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Abstract

This paper presents an e�ective technique of low power de-
sign for RTL circuits and microarchitectures. The basis of this
technique is: a) to use a multiple clocking scheme of n non-
overlapping clocks, by dividing the frequency f of a single clock
into n cycles; b) to partition the circuit into disjoint modules
and assign each module to a distinct clock with frequency f=n.
However, the overall e�ective frequency of the circuit remains
f the single clock frequency. The results show that our multi-
ple clocking scheme provides more e�ective power management
(power savings up to 50%) at the RTL in comparison to con-
ventional power management techniques based on gated clocks.

1. Introduction

Amajor feature of currently proliferating portable applications
is their requirement for low power consumption because they
use battery voltage. Considering \power" rather than area or
speed as the main optimization factor requires a second look at
the entire VLSI design technologies, techniques, architectures
and even algorithms. There are two major sources of power
dissipation in a CMOS circuit[1]: 1) Static dissipation due to
leakage current or other currents drawn continuously from the
power supply; and 2) Dynamic dissipation due to: switching
transient current (short circuit power dissipation) and charging
and discharging of load capacitors.
Usually it is the dynamic switching components, resulting

from the charging and discharging of capacitors, which dom-
inate the total power consumption of CMOS circuits. The
dynamic power dissipation for a CMOS gate with a load ca-
pacitor CL is [1]: Pd = CL:V

2
DD:f , where VDD is the power

supply voltage and f is the frequency of switching.
Reducing VDD is an obvious way of power reduction. It was

shown in [2] that 60% power reduction is possible for a 3.3
Volt system compared to the same circuit runing with a 5 Volt
power supply. Unfortunately, this simple solution comes at a
cost on the delay. We will pay a speed penalty for a VDD reduc-
tion which after all may not be acceptable. Load capacitor is a
technology-dependent factor and can be reduced by using spe-
cial implementation of transistors on Silicon. The frequency
of the switching signals (e.g. the clock frequency) is another
important contributor to the dynamic power dissipation and
roughly speaking is an indication of activities performed by a
component.
� Prior Work: There are basically three levels in which power
consumption methods have been investigated: 1) transistor
level, 2) logic level; and 3) register-transfer level.
At the transistor level, the attention is on optimizing the

transistor size and careful cell selection. By minimizing tran-
sistor size as much as possible we minimize the parasitic capac-
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itances of transistors and interconnect routings [3]. The work
explained in [4] presents an LP-based algorithm to �nd the
best cell combination (when more than one cell for each logic
gate is available) to reduce power consumption. A pass tran-
sistor logic family was found to minimize the capacitance[5] as
an alternative to conventional CMOS logic family.
Much work for power optimization has focused at the logic

level. There are various choices for implementing a boolean
function. The power tradeo� between di�erent types of adders
and multipliers was investigated in [6]. To minimize the total
switched capacitance in random logic modules, several logic
synthesis optimization techniques have been proposed [7] to
lower the power consumption. In [8] power is minimized by
modifying the function of each node in the circuit. Re-encoding
of a sequential circuit [9] and using gated clocks [10] are two
techniques for power reduction in sequential circuits.
Considering power consumption at levels higher than logic

has been recently attempted. A high-level synthesis system,
HYPER-LP, presented in [11] uses a variety of architectural
and computational transformations to estimate and optimize
the power dissipation.
In this paper we present an e�ective power management

scheme for RTL designs based on non-overlapping multiple
clocks. The contribution of this work is twofold. First, we
show that using non-overlapping multiple clocking to design a
partitioned datapath, so that each module is assigned to a dis-
tinct clock, is an e�ective way of RTL datapath synthesis with
minimum power consumption. Second, we present a multiple
clock allocation algorithm for power reduction. A key feature
of this scheme is holding the old input values as long as pos-
sible (in a register or through a MUX whose control line is
latched) to reduce the transitions on the ALU input ports.
This paper is organized as follows: Section 2 presents a

motivating example by which we show the basic idea of our
work. Section 3 describes RTL structural model and analysis
of the multi-phase clocking to save power dissipation. Section
4 presents our synthesis approach and the e�ect of allocation
on power consumption. Experimental results are shown in
section 5. Finally, concluding remarks are in section 6.

2. Motivating Example

The data 
ow graph of Fig. 1(a) shows the behavior of a sim-
ple circuit. This 
ow graph is scheduled in �ve time steps.
Fig. 1(b) and (c) are two RTL circuit implementations of this
behavior, Circuit 1, and Circuit 2, respectively. Circuit 1 has
been implemented by minimal resource allocation using two
(+,-) ALUs. Speci�cally, we allocated nodes N1, N2, N3 and
N4, N5, N6 into the left and right side ALU of Circuit 1, re-
spectively. Circuit 2 is generated by allocating N1, N4, N2,
N5, N3, N6 into the left, middle and right side ALU, respec-
tively. The obvious di�erence between these circuits is that
Circuit 1 requires less resources than 2. However, there is
a more subtle di�erence. The two ALUs of Circuit 1 work
concurrently during the behavior using a single clock . We
notice that Circuit 2 is partitioned into two disjoint subcir-
cuits, shown in Fig. 1(c) by the unshaded and shaded parts.
The �rst subcircuit (unshaded) is active during the odd time



steps of the behavior, T1, T3, T5, ... whereas the second sub-
circuit (shaded) is active during even intervals. We achieved
this partitioning by allocating behavioral nodes at even and
odd time steps, into separate subcircuits. Since the activity of
the two subcircuits occurs at non-overlapping time intervals,
it would be possible to use two non-overlapping clocks for the
corresponding subcircuits.
The primary motivation for multiple clocking scheme of

course would be to reduce power consumption during inac-
tive time slots. This is shown in Fig. 2 illustrating the two
non-overlapping clocks, Clock 1 and 2, as they relate to the
original Clock. Note that the frequency of the two clocks is
f/2where f is the frequency of the original clock. However, the
e�ective frequency of the entire Circuit 2 is the same as Circuit
1, i.e. f . In other words, although the disjoint components of
Circuit 2 are clocked at half the frequency of Circuit 1, there
is no loss of performance because the e�ective frequency is the
same. At the same time, there is potential for power reduction
on the disjoint subcircuits.
In what follows we will consider the potential for power re-

duction of Circuit 2 by comparison to Circuit 1 operating in
two di�erent modes, a) without power management, b) with
conventional power management.

2.1 No power management

The potential power reduction can be argued as follows. Let
us assume that the AC power consumption of Circuit 1 is given
by P1 = C1 V

2 f , where C1 is average load capacitance, V
is the supply voltage, and f the clock frequency applied. For
Circuit 2 we have P2 = (C21 + C22) V

2 f=2 where now
C21 and C22 are the load capacitances of the correspond-
ing disjoint subcircuits of Circuit 2. Then, to achieve power
reduction in Circuit 2 we need C21 + C22 < 2C1, which
in the above example is quite feasible, con�rmed by experi-
mentation. Admittedly, this rationale is approximate because
it does not consider a more accurate switching signal activity,
nevertheless it provides the motivation for investigating lower
power designs based on multiple clocking schemes. For our ex-
perimental results we take into account the e�ect of switching
activities in our power estimation.
The idea of multiple clocks of course applies to more than

two non overlapping clocks. Thus an implementation of the
Fig. 1(a) behavior using three clocks requires four ALUs. The
resulting circuit consists of three disjoint subcircuits. If the
load capacitances are C31; C32; C33 then to achieve power
reduction under the 3 clocking scheme we would need:
C31+C32+C33 < 3 C1 and 2 (C31+C32+C33) < 3 (C21+
C22). Of course, there are tradeo�s between power and circuit
cost that may apply here.
We should remark at this place that our approach is consid-

erably di�erent from the \duplicating hardware" technique of
[12]. The researchers there use frequency reduction together
with hardware duplication to achieve power reduction by re-
ducing voltage. In our approach, we use synthesis to avoid
duplication when we a�ect frequency reduction. As shown in
the examples of Fig. 1, synthesis has a \capacitive reduction"
e�ect and although hardware is increased when frequency is
reduced to f=2, the increase is far from duplication.

2.2 Conventional Power Management

The general idea of power management schemes is to turn
o� circuit units when they are not busy. This is achieved by
using gated clocks, i.e. turning o� the clock signal of storage
elements during their idle cycles. Moreover, it is possible for
some extra logic to isolate ALUs so that they will not consume
useless combinational power in their o� duty cycles.
To compare the power consumption of Circuit 1 and 2,

we consider several consecutive computations of the behav-
ior in Fig. 1 such that each computation begins at time slot
T1+4k , where k � 0. For e�ciency, we overlap the begin-
ning and end of two consecutive computations on both circuits.

Thus, the second computation begins at time slot T5 and ends
at T9, the 3rd begins at T9, and so on. On component-by-
component basis, Circuit 1 is busy on the average 75% of the
time whereas Circuit 2 is busy 50% of the time. For example,
the two ALUs of Circuit 1 during the �rst three computations
operate at time slots T1 T2 T3 T5 T6 T7 T9 T10 T11 and
T3 T4 T5 T7 T8 T9 T11 T12 T13, respectively. The subtracter of
Circuit 2 operates at T2 T4 T6 T8 T10 T12.
The power of Circuit 1 under conventional management is

P1 = 3=4 C1 V
2 f . For Circuit 2 we have P2 = 1=2 (C21 +

C22) V
2 f . Then to achieve power reduction for the 2-clock

scheme over the conventional power management technique we
need C21+C22 < 3=2 C1. Note it is still feasible to satisfy the
above relation, depending on how good is the allocation syn-
thesis for multiple clocking. Actually, a crude power analysis
on Circuits 1 and 2 can show that indeed the above condi-
tion holds. Ignoring the multiplexer power, and assuming in
both circuits ALU capacitance C and register capacitance CR,
then the power di�erence between Circuit 1 and Circuit 2 is
P1 � P2 � 3=4 CR V 2 f . So the multiple clocking scheme
can indeed improve the power consumption in comparison to
the conventional power management technique, and our ex-
perimental results con�rm this crude analysis.
Another advantage of our scheme is that due to the non-

overlapping activity of clock partitions it is possible to use
latches instead of registers, which has signi�cant impact on
reducing power. In general, it is very di�cult to use latches
in circuits with conventional power management because of
overlapping READs and WRITES, which we avoid.

3. Multiple Clock Scheme Architecture

We now describe our basic RTL architecture model for a mul-
tiple clocking scheme. Our model focuses on the datapath part
of the RTL structure, however, we also discuss the datapath
interactions with the controller concerning important timing
issues. This analysis will be the basis of our synthesis method
for low power RTL structures using multiple clocks.

3.1 RTL Structural Model

In our model, the basic datapath unit is the Functional Block
(FB). As shown in Fig. 3(a), FB consists of 3 layers of com-
ponents, i.e, 2 Muxes { 1st layer { connected to the two ports
of an ALU { second layer { which is connected to one or more
memory elements (ME) { 3rd layer. The memory elements
could be registers or latches. The control points of the Muxes
and the ALU (select points) and the ME (load point) are also
shown. Shown also in Fig. 3(a) is the clock line driving the
FB registers. The Mux ports and the MEs serve as the data
input and output ports of the FB, respectively.
ADatapath Module (DPM), shown in Fig. 3(b), is composed

by connecting together a number of FBs using bus lines from
the output of one to the input of another. Speci�cally, every
output port of FBi to one or more input ports of other FBs,
possibly FBi itself. The external input and output ports of
a DPM are merely some of the input and output ports of its
constituents FBs. Moreover, the DPM has a number of control
lines each connected to a number of internal control points of
the DPM.
From our viewpoint, the most important characteristic of

the DPM is that a single clock is used for its internal memory
elements (MEs). In our model, a datapath structure consists
of a number of interconnected and disjoint DPMs, DPM1,
DPM2, DPM3, � � � driven by the non-overlapping clocks, re-
spectively, CLK1, CLK2, CLK3, � � �

3.2 Timing Relationships and Power

Consider two datapath modules, DPM1 and DPM2, Fig. 4(a).
Assuming that their memory elements are latches, the timing
relationship of the stored signal values R1 and R2 is depicted
in Fig. 4(b). Signal R1 switches only at clock period and it is



stable elsewhere. Since the input signals of DPM1, X1, Y1 etc,
are fed by DPM outputs they follow the same timing pattern
as R1 and R2. Note that the ALU output F1 must be stable
right before Clock 1, at the latest, for R1 to make transition
correctly. This is illustrated in Fig. 4(b). The combinational
delay of the Mux and the ALU should satisfy this timing.
The basic requirements of our multiclock scheme with re-

spect to power consumption on module DPM1 are: a) no stor-
age power during �2(k), and b) no combinational power during
�12(k). Our design clearly satis�es requirement a). However,
for b) to be satis�ed there should be no value changes at the
combinational inputs of DPM1 during �12(k). However, it is
not always possible to allocate variables so that all inputs of
each DPM will be fed by outputs of the other DPMs and not
by itself. Nonetheless, we suggest: 1) to extend the life span of
a type signal by one cycle; this may require an additional stor-
age element to save the old value; and 2) to make sure that the
Mux control input remains unchanged between adjacent clock
2 pulses, speci�cally during �2(k) + �2(k+1) = 2=f where f
is the system clock frequency. This can be achieved by latch-
ing the control lines coming out of the controller for the above
time period, i.e. during adjacent pulses of CLK1.

4. Synthesis with Power Consideration

We present two allocation techniques, assuming in both that
the data 
ow graph (DFG) schedule has been determined ear-
lier by any scheduling methodology such as in [15]. The �rst
technique is a \split-allocation" approach, i.e uses DFG parti-
tioning based on clock assignments and then proceeds to syn-
thesize each DFG part separately, connecting them at the end.
The second method performs allocation in an integrated way
taking into account the clock assignment of DFG nodes.
The advantage of the split allocator is that it can be easily

adapted by any existing allocator to generate partial datapaths
with less power requirements. Of course, the designer needs a
clean-up phase to glue independently generated partitions. We
will show that this clean-up phase is quite straight-forward and
can be done manually or automatically. The second approach
has the potential to e�ect better resource sharing because it
performs an integrated allocation of the partitions.

4.1 Split Allocation Method

A designer may prefer his/her own allocation tool. Our split
allocation approach can be adapted by any allocator to gener-
ate individual partitions. However, there is need for a clean-up
phase to interconnect the partitions and remove redundancies.
Brie
y speaking, for a given schedule we want to use an

existing allocator to generate multiple clock datapath parti-
tions. As explained earlier in detail in section 3 such data-
path has much less power consumption than a conventional
single-clock datapath while running with the same speed. The
basic idea is as follows. Suppose we have n non-overlapping
clocks, CLK1; CLK2; � � � ; CLKn. Consider a scheduled DFG
which we partition into n disjoint sub-DFGs, based on the
schedule, P1; P2; � � � ; Pn clocked by CLK1; CLK2; � � � ; CLKn,
respectively. Clearly, the nodes of Pk are all nodes of the orig-
inal DFG located in steps clocked by the k-th clock. More
speci�cally, the nodes scheduled in time steps t (1 � t � T )
belong to Pk (1 � k � n � 1) if t mod n = k. Partition Pn
contains the nodes of time steps t where t mod n = 0.
Moreover, we preserve all scheduling information associated

with the sub-DFG Pk nodes that they have in the original
DFG. This means there will be \internal input" edges coming
into Pk from the other partitions, but for the purpose of the
split allocation, these edges will be treated as input edges of
Pk. Similarly, there are \output" edges of Pk that connect to
the nodes of the other partitions. Some edges of Pk may well
be primary inputs or primary outputs but it is possible that
Pk may not have any primary edges at all.
For the purpose of our method, we map the scheduling steps

of the original DFG into local steps of the partitions. Thus,

node N scheduled in global time step tglb will be mapped
to partition k = tglb mod n, and into local time step tloc =
dtglb=ne. Conversely, given local time step tloc and partition k
then the corresponding global step is tglb = (tloc � 1)n+ k.
Now, that we have generated all n scheduled sub-DFG's,

all we need to do is to \feed" each one to some allocator of
our choice. The results will be n datapath modules, DPM1,
DPM2, � � �, DPMn clocked by CLK1; CLK2; � � � ; CLKn.
We propose the following process to generate multiple clock

datapath partitions. For simplicity, we will describe our method
using a non-overlapping two-clock scheme.

� Step 1 (Partition the Schedule):

This partitioning is simply done based on odd and even
time steps in this example. Fig. 5 (a) and (b) show the
original schedule and two partitions based on odd and
even time steps. Note that the time steps 10; 20; 30 and
100; 200 are local time steps in each partition to show the
local sequencing. Also, we consider primary inputs and
outputs for those edges cut based on partitioning bound-
aries and their life span in the original schedule.

� Step 2 (Run Allocator on Partitions):
In this step the designer runs an allocation method of
his/her choice on the two schedules, independently. The
allocator considers the local time steps as real ones and
uses the library and its internal optimization methods
(e.g. for ALU selection, REG minimization and MUX/BUS
collapsing)[15]. The output of this step will be two datap-
ath partitions, shown in Fig. 5(c), realizing two schedules.

� Step 3 (Remove Redundancies):

To merge two datapath partitions to have a single dat-
apath with multiple clocking, we need to remove the re-
dundancies and also establish necessary but missing con-
nections. We look at the primary inputs of the original
schedule. If some of them are used in both partitions,
we have a register or a port in both partitions which can
be merged. Also, those variables which were introduced
as primary inputs/outputs in the partitions but were not
really primary inputs/outputs (e.g. u or v) do not neces-
sarily need a register. So, the register should be removed
and a connection should be establishes instead. Finally,
our clean-up phase also involves splitting those variables,
merged in the same memory element, having READ and
WRITE con
icts so that they would be re-allocated into
di�erent latches. Fig. 5(d) shows the �nal result at the
end of step 3.

4.2 Integrated Allocation Method

In this allocation method, our approach is to use the registers
to control transitions on the other components of the partition
like the alus and muxes. In other words, the transitions on the
registers cause transitions on the Muxes and ALUs, but if no
transitions occur on the registers then no transitions occur
throughout the partition. Because of this restriction, we must
trace through the schedule and make sure each operand of all
operations are in the same partition. If one operand is in one
partition say � and the other is in partition �, then we must
transfer the value from partition � to partition � by using a
temporary variable to hold that value in �. This can be seen
in Fig. 6(a) where the the addition operation has inputs E and
X. The variable X is written in time step 1 which is partition �
and the variable E is written in time step 2 which is partition �.
As you can see in the �gure we create a temporary variable T
which saves the value that was in X at time step 2 which forces
the operands of the subtraction to both be from partition �.
It is basically just a transfer between partitions.
The allocation of registers is mainly a�ected by the new

scheme in that only variables which are placed in the same
partition may be merged into the same register. With the
alternating clocking scheme, the variables are placed in the
partition(p) such that p = k mod n, where k is the time step



the variable is written. In Fig.6(a), since we deleted the READ
for X in time step 3 we can merge variables U and X since they
were both written in partition � and their lifespans are disjoint.
Also, since we are using latches in our implementation, only
variables with completely disjoint life spans (non overlapping
READs and WRITEs) may be merged. Both of these consid-
erations can be seen in the lifetime analysis of the variables,
then using the left edge algorithm, these variables are merged
to speci�c registers.
The allocation of ALUs is done by using the schedule and

number of partitions to determine which partitions the ALUs
are allocated to. We merge the operations according to the
partition(p) in which they are placed; where p = l mod n and
l is the time step of the operation. As in Fig. 6(b) you can
see that only the additions can be merged since these two are
in the same partition �. Whereas, the subtraction can not be
merged with either of the additions, because it is in partition �.
Because we want the transitions of the ALU to occur during a
certain time period, we must consider the registers which feed
the ALUs or Muxes feeding the ALU. Therefore, all operands
of the ALUs must come from the same partition; otherwise, we
must use the control lines of the muxes to make the transition
occur during the correct clock period or add extra registers to
hold the operands.
The allocation algorithm can be summed up in these steps:

� Step 1: Trace through the schedule and create temporary

variables for operations which have operands in di�erent
partitions.

� Step 2: Merge variables of the same partition into regis-

ters using the left edge algorithm.

� Step 3: Use an iteratively greedy method to merge op-

erations according to their partition. If the operands of
the ALUs are not in the same partition, then either cre-
ate registers to transfer values into or use the control on
the Muxes to force transitions to occur during the correct
time period.

� Step 4: Create the Muxes necessary to complete the data

path decided by the register and ALU allocation.

For illustration, the result of this algorithm is shown in Fig.
7. Note that in this case we did not latch the control inputs
(for example for MUXes), as we discussed earlier, forwarding a
result within one partition creates redundant power consump-
tion. For example, the subtracter consumes power at time step
3 because we change its input data. To save power, we could
have forced the inputs to the subtracter (y) to change its value
at the end of time step 3 (similar to u). To assure this, we re-
move internal partition transfers by forwarding a register to
another register controlled by the second clock.

5. Experimentation and Results

The integrated allocation algorithms described in the previous
sections has been implemented in C on a SUN SPARC-IPC
workstation. Unfortunately, most of the work on power opti-
mization and estimation is at the logic level and we can not
compare our RTL results to them. However, to show the ef-
fectiveness of using multi-clock datapath synthesis we have
implemented some of high-level synthesis benchmarks using
COMPASS CAD system [19]. In this section, we �rst explain
how we obtained the datapaths and used COMPASS CAD
toolset to estimate the power and then show the actual data
for high-level synthesis benchmarks.
We knew our analysis were sound and that if the additional

components did not cause too much extra capacitance we could
achieve at the best 50% power by adding two clocks and at
best 33% power by adding three clocks. Although we knew
that these reductions would be too much to expect, we did
achieve substantial reductions of power at the expense of area.

Power Area ALUs Mem. Mux

[mW] [�2] Cells In's

Conven. Alloc. 1(*+),1(&+),
(Non-Gated Clock) 9.85 2680425 1(-j),1(/) 8 10

Conven. Alloc. 1(*+),1(&+),
(Gated Clock) 6.92 2383553 1(-j),1(/) 8 10

1(+-&),1(*+j),
1 Clock 7.39 2668365 1(/) 10 12

2(+), 1(/),
2 Clocks 6.41 2552425 1(-j),1(*&) 10 12

1(+&),1(-),1(*)
3 Clocks 3.52 2484873 2(+),1(/),1(j) 14 4

Table 1: Multiple Clocks with Latches for the FACET

5.1 Experimental Setup

To validate our idea we used our allocation procedure to pro-
duce VHDL code representing the partitioned circuit. The
circuits were synthesized using the COMPASS ASIC Synthe-
sizer based on 0.8 micron CMOS library [18] on a SPARC-IPC
workstation with 32M RAM. After our 4-bit circuits were syn-
thesized we needed to compute the power consumed by the
circuit. This was accomplished by simulating the circuit in
the COMPASS simulator with the power option enabled. The
power option works by counting the transitions on each node
and computing an average frequency f over a given amount
of time T . Using the formula P = fCLV

2 with V being 4.65V
for all experiments and CL being the loading capacitance on
the particular node, the tool �nds the power for each node.
Then, summing over all nodes in the circuit after time T the
simulator reports the average power consumed by the circuit.
We computed the power for a circuit by simulating the cir-

cuit with a large number of random inputs, and having the
tool report the power after all patterns were executed. In other
words, we allowed the simulator to �nd the average transitions
on nodes over a long period of randomly inputed data. The
area was simply computed by allowing COMPASS to layout
the circuit and report the size. Keep in mind that the area for
the conventional allocation models uses D-
ip 
ops for regis-
ters as opposed to our method which uses latches.

5.2 Experimental Results

In this section we present our results for four example bench-
marks generated by our allocation scheme as compared to the
conventional allocation scheme. The conventional datapaths
were generated by SYNTEST [15]. The results are tabulated
in Tables 1 to 4. Each table reports on �ve di�erent designs
of the same example: conventional allocation using non-gated
single clock, conventional allocation using gated single clock,
commonly used in industries [10]; and three datapaths based
on latch implementation� .
In Table 1 we show our results for the FACET example[14].

As expected, there is a reduction of power as the number of
clocks increases, from 6.92 mW (for the conventional gated
clocks) to 3.52 mW (for 3 clock method) which is 49%. Also,
notice that for our scheme with one clock the power has in-
creased as compared to the Conventional with Gated Clocks.
This is because of the increase of area with no reduction of the
frequency. Also, interesting about this example is the decrease
in area from 1 to 2 and 2 to 3 clocks. This is because the mul-
tifunction ALUs being used for the di�erent clocking scheme.
The COMPASS synthesizer does not reduce logic as well for
most multifunction ALUs, as opposed to the (+-) which re-
duces very well. The schedule can also help the area reduction.
The 3 clock scheme suits the particular schedule better than
the 2 clock scheme because of ALU utilization.
In Table 2 we show our results for the HAL example[13].

There is a continual decrease in power and an increase in area.

�Note that the di�erence between the conventional gated
clock technique and the 1-clock implementation of our scheme
is in that we use the same allocation technique that avoids con-
current READs and WRITEs, without using clock partitions.



Power Area ALUs Mem. Mux

[mW] [�2] Cells In's

Conven. Alloc. 1(+),1(*-),
(Non-Gated Clock) 12.48 3080133 1(*+),1(*->) 8 10

Conven. Alloc. 1(+),1(*-),
(Gated Clock) 8.12 2819025 1(*+),1(*->) 8 10

1(*>-),2(*),
1 Clock 5.61 2627484 1(+-) 12 20

3(*),1(+-),
2 Clocks 4.98 2901501 1(->),1(*+) 14 20

1(*-),5(*),
3 Clocks 3.73 2954465 1(+),1(>) 17 8

Table 2: Multiple Clocks with Latches for the HAL

Power Area ALUs Mem. Mux

[mW] [�2] Cells In's

Conven. Alloc. 3(*+),1(*-),
(Non-Gated Clock) 18.65 5118795 1(*+-) 18 35

Conven. Alloc. 3(*+),1(*-),
(Gated Clock) 11.49 4826283 1(*+-) 18 35

3(*+),1(*+-),
1 Clock 11.31 5126718 1(*-) 20 47

4(*+),1(*),
2 Clocks 9.24 5194451 1(-),1(*-) 20 56

4(*+),1(*),
3 Clocks 7.19 5327823 3(+-),1(-),1(+) 26 45

Table 3: Multiple Clocks with Latches for the Biquad Filter

The exception is from the Conventional Gated to the 1 Clock
where there is a decrease in power and area. This can be
explained by remembering that we are using latches in our
scheme and by looking at the ALU allocation. The ALU al-
location for our one clock scheme is better because one of the
multifunction ALUs is the (+-) which synthesizes well, com-
pared to other multifunction ALUs. The important results
here are the 8.12 mW (for the conventional gated clocks) to
3.73 mW (for our 3 clock method) or 54% reduction in power
versus 5% increase in area.
In the remaining Tables we examine our results for the Bi-

quad Filter example and the Band Pass Filter example[16][17].
They are both similar to the previous results in terms of justi-
�cation. The Biquad Filter goes from 11.49 mW (for the con-
ventional gated clocks) to 7.19 mW (for our 3 clock method),
or 37% power reduction versus 9% increase in area. The Band
Pass Filter goes from 8.87 mW (for the conventional gated
clocks) to 5.78 mW (for our 3 clock method), or 35% power
reduction versus 12% increase in area.
There is an obvious trade-o� between the amount of power

reduction and the amount of area increase. As you can see the
area is increased as the number of clocks increases, but the
power is still being reduced. Although you can not see in our
results it is obvious that you can not keep adding clocks and
expect power reduction. There are diminishing returns in this
scheme, because as the area grows the capacitance will grow to
o�set the reduction of frequency accomplished by our method.

Power Area ALUs Mem. Mux

[mW] [�2] Cells In's

Conven. Alloc.
(Non-Gated Clock) 18.01 5588975 2(+-),1(*) 23 39

Conven. Alloc.
(Gated Clock) 8.87 4181238 2(+-),1(*) 23 39

1(*),1(-),
1 Clock 7.39 3049956 1(+) 15 50

2(*),1(+-),
2 Clocks 6.15 3729654 1(-),2(+) 19 57

3(*), 3(-),
3 Clocks 5.78 4728731 3(+) 25 66

Table 4: Multiple Clocks with Latches for the Band Pass Filter

6. Summary

We have presented an e�ective technique of low power design
for RTL circuits and microarchitectures. The basic idea is
to operate each module only during its corresponding duty
cycle, thus clocking each module by a frequency f=n to reduce
power. However, the overall e�ective frequency of the circuit
remains f the single clock frequency. We have observed very
encouraging results of power savings up to 50%.
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