2 1 5

chemical chemical plant controller 2 1 4

Table 1: Description of the Example Suite

3.0
1.5
------- 

 2 1
1 4⁄()------------×

5.0
1.9
------- 

 2 1
1 4⁄--------× 27.7=

A B C D

i 0 iopt

iopt

examples, as well as analytically predicted numbers for dense
coefficient matrices with same values of , , and as in the
real-life examples. Some of the examples (ellip, steam) had dense
coefficient matrices so that the power reduction obtained is the
same as for the dense coefficient matrices case. For one examples

(dist) no power reduction is obtained. The average processor
power reduction for the example suite is x2.2 when the initial
voltage is 3.0V, and an even larger x3 when the initial voltage is
5.0V (not shown), thus showing that our approach of power
reduction using unfolding-driven throughput-voltage trade-off is
effective for single programmable processor implementations. It
must be emphasized that this power reduction for single-processor
implementation is being obtained with no processor area penalty.
While the coefficient memory requirements do increase, memories
come in sizes that are powers of 2 - therefore in most cases there
will be no impact on memory size either.

Interestingly, note that even if voltage reduction is not an option
due to hardware and technology constraints, the increased
throughput yielded by optimal unfolding can be traded-off against
reduced clock frequency for a l inear reduction in power
consumption. This linear reduction is substantial, though smaller
than what unfolding combined with voltage reduction offers.
Instead of clock frequency reduction, one may also use shutdown
by stopping the clock or making supply voltage zero for part of the
sample period. For example, optimal level of unfolding in theiir12
design in the table above yields a x1.6 reduction in the number of
operations. Therefore, the clock frequency can be reduced by x1.6,
resulting in a power reduction by x1.6 (or, 37%) while the
processor voltage remains unchanged. This strategy gives an
average power reduction of x1.4 (29%) over all our examples.

4.0 Implementation on Multiple Processors

Potentially more savings can be obtained if one considers
implementations that are not restricted to a single processor. By
using more than one processors the throughput achieved by the
implementation can be reduced compared to the single processor
case, and by using enough processors the maximum possible
throughput (decided by the critical path through the feedback
portion of the linear computation) can be achieved. The extra
throughput thus obtained can be used for further throughput-
voltage trade-off as long as the power reduction from this
compensates for the power increase due to more processors.

As an example, consider the same hypothetical linear computation
with input, output, states, and dense

coefficient matrices that we considered for the single processor
case. Previously we had shown that the number of operations per
sample is minimized when the linear computation is unfolded for

 times, and that the maximum throughput achieved by

a s ing le p rocessor re la t ive to o r ig ina l non-unfo lded

imp lementa t ion i s .

Now, if a second processor is added, the throughput will increase
by x2 (ignoring communication costs), and at the same time power
consumption will increase by x2 due to the addition of the second
processor. Now, one can reduce the voltage such that the clock
f requency o f bo th the p rocessors i s reduced by

. If the initial voltage was 3.0V, then this

reduced voltage (from Fig. 1) is given by 1.27V. Therefore, the 16-
unfolded two-processor 1.27V implementation will have a power

reduction of relative to an non-unfolded

3.0V single-processor implementation.

In general the situation is more complex when adding processors.
First, addition of processors causes a linear increase in switched
capacitance, and hence power, for a given voltage and clock
frequency. In fact, the increase in switched capacitance may be
super-linear due to inter-processor communication hardware.
Second, the speed-up due to an additional processor is not linear,
and begins to saturate due to inter-processor communication
overhead. Even if the inter-processor communication cost is
ignored, the computation cannot be speeded up more than that
allowed by the critical path of the feedback section. Finally, the
voltage cannot be reduced below a certain point.

The following approach, developed under certain simplifying
assumptions, explores the unfolding-driven power-throughput
trade-off in implementations using multiple processors. The
simplifying assumptions are (i) inter-processor communication
does not cost any time, (ii) effective switched capacitance

increases linearly with the number of processor , (iii) voltage
cannot be reduced below 1V, and (iv) both addition and
multiplication instructions take one clock cycle (i.e.). The
assumptions are appropriate when one also considers empirical
results, reported by researchers such as [Tiw94], that indicate a
strong correlation between power and number of operations in
programmable general purpose and DSP computation.

The first step is to unfold the linear computation to the optimum
level where the number of operations (instructions) per

sample is minimized. The second step, is to increase the number of
processors to . Let be the maximum improvement in

throughput achieved by processors on an times unfolded
linear computation compared to a single processor on the original
non-unfolded computation. The third step is then to slow-down
each of the processor by a factor of - this is

done by reducing the voltage just the right amount (but limited by
the technology-imposed lower bound) so as to decrease the clock
frequency (increase the gate delay) by . Let be

the voltage at which the value of gate delay relative to the initial
implementation is , with typically being 3.0V or 5.0V.

Then, the power of the new processor implementation relative
to the original non-unfolded implementation is:

P Q R

Dense Coefficient Matrices Real Examples

Init-
ial

After
Optimal Unfolding

Name

Init-
ial

After
Heuristic Unfolding

#
Ops

i
#

Ops
V

Frq
Red

Pwr
Red

#
Opa

i
#

Ops
V

Frq
Red

Pwr
Red

1 1 4 45 4 26.6 2.2 1.7 2.3 ellip 45 4 26.6 2.2 1.72.3

1 1 5 66 6 33.4 2.0 2.0 4.4
wdf5 32 3 27.3 2.7 1.2 1.4

steam 66 6 33.4 2.0 2.04.4

1 1 6 91 7 40.3 1.9 2.3 5.6 iir6 40 5 36 2.8 1.11.3

1 1 10 231 13 67.6 1.6 3.4 12.0 iir10 85 9 59.8 2.4 1.42.2

1 1 12 325 16 81.2 1.5 4.0 16.0 iir12 114 11 71.8 2.2 1.63.0

2 1 5 78 4 50 2.3 1.6 2.7 dist 48 3 47.3 3.0 1.01

2 1 4 55 3 40 2.4 1.4 2.2 chem. 41 2 33 2.6 1.21.6

Table 2: Power Reduction in a Single Processor using
Unfolding-Driven Voltage-Throughput Trade-off (Initial = 3 V)

P Q R

P 1= Q 1= R 12=

iopt 16=

Smax 1() iopt 1+() # * 0,() # + 0,()+
* iopt,() # + iopt,()+
-- 4= =

Smax 1() 2x4 8= =

3.0
1.27
---------- 

 2 1
1 8⁄-------- 1

2
---×× 22.3=

αCL

N

m 1=

i i opt=

N Smax N i,()

N i

N Smax N i,()

Smax N i,() V d()

d V 1()
N

The task is to find the optimum value where the above

expression is minimized. The crucial missing piece of the puzzle is
an estimate of , the maximum improvement in

throughput achieved by processors on an times unfolded
linear computation. It can be shown via some intricate algebraic
manipulation that under our simplifying assumptions the speed-up
due to mu l t ip le p rocessors i s l i near fo r , i .e . ,

. This wil l al low a

linear decrease in frequency, and therefore power, and thus offset
the linear increase in power due to increase in number of
processors. Therefore, one can always add up to processors and
get a reduction in power due to the reduction in the voltage term.
In other words, the optimum number of processors is at least .
The observation that the speed-up is linear for is valid even
for real-life non-dense coefficient matrices in a slightly modified
form: the speed-up will beat-least linear (under our assumption of
zero communication cost). We exploit this fact, and conservatively
use processors to get at least a linear increase in
throughput (on top of what level unfolding alone gives) and

trade this increased throughput with a voltage reduction to slow
down the clock by an equivalent amount. Table 2 shows the
resulting power reduction for our suite of examples.

5.0 Implementation on Custom Datapath ASICs

We start this section by summarizing the key background
information about the MCM transformation which is used as an
building block in the new technique for power minimization.

Constant multiplication is a transformation which replaces a
constant multiplication by shifts and additions. For example, the
product y = 175 * x, can be computed in the following way: y = x
<<7 + x << 5 + x << 4 + x << 3 + x. Since the shifts and additions
are significantly more area, time, and power efficient, this
transformations has been widely used in computer architecture,
compilers [Mag88], and VLSI signal processing [Rab91].

Recently, it has been realized that a common computational
structure in many ASIC application domains is multiple constant
multiplication with same variable [Pot94]. More complex
structures give a significantly higher potential for design
optimization which is related to a complex combinatorial problem
[Pot94]. The crux of technique can be illustrated using the

fo l lowing example which invo lves only two constant
multiplications with the same variable x: y1 = 175 * x and y2 = 235
* x. The second product y2 can be expressed as y2 = x << 7 + x <<
6 + x << 5 + x << 3 + x << 1 + x. The direct computations of two
product using the constant multiplication transformations requires
nine shifts and nine additions. However, using common
subexpression the number of shifts and additions can be reduced.
The first observation is that shifts can be shared between two
products, therefore only six shifts are required. Moreover, if first is
the product y3 (y3 = x << 7 + x << 5 + x << 3 + x) computed, the
products y1 and y2 can be computed as y1 = y3 + x << 4 and y2 = y3
+ x << 6 + x << 2 only six additions are required.

As the number of constant multiplied by the same variable
increases, the MCM optimization process becomes more involved
and effective [Pot94], as indicated by the following theorem.

Asymptotic Effectiveness Theorem [Pot94]: An arbitrarily large
instance of the multiple constant multiplication problem can
always be implemented using the iterative pairwise matching
algorithm with a bounded finite constant number of shifts and
additions irrespective of the problem size.

We are now ready to develop an approach for power reduction in
linear designs which combines the power of unfolding, the MCM
transformation, and generalized Horner scheme. Formally, linear
computations can be defined as those which can be described by:

X[n] denotes feedback states (algorithmic delays), U[n] denotes
primary inputs, and Y[n] denotes primary outputs. Matrices A, B,
C, and D have as entries constants.

We now present the procedure which transforms an arbitrary linear
computation in a form which can be implemented so that power is
an arbitrary low level. The procedure combines the novel use of
Horner’s rule for polynomial evaluation with the MCM for power
optimization. Horner’s rule rearranges an n-th degree polynomial

 to the

following form: . Therefore, an

arbitrary polynomial can be computed using at most n additions
and n multiplications. An excellent exposition of Horner’s rule and
a number of its generalization is given in [Knu81].

Design P Q R
Init.
V

 Unfolding +
Single Processor
(from Table 2)

Unfolding + Multiple
Processors

V
Frq
Red

Pwr
Red

of
Procs

V
Frq
Red

Pwr
Red

ellip 1 1 4 3.0 2.2 1.69 2.3 4 1.3 6.76 9.0

iir5/wdf5
1 1 5 3.0

2.7 1.17 1.4 5 1.4 5.85 5.4

steam 2.0 1.97 4.4 5 1.2 9.85 12.3

iir6 1 1 6 3.0 2.8 1.11 1.3 6 1.3 6.66 5.6

iir10 1 1 10 3.0 2.4 1.42 2.2 10 1.1 14.2 10.6

iir12 1 1 12 3.0 2.2 1.59 3.0 9 1.1 14.3 11.8

dist 2 1 5 3.0 3.0 1.02 1 5 1.4 5.1 4.4

chemical 2 1 4 3.0 2.6 1.241.6 4 1.5 4.96 4.9

Table 3: Power Reduction with Unfolding and Multiple Processors

Power N() V 1()
V Smax N iopt,()()
--- 

  2 Smax N iopt,()

N
--------------------------------×=

N Nopr=

Smax N i,()

N i

N R≤
Smax N i,() NSmax 1 i,()= for N R≤()

R

R

N R≤

N R=

iopt

X[n 1]+ A* X[n] B* U[n]+=
Y[n] C* X[n] D* U[n]+=

u x() unxn un 1– xn 1– ... u1x u0 un 0≠,+ + + +=

u x() ... unx un 1–+()x ...+()x u0+=

Figure 3: Application of generalized Horner scheme on the
arbitrarily fast implementation of an arbitrary linear

computation, after n unfoldings

Figure 2: Arbitrarily Fast Implementation of Linear
Computation: Necessary and Sufficient Set of Computations.

Xn 1+ AnX1 An 1– BU1 An 2– BU2 ... ABUn 1– BUn+ + + + +=

Y1 CX1 DU1+=

Y2 CAX1 CBU1 DU2+ +=

Yn CAn 1– X1 CAn 2– BU1 CAn 2– BU2 ... CBUn 1– DUn+ + + + +=

.

.

.

Y1 CX1 DU1+=

Y2 CAX1 C BU1() DU2+ +=

Y3 CA2X1 C A BU1() BU2+() DU3+ +=

Yn CAn 1– X1 C A ...()() DUn 1–+ +=

.

.

.

Xn 1+ AnX1 An 1– BU1 An 2– BU2 ... ABUn 1– BUn+ + + + +=

The first step of the new transformational script starts by unfolding
n-times set of equations, as shown in Fig. 2. It is easy to see that
the resulting equation have form shown in Fig. 3. At this moment a
simple analysis (counting) indicates what is required in order to
achieve low power implementation. We have to find an efficient
implementation for the (n+1) sets of products with the vector X,
and the efficient implementation for products of inputs vectors
with a variety of coefficient. The first task can be properly solved
using the MCM for power transformations, which indicates that
eventually regardless of the number of additional unfolding, the
number of operations wil l stay constant for this part of
computation, as indicated by the asymptotic effectiveness theorem.
For the remainder of task we apply the key idea from Horner’s
scheme, on the part of the computation used to compute the
influence of primary inputs shown in Fig. 2, so that this overhead
is reduced to linear increase. For each new unfolding, only three
matrix multiplications (by B, A, and C) are required and one
matrix addition. Furthermore the computational structure
computes significant part ofXn+1, after one level of additional
unfolding we need only one more matrix addition.

The resulting computational structure is shown in Fig. 3 using the
functional dependency form. Note that we can add to the
nonrecursive part of the computational structure an arbitrary
number of pipeline delays and therefore increase throughput and
reduce voltage to an arbitrary low level. The only part of
computation which is cycle isAnX1 during computation ofXn+1.
The length of this path does not increase with unfolding, since the
constantAn can be precomputed during synthesis.

So, the approach for achiev ing arb i t rar i ly low power
implementation of linear systems can be described using the
following pseudo-code.

Transformation order for low power implementation of linear
computations:

(1) Unfold the computation n times;

(2) Rearrange computation using the generalized Hor-
ner’s scheme;

(3) Apply k times the MCM transformation for each com-
ponent due to constant multiplications with state vari-
ables (k is the number of states)

5.1 Experimental Results
We evaluate the effectiveness of the method by conservatively
assuming that voltage can not be lowered bellow 1 V. Table 4
shows the initial power dissipation and power consumption after
the application of the new ordering of transformations, as well as
the power reduction factors. The average and median power
reduction were by factors 30.2 and 31.8 respectively.

6.0 Conclusion

We introduced a new approach for power minimization in linear
computations using transformations. The generic approach was
augmented to produce very high power reductions when either
programmable of custom ASIC implementations are targeted,
often with no or minimal hardware overhead.

7.0 References

[Cha92] A.P. Chandrakasan, M. Potkonjak, J. Rabaey, R. Broder-
sen, “An Approach for Power Minimization Using Trans-
formations”,VLSI Signal Processing, pp. 500-509, 1992.

[Gla84] M. Glasser, “Delay and Power Optimization in VLSI Cir-
cuits”, Design Automation Conference, pp. 529-535,
1984.

[Knu81] D.E. Knuth,The Art of Computer Programming: Volume
2: Seminumerical Algorithms, 2nd edition, Addison-Wes-
ley, Reading, MA, 1981.

[Mag88] D.J. Magenheimer, L. Peters, K. Pettis, D. Zuras, “Inte-
ger Multiplication and Division on the HP precision
Architecture”,Trans. on Computers, Vol. 37, No. 8, pp.
980-990, 1988.

[Par89] K. K. Parhi, D. Messerschmitt, “Pipeline interleaving and
parallelism in recursive Filters, Parts 1 and 2”,IEEE
Trans. on ASSP, Vol. 37, pp. 1099-1117 and 1117-1134,
1989.

[Pot94] M. Potkonjak, M.B. Srivastava, A. Chandrakasan, “Effi-
cient Substitution of Multiple Constant Multiplications
by Shifts and Additions using Iterative Pairwise Match-
ing”, 31st DAC, pp. 189-194, 1994.

[Rab91] J. Rabaey, et al., “Fast Prototyping of Data Path Intensive
Architecture”, IEEE Design and Test, Vol. 8, No. 2, pp.
40-51, 1991.

[Rag94] A. Raghunathan, N.K. Jha, “Behavioral Synthesis for
Low Power”, International Conference of Computer
Design, pp. 318-322, 1994.

[Rob87] R. A. Roberts and C. T. Mullis,Digital Signal Processing,
Reading, MA: Addison-Wesley, 1987.

[Sri94] M. B. Srivastava, M. Potkonjak, “Transforming Linear
Systems for Joint Latency and Throughput Optimiza-
tion”, EDAC-94 European Design Automation Confer-
ence, pp. 267-271, 1994.

[Tiw94] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embed-
ded Software: A first Step towards Software Power mini-
mization,ICCAD-94, pp. 384-390, 1994.

[Wal89] R.A. Walker, D.E. Thomas, “Behavioral transformations
for algorithmic level IC design”,IEEE Trans. on CAD,
Vol. 8, No. 10, pp. 1115-1128, 1991.

Design
Name

Initial
Energy

[nJ / sample]

Energy after
Optimization
[nJ / sample]

Improvement
Factor

ellip 222 6.69 33.2

iir5 (wdf5) 118 4.70 25.1

iir6 40.2 1.77 22.7

iir10 96.7 3.35 28.9

iir12 89.2 2.71 32.9

steam 377 9.13 41.3

dist 157 5.57 28.2

chemical 123 4.18 29.4

Table 4: Improvements in energy per sample over the initial
design using the new transformation ordering

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

