
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Glitch Analysis and Reduction in Register Transfer Level Power Optimization

Anand Raghunathan �

Department of EE
Princeton University
Princeton, NJ 08544

Sujit Dey
C&C Research Labs

NEC USA, Inc.
Princeton, NJ 08540

Niraj K. Jha y

Department of EE
Princeton University
Princeton, NJ 08544

ABSTRACT: We present design-for-low-power techniques based
on glitch reduction for register-transfer level circuits. We analyze
the generation and propagation of glitches in both the control
and data path parts of the circuit. Based on the analysis, we
develop techniques that attempt to reduce glitching power con-
sumption by minimizing generation and propagation of glitches
in the RTL circuit. Our techniques include restructuring multi-
plexer networks (to enhance data correlations, eliminate glitchy
control signals, and reduce glitches on data signals), clocking
control signals, and inserting selective rising/falling delays. Our
techniques are suited to control-flow intensive designs, where
glitches generated at control signals have a significant impact on
the circuit’s power consumption, and multiplexers and registers
often account for a major portion of the total power. Application
of the proposed techniques to several examples shows significant
power savings, with negligible area and delay overheads.

I. Introduction

Most savings in power consumption can be obtained through a
combination of various techniques at different levels of the design
hierarchy. We focus on techniques to reduce average power con-
sumption in register-transfer level (RTL) circuits. Power estimation
techniques for RTL designs, and high-level synthesis techniques for
reducing power consumption have been previously investigated [1, 2].
Several studies have reported the importance of considering glitching
power during power estimation and optimization [3, 4]. However,
very few automated design and synthesis techniques exist for reduc-
ing glitching power consumption. At the architecture and behavior
levels, previous work on power estimation and optimization ignores
the effects of glitch generation and propagation across the bound-
aries of blocks in the architecture. While accurate library modeling
approaches can be used to account for the effect of glitches within
architectural blocks, they typically assume that inputs to these blocks
are glitch-free. Most previous work at the architecture and behavior
levels has also sought to focus on data-flow intensive designs, where
arithmetic units like adders and multipliers account for most of the
total power consumption. However, our experiments with control-
flow intensive designs reveal that functional units may constitute a
much smaller fraction of total power than multiplexer networks and
registers.

In this paper,we analyze the generation and propagationof glitches
in both the control and data path parts of the circuit, and propose
techniques to reduce glitch power consumption. In order to minimize
the generation and propagation of glitches from control as well as
data signals, we propose several techniques including restructuring
multiplexer networks, clocking control signals, and inserting selective
rising/falling delays. These techniques do not rely upon the existence

�Supported by NEC C&C Research Labs
ySupported by NSF under Grant No. MIP-9319269.

-

OUTPUT

X Y

XIN XY YIN

ZERO

C20

C20

contr[0] = x1 + x3

contr[1] = x0

contr[2] = x0 + x1.c11 + x3.c10

contr[3] = x0 + x1.c11

contr[4] = x0 + x1.c11 + x3.c10

contr[5] = x1.c11.c15 + x2.c15 + x3.c10.c15

contr[6] = x0 + x4

contr[7] = x1.c11 + x2 + x3.c10

contr[8] = x1.c11.c15 + x2.c15 + x3.c10.c15

contr[9] = x0 + x1.c11.c15 + x2.c15 + x3.c10.c15 + x4

c11 = c9 + c10

<= =

NEXT
STATE
LOGIC

RESET Y

ZERO X XZERO Y

CONTROL
SIGNALS

S
T
A
T
E

C10 C9 C15

0 1

DECODE
LOGIC

0 1 0 1

0 1

0 1

0 1

0 1

0 1

X

RDY

ZEROONE

0 1

0 1

[0]

[1]

[2]

[3]

[4]

[5][6]

[7]

[8]

[9]

Figure 1: The RTL Architecture of the GCD circuit

of idle periods for components in a design, i.e., they are also applicable
to designs with complete or near-complete resource utilization. In
addition, they target power consumption in all parts of the design,
including multiplexer networks and registers, not just functional units.

II. Motivation

We motivate our work through the analysis of an example RTL
circuit shown in Figure 1, which computes the greatest common di-
visor (GCD) of two numbers. The inputs are applied at XIN and
Y IN , and the result is written into registerOUTPUT . Since the num-
ber of cycles required for computing the GCD depends on the input
values provided, an additional output signal RDY indicates when the
result is available. The circuit consists of one subtractor, two equal-to
(=) comparators, one less-than (<) comparator, registers, multiplexer
trees, the controller finite state machine (FSM), and the decode logic.
The decode logic generates the control signals that configure the mul-
tiplexers in the circuit. We refer to the controller FSM and the decode
logic collectively as the control logic of the circuit. The logic expres-
sions for the decode logic are also shown in the figure. Literals x0
through x4 represent the decoded controller present state lines, while
literals c9, c10, and c15 represent results of the three comparators.

The RTL circuit shown in Figure 1 was mapped to the NEC
CMOS6 library [5]. An in-house simulation-based power estima-
tion tool, CSIM [6], was used to measure power consumption in the
various parts of the design. Table 1 provides the break up of the total
power consumption into separate figures for the functional units (sub-
tractor and three comparators), random logic (controller FSM and

Table 1: Power consumption in various parts of the GCD circuit

Block % of total power
Functional units 9.08%
Random Logic 4.67%
Registers 39.55%
Multiplexers 46.70%

decode logic blocks), registers, and multiplexers. It indicates that
most of the power consumption is in the multiplexers and registers.
Similar figures were observed for several circuits that implemented
other control-flow intensive specifications.

In order to get a feel for the glitching activity in the GCD circuit,
we collected data on the transition activities with and without glitches
in various parts of the design. Table 2 shows the total bit transitions
with and without glitches for all the control signals, and selected data
path signals 1. Control signal contr[i] feeds the select input of the
multiplexer marked [i] in Figure 1. Similarly, data path signal dpi
corresponds to the output of the multiplexer marked [i] in Figure 1.
Clearly, a significant portion of the total transition activity at several
signals in the circuit is due to glitches. Another interesting observa-
tion is that several control signals in the GCD circuit, like contr[2]
and contr[4], are highly glitchy. We later illustrate that control signal
glitches can have a significant effect on the glitching power consump-
tion in the rest of the circuit. We would like to point out here that while
CSIM, being a discrete simulator, does not model effects like partial
transitions, it does model the attenuation or suppression of glitches
due to inertial delays of gates.

Table 2: Activities with/without glitches for various signals of the
GCD circuit

Control Activity Datapath Activity
signal Total W/O Gl. signal Total W/O Gl.
contr[0] 71 70.5 dp2[7::0] 71.5 21.5
contr[1] 22 22 dp4[7::0] 92 26
contr[2] 72 20 dp5[7::0] 1124.5 247
contr[3] 42 20 dp7[7::0] 1044.5 273
contr[4] 72 20 dp9[7::0] 321.5 80.5
contr[5] 55.5 54
contr[6] 22 22
contr[7] 50 20
contr[8] 55.5 54
contr[9] 77 70.5

The following example illustrates how ignoring glitches can be
misleading and result in designs that are sub-optimal in terms of
their power consumption. Consider the two RTL circuits shown in
Figures 2(a) and 2(b) that implement the simple function: if(x
< y) then z = c + d else z = a + b in two different
ways. ARCHITECTURE 2 uses two adders as opposed to one adder
in the case of ARCHITECTURE 1. Power estimation methods that do
not take glitches into account would report that ARCHITECTURE 2, in
which both adders perform computations in each cycle, consumes
more power than ARCHITECTURE 1. However, when accurate power
estimation that also considers glitches is performed, it turns out that
ARCHITECTURE 2 actually consumes 17.7% less power than ARCHI-
TECTURE 1. The above observation can be explained as follows. The
comparator generates glitches at its output though its inputs are glitch-

1CSIM counts each 0 ! 1 or 1 ! 0 transition as half a transition. Hence,
the transition numbers that are reported throughout the paper may be fractional

<
0 1 0 1

c b d

x y

+

z

a

ARCHITECTURE 1

0 1

+ +

a cb d

<

x y

z
ARCHITECTURE 2

Power Consumption:
Without glitches: 823.9 uW
With glitches: 1650.2 uW

Power Consumption:
Without glitches: 951.7 uW
With glitches: 1357.7 uW

(a) (b)
Figure 2: Alternate architectures that implement the same function:
Effect of glitching

free. In the case of ARCHITECTURE 1, these glitches then propagate
through the two multiplexers to the inputs of the adder, which causesa
significant increase in glitching activity and hencepower consumption
in the two multiplexers and the adder. In ARCHITECTURE 2, though the
comparator generates glitches as before, the effect of these glitches is
restricted to the single multiplexer.

III. Glitch Generation in the controller and data path

In this section, we analyze the generation of glitches in RTL cir-
cuits. This analysis leads to an understanding that forms the basis for
our glitch reduction techniques that we present in Section IV. For
clarity, we illustrate glitch generation in the data path blocks (func-
tional units, comparators, and multiplexer trees) and in the control
logic separately.

A. Glitch generation in data path blocks

Consider the elements shown in Figure 3 — a subtractor, an equal-
to comparator, a less-than comparator, and a 3-to-1 multiplexer tree
— as representative data path blocks for studying glitch generation.
Each block was mapped to the technology library, and then simulated
under long input sequences that consisted of random vectors. Figure 3
is annotated with the total number of bit-transitions including and
excluding glitches that were observed at the output of each block. The
results clearly indicate significant generation of glitches in various data
path blocks. In the equal-to comparator, no glitches were generated
due to the fact that all its paths are balanced. However, even in
such cases, wiring delays can disturb the balance of delays and thus
cause generation of glitches. When data path blocks like those shown
in Figure 3 are connected together, the glitches generated by the
various blocks propagate through the following blocks, often causing
an explosion in glitches and glitching power consumption.

_

2382.5/994.5

=

36.5/36.5

<

181.5/129.5

0 1

0 1

1791.5/984.5

Figure 3: Glitch generation in various data path blocks

B. Glitch generation in control logic

Though the control logic itself accounts for only a small portion
of the total circuit power, it plays an important role in determining
the total circuit power because it is responsible for the generation of
glitches at the control signals, which in turn have a significant impact
on the glitching activity in the rest of the circuit. The inputs to the

decode logic (see Figure 1) are fed by the outputs of comparators
and the state flip-flops of the controller. The previous subsection
has already demonstrated that outputs of comparators can be glitchy.
The glitches at comparator outputs can propagate through the decode
logic and cause glitches on the control signals. In addition, the decode
logic can itself generate a lot of glitches, as shown next. Let us focus
on control signal contr[2] in the GCD RTL circuit, which is highly
glitchy according to the statistics of Table 2. The portion of the decode
logic that implements this control signal is shown in Figure 4(a).
We observe that though the inputs are nearly glitch-free, significant
glitches are generated at AND gatesG1 andG2. After careful analysis,

x 0

x 1

c 1 1

x 3

c 1 0

contr[2]

22/22

22.5/22.5

/50 49.5

/50.5 49.5

49.5/19.5

22.5/2.5

72/20
G 1

G 2
54/53.5

G 1
G3

(a) (b)

Figure 4: (a) Implementation of control signal contr[2], and (b)
generation of glitches at gate G1

the generation of glitches at G1 was attributed to two conditions that
are depicted graphically in Figure 4(b):

C1: A rising transition on signal x1 was frequently accompanied by
a falling transition on c11. Thus, the rising transition on x1 and
the falling transition on c11 are highly correlated.

C2: Transitions on signal x1 arrive earlier than transitions on c11.

Condition C1 arises due to the functionality of the design: most of the
times when state s1 is entered (rising transition on x1), comparators
feeding c9 and c10 produce a 0, changing from 1 in the previous state.
On the other hand, condition C2 is a result of the delay/temporal
characteristics of the design. A similar explanation holds for the
output of gate G2 being glitchy. Generation of glitches in the control
logic has been described in detail in [7].

IV. Glitch Reduction Techniques

In this section, we describe our techniques for reducing glitch
power consumption in RTL circuits, by minimizing the generation
and propagation of glitches through different blocks of the circuit.

A. Reducing glitch propagation from control signals

As shown before, control signals to the data path can be very
glitchy. Our aim is to stop glitches on control signals from propagating
as close to their source as possible in order to reap the maximum ben-
efits in terms of power savings. We illustrate each of our techniques
separately through examples in this subsection, and later integrate
these techniques into a single power optimization framework.

Y

<

0 1

B

X

A

REG

S

Figure 5: Example circuit used to illustrate the effect of data signal
correlations on control signal glitches

Glitchy control signals and data correlations. Consider the circuit
shown in Figure 5. A multiplexer selects between two 8-bit data

S

Ai

Bi

G0
OUT i

G3

G1

G2

A B W/O Gl. With Gl .
0 0 0.5 0.5
0 1 1.0 3.0
1 0 1.0 3.0
1 1 0.5 3.5

(a)

OUTi
A B W/O Gl. With Gl .
0 0 0.5 0.5
0 1 1.0 3.0
1 0 1.0 3.0
1 1 0.5 0.5

G0

S

A
i

Bi

G1

G2

Gc

G3

(b)

Figure 6: (a) Effect of data correlations on select signal glitches, and
(b) use of the consensus term to reduce glitch propagation

signals, A and B, depending on whether the expression X < Y

evaluates to True or False. Its output is written into a register.
Suppose that the less-than comparator generates glitches at its output,
and that data inputs to the multiplexer are not glitchy and settle to
their final value well before the select signal settles. The glitches on
the select signal of the multiplexer propagate to its output. In order
to study this propagation, consider the gate-level implementation of
a bit-slice of the multiplexer that is shown in Figure 6(a). The table
shown in Figure 6(a) reports the glitches at the multiplexer output for
all possible values of the data signal bits Ai and Bi. In the < 0; 0 >

case, glitches on select signal S are killed at AND gates G1 and G2
due to controlling side inputs that arrive early. When data inputs are
< 0; 1 > (< 1; 0 >), glitches on S propagate through gates G2 and
G3 (G1 and G3). Finally, when data inputs are < 1; 1 >, glitches on
S propagate through gates G1 and G2. The output of the multiplexer
is glitchy as a result of the interaction of the glitchy signal waveforms
at G1 and G2. The exact manner in which the waveforms interact
depends on the propagation and inertial delays of the various wires
and gates in the implementation. There are many ways of preventing
the propagation of glitches for the < 1; 1 > case. One way is to add
an extra gateGc, as shown in Figure 6(b). Gc realizesAi:Bi which is
the consensus of S̄:Ai and S:Bi. When data inputs are < 1; 1 >, Gc
effectively kills any glitches at the other inputs of G3 that arrive after
the output of Gc settles to a 1, as shown in the table of Figure 6(b).
Maximum benefits are derived from the addition of the consensus
term when the select signal is very glitchy, the data inputs arrive early
compared to the select signal, and the probability of the data inputs
being < 1;1 > is high.

Note that with the addition of the consensus term, glitches do not
propagate from the select signal to the multiplexer output if the data
values are correlated (< 0; 0 > or < 1; 1 >). We next show how to
restructure a multiplexer tree so as to maximize data correlations and
hence minimize propagation of glitches from its select signals.
Enhancing data correlations by restructuring multiplexer net-
works. Consider the 3-to-1 multiplexer tree shown in Figure 7(a),
that feeds register OUTPUT in the GCD RTL circuit. The select
signals are annotated with their cumulative transition counts includ-
ing and excluding glitches. Functionally, the multiplexer tree can be
thought of as an abstract 3-to-1 multiplexer, as shown in Figure 7(b).
The conditions under which OUTPUT , X and ZERO are selected
are represented as COUTPUT , CX , and CZERO , respectively (which
must be mutually exclusive). Select signal CZERO is observed to be
glitchy, leading to propagation of glitches to the output of the first 2-
to-1 multiplexer in Figure 7(a). Note that data signalsOUTPUT and
ZERO are highly correlated at the bit level. Hence, in order to mini-
mize the propagation of glitches on CZERO through the multiplexer

Data input correlations:
<X,OUTPUT> = 0.76
<X,ZERO> = 0.77
<OUTPUT,ZERO> = 0.99

OUTPUT

X

0 1

0 1

ZERO

42/20

72/20

345/20

CZERO

CZERO + C X

OUTPUT

X0 1

0 1

ZERO

42/20

49.5/19.5

26/20

CZERO

CX

3 - t o -1 M U X

X ZERO OUTPUT

CX

C ZERO

COUTPUT

(a)

(b)

(c)

Figure 7: Multiplexer restructuring to enhance data correlations: (a)
initial multiplexer network, (b) abstract 3-to-1 multiplexer, and (c)
restructured network

ZERO

WHITE

0 1

0 1

VIDEO

88.5/88.5

139.5/41.5

 = x3CVIDEO

 = x3 + x4

CWHITE CVIDEO+

0 1

0 1

ZEROWHITE

VIDEO
37.5/37.5

88.5/88.5

 = x5C ZERO

 = x3CVIDEO

(a) (b) (c)

3-to-1
MUX

ZERO WHITE VIDEO

CZERO

CVIDEO

CWHITE

Figure 8: Eliminating glitchy control signals: (a) initial multiplexer
network, (b) abstract 3-to-1 multiplexer, and (c) restructured network

tree, we transform the multiplexer tree to the implementation shown
in Figure 7(c), such that the highly correlated data signals OUTPUT
and ZERO become inputs to the first 2-to-1 multiplexer. This signif-
icantly lowers the switching activity at the output of the first 2-to-1
multiplexer to 26=20 from 345=20 originally.
Restructuring multiplexer networks to eliminate glitchy select
signals. In order to implement an abstract n-to-1 multiplexer with n
data inputs (d1:::dn), and n select inputs (c1:::cn) as a tree of 2-to-1
multiplexers, it can be shown that depending on the exact structure
of the implementation, anywhere between dlog2ne and n � 1 select
expressions of the form

S
i
ci can be used, where

S
represents the

Boolean OR operation. It is possible that some of c1:::cn are glitchy,
while others are not. Similarly, it is possible that some of the disjunc-
tive expressions in c1:::cn are glitchy. Our aim is to restructure the
multiplexer tree so that as few as possible of the select expressions
used are glitchy. This concept is illustrated using the 3-to-1 multi-
plexer network shown in Figure 8(a) that is part of the RTL circuit
implementing a Barcode preprocessor [8]. The select signal of the
second multiplexer in Figure 8(a) (x3 + x4) is glitchy. An alterna-
tive implementation of the 3-to-1 multiplexer network, that does not
require the use of any glitchy select signal expressions, is shown in
Figure 8(c).
Clocking control signals to kill glitches. When all the methods
presented so far to reduce the effect of glitches on control signals do
not help, we use the clock to suppress glitches on control signals. For
the following example, we assume that the design is implemented
using rising-edge-trigerred flip-flops and a single phase clock with a
duty cycle of 50%. Consider the 2-to-1 multiplexer shown in Fig-
ure 9(a), that is part of an Unmanned Auto Vehicle controller (UAV)
circuit [9]. Both CZERO and CC21 are glitchy due to the generation
of glitches in the less-than comparator that generates signal c5. Thus,
multiplexer restructuring transformations to eliminate glitchy control

CLOCK

0

0

0

1 CLOCK PERIOD

C C21

CLOCKED
C C21

148.5/81.5 90.5/81.5

 = x3.c5
 = x3.c5C ZERO

C C21

CLOCK

C C21

ZERO

0 1

C21

(a) (b)

Figure 9: Clocking control signals to kill glitches: (a) multiplexer
network with clocked control signal, and (b) sample waveforms

signals cannot be applied here. As shown in Figure 9(a), the original
select signal is ANDed with the inverted clock to result in the clocked
select signal. For the first half of the clock period, when the clock is
high, the clocked select signal is forced to 0 in spite of the glitches
on the original select signal. Figure 9(b) shows example waveforms
for the clock, the original select signal and the clocked select signal.
The switching activity numbers shown in Figure 9(a) demonstrate that
clocking the control signal significantly reduces its glitching activity.

The technique of clocking control signals needs to be applied
judiciously due to the following reasons. By clocking the control
signal, we are preventing it from evaluating to its final value until
time T

2 , where T is the clock period. This could lead to an increase in
the delay of the circuit, if the control signal needs to settle to its final
value before T

2 in order to meet the specified timing constraints at the
circuit outputs. It should also be noted that clocking control signals
may introduce extra transitions on the control signal under certain
conditions. Consider a situation where the control signal remains at a
steady 1 over a pair of clock cycles. By forcing the control signal to
0 in the first half of both the clock cycles, we are actually introducing
extra transitions on the control signal, which can lead to increased
power consumption. Thus, the scheme presented in Figure 9(b) leads
to most power savings when the probability of the control signal
evaluating to a 1 (signal probability) is low. On the other hand, if the
signal probability of the control signal is very high, the control signal
can be clocked by ORing the original control signal with the clock.

B. Minimizing glitch propagation from data signals

The previous subsection outlined several ways in which the gener-
ation and propagation of glitches from control signals can be reduced
to save power. The data inputs to a circuit block can also be glitchy, as
seen in Section III. In this subsection, we present several techniques
to restrict propagation of glitches from data signals.
Glitch reduction using selective rising/falling delays. Consider the
2-to-1 multiplexer shown in Figure 10(a). Both the data inputs to the
multiplexer have glitches, which propagate through the multiplexer
and then through the adder, causing significant power dissipation.
Consider the gate-level implementation of a bit-slice of the multiplexer
as shown in Figure 10(b). Consider a pair of consecutive clock
cycles c1 and c2 such that select signal S makes a 1 ! 0 (falling)
transition from c1 to c2. If this transition is early arriving, there will
be an early rising transition at the output of gate G0 that implements
S̄. Consequently, the side input of G1 will become non-controlling
early, allowing the data input glitches to propagate through G1. This
propagation can be minimized by delaying the rising transition at
the output of G0 (S̄), i.e., by adding a "rising transition delay" to
it. Similarly, to minimize glitch propagation through gate G2 when
there is an early rising transition atS, it is desirable to delay the rising
transition on the fanout branch of S that feeds G2. Since we wish
to delay selected (either rising or falling, but not both) transitions at

(a)

(b)

(c)

0 1

+

+ +

A B C D

ES

OUT

S

d1 d2

d1+d2

d2

0

0

G1G0

G2
G3

DELAY

Figure 10: (a) Example circuit, (b) multiplexer bit-slice with selec-
tive delays inserted, and (c) implementation of a rising delay block

certain signals, we refer to the technique as selective delay insertion.
The selective rising delay blocks are represented by the shaded ellipses
shown in Figure 10(b). One possible implementation of a rising
delay block, that uses one AND gate and a delay element, is shown in
Figure 10(c). Under a simplified delay model of d1 ns for the delay
block and d2 ns for the AND gate, it can be seen that a rising transition
at the input is delayed by (d1 + d2) ns, while a falling transition is
delayed by only d2 ns. A selective falling delay block is similar,
except that the AND gate is replaced by an OR gate.

Inserting a rising delay block leads to a reduction in the propa-
gation of glitches through a multiplexer only in the clock cycles in
which there is a rising transition at the delay block’s input. Thus,
the probability of a rising transition at the signal where we desire
to insert a selective rising delay block should be high. In addition,
to ensure that the circuit delay does not increase, we insert selective
delay blocks only at signals that have sufficient slack.

(a) (b) (c)

Y
0 1

C20

C

Y Y

0 1 CC20

C20

C20Y

CY

CC20

2-to-1
MUX

Figure 11: Using multiplexer restructuring transformations for
glitchy data signals: (a) initial multiplexer network, (b) abstract 2-to-1
multiplexer, and (c) restructured network

Effect of multiplexer restructuring transformations on glitchy
data signals. Multiplexer restructuring transformations can also be
used to reduce the propagation of glitches on data signals. We illustrate
this concept using a small portion of theGCDRTL circuit, that is shown
in Figure 11(a). The subtractor’s output, C20, has a lot of glitches
which propagate through the multiplexer shown in the figure, and also
through the logic that it feeds. Let us assume that signal Y is glitch-
free. Figure 11(b) shows the equivalent abstract 2-to-1 multiplexer.
We utilize the fact that there might be several instances when the value
of the select signal is a don’t care (CC20+CY is not a tautology). In the
implementation of Figure 11(a), the glitchy operand C20 is selected
in the don’t care cases as well. The transformed implementation of
the 2-to-1 multiplexer that is shown in Figure 11(c) ensures that the
glitchy data input is selected as infrequently as possible, thus reducing

Activity at Signal MUXOUT:
Before Clocking C20: 910.5/285.5
After Clocking C20: 536/285.5

CLOCK

0

0

0

1 CLOCK PERIOD

C C20

CLOCKED
C C20

0 1

0 10 1

CLOCK

X YXIN
C20

MUXOUT

C C20

(a) (b)
Figure 12: Clocking control signals to kill data signal glitches: (a)
example circuit, and (b) sample waveforms

the propagation of glitches to the multiplexer output.
Clocking control signals to kill data signal glitches. When the
techniques presented above to handle glitchy data signals are either
not applicable or not adequate, we utilize the technique of clocking
control signals to kill data signal glitches as well. Consider the part
of the GCD circuit shown in Figure 12(a). The subtractor’s output
C20, which is glitchy, feeds the data input of a 2-to-1 multiplexer. As
shown in the figure, this results in significant glitches at the output of
the multiplexer. Clocking select signal CC20 alleviates this problem.
Since the clocked select signal is forced to 0 for the first half of the
clock period, the multiplexer selects the value of data input Y for this
duration. Thus, the glitches on the subtractor’s output are killed at
the multiplexer for approximately the first half of the clock period.
This leads to a significant decrease in the glitching activity at the
multiplexer output, as shown in the figure. Sample waveforms for the
clock, original select signal, and the clocked select signal are shown
in Figure 12(b).

C. Algorithm

The previous two subsectionsdescribed the various techniques that
we use to minimize the glitching power consumption in RTL circuits.
Also, the conditions under which each technique is applicable and
most beneficial have been stated. In this section, we give a brief
overview of the order of application of the various glitch reduction
techniques. The pseudo-code for power optimization procedure is
shown in Figure 13. In order to apply each of the techniques, we need
information about signal statistics and glitches at various signals in the
circuit, including the control signals and the outputs of each RTL unit
like functional unit, register, comparator, 2-to-1 multiplexer, etc. We
first obtain an initial technology mapped gate-level implementation of
the RTL circuit, and use a simulator to collect the required information.

A block in the RTL circuit is defined as a functional unit, com-
parator, or register, together with the multiplexer networks that feed
it. We partition the RTL circuit into constituent blocks, and levelize
the blocks through a single traversal starting from primary inputs or
register outputs to primary outputs or register inputs. We then visit the
circuit blocks in increasing order of levels (since applying glitch re-
duction techniques to a block can affect glitching at other blocks which
are at later levels) and use applicable glitch reduction techniques at
each step. Within a block, we first attempt to apply multiplexer net-
work restructuring transformations to either eliminate glitchy select
signals, or else maximize bit-level correlation between the data inputs
of multiplexers whose select signals have a lot of glitches. We also
selectively determine which bit-slices, if any, of each multiplexer to
add the consensus term to, based on the probability of the data inputs

Procedure RTL POWER REDUCTION(RTL Circuit R)
EXTRACT BLOCKS(R);
LEVELIZE CIRCUIT(R);
for each block B in levelized order f

(*eliminate glitchy control signals,
enhance data signal correlations,
select glitchy data signals as infrequently as possible*)
RESTRUCTURE MUX NETWORK(B);
if (significant glitches remain) f

ADD SELECTIVE DELAYS(B);
CLOCK CONTROL SIGNALS(B);

g

g

Figure 13: Procedure Overview

taking on values of < 1;1 > and the glitchiness of the select sig-
nal. If significant glitches are present at the inputs of any RTL unit
(functional unit, register, comparator, multiplexer) in the block even
after the application of multiplexer restructuring transformations, we
attempt to add selective rising/falling delays to multiplexers in order
to reduce the propagation of glitches on data signals, or clock control
signals as described in Subsections A and B in order to kill glitches
on both control signals as well as data signals that feed multiplexers.

The data presented in Section II revealed that register power con-
stituted a significant portion of the total circuit power. Upon further
analysis, we found that a major portion of the register power was in
turn consumed due to transitions at the clock inputs to registers. The
technique of gating clocks has been used by designers to selectively
turn off parts of a system. Methods to automatically detect conditions
under which the clock inputs to all the registers in a design can be
shut off, based on identifying self-loops and unreachable states in the
state transition graph (STG), were presented in [10]. However, the
techniques in [10] can be applied only to the control and random logic
parts of a design for which it is feasible to extract the STG. We have
developed a procedure, that is based on a structural analysis of the
RTL circuit, to determine the conditions under which transitions on
the clock input to a register can be suppressed. Our procedure con-
sists of identifying (structural) self-loops involving a register in the
RTL circuit, and analyzing the conditions under which it is logically
enabled. Gating the clock input to a register can lead to glitches on
the gated clock signal, that not only cause unnecessary power con-
sumption, but may also cause the design to function incorrectly. Our
procedure ensures that glitches are not introduced while gating clock
signals. Details of the procedure are provided in [7].

V. Experimental Results and Conclusions

We present results of the application of the proposed power re-
duction techniques to four RTL circuits implementing: GCD, a bar-
code reader preprocessor (Barcode) [8], the controller for an Un-
manned Auto Vehicle (UAV) [9], and a vending machine controller
(Vend) [11]. The initial RTL circuits were obtained by synthesizing
VHDL behavioral descriptions using the SECONDS high-level syn-
thesis system [9, 12]. Both the original and optimized RTL circuits
were mapped to NEC’s CMOS6 library [5], and evaluated for area
and delay using the logic synthesis system VARCHSYN [13], and
for power consumption using the simulation based power estimation
tool, CSIM [6]. The vectors used for simulation were obtained for
each design by simulating the scheduled behavioral description with
a test bench written to generate typical input cases, using a VHDL
simulator, to result in a cycle-by-cycle input vector trace. The above

Table 3: Experimental Results
Circuit Original Optimized Pow

Pow Area Del Pow Area Del Red
(mw) (ns) (mw) (ns) (%)

GCD 8.74 1037 32.3 7.23 1034 31.9 17.27

Bar- 9.41 1945 49.7 7.77 1968 47.3 17.42
code

UAV 10.89 1954 83.5 8.02 1967 83.2 26.25

Vend 10.47 1595 70.1 7.72 1617 71.6 26.22

step is important for control-flow intensive designs where the number
of clock cycles required to perform the computation varies depending
on the input values. Table 3 reports the results of our experiments.
The power, area (# of transistor pairs), and delay numbers are obtained
after mapping to the technology library used.

The results shown in Table 3 demonstrate that our glitch reduc-
tion techniques can significantly reduce power consumption in RTL
circuits. Note that these techniques target power reduction solely
by reducing the propagation of glitches between various blocks in the
RTL circuit. Hence, they can be combined with other power reduction
techniques that attempt to suppress transitions that do not correspond
to glitches. The area and delay overheads incurred by our power
reduction techniques can be seen to be nominal. In some cases, the
area and delay are slightly reduced due to the fact that multiplexer
restructuring transformations can lead to a simplification in control
logic.

References

[1] J. Rabaey and M. Pedram (Editors), Low Power Design Methodologies.
Kluwer Academic Publishers, Boston, MA, 1996.

[2] M. Pedram, “Power minimization in IC design: principles and applica-
tions,” ACM Trans. Design Automation of Electronic Systems, vol. 1,
Jan. 1996.

[3] M. Favalli and L. Benini, “Analysis of glitch power dissipation in CMOS
IC’s,” in Proc. Int. Symp. Low Power Design, pp. 123–128, Apr. 1995.

[4] S. Rajagopal and G. Mehta, “Experiences with simulation-based
schematic-level power estimation,” in Proc. Int. Wkshp. Low Power
Design, pp. 9–14, Apr. 1994.

[5] CMOS6 Library Manual. NEC Electronics, Inc., Dec. 1992.
[6] CSIM Version 5 Users Manual. Systems LSI Division, NEC Corp., 1993.
[7] A. Raghunathan, S. Dey, and N. K. Jha, “Register-transfer-level power

optimization techniques with emphasis on glitch analysis and optimiza-
tion,” Tech. Rep., NEC C&C Research Labs, Princeton, NJ, Oct. 1995.

[8] High-level synthesis benchmarks, CAD Benchmarking Laboratory, Re-
search Triangle Park, NC. Benchmarkscan be downloadedanonymously
from http://www.cbl.ncsu.edu.

[9] S. Bhattacharya, S. Dey, and F. Brglez, “Clock period optimization during
resource sharing and assignment,” in Proc. Design Automation Conf.,
pp. 195–200, June 1994.

[10] L. Benini, P. Siegel, and G. DeMicheli, “Saving power by synthesizing
gated clocks for sequential circuits,” IEEE Design & Test of Computers,
pp. 32–41, Winter 1994.

[11] D. L. Perry, VHDL. New York, NY 10020: McGraw-Hill, 1991.
[12] S. Bhattacharya, S. Dey, and F. Brglez, “Performance analysis and opti-

mization of schedules for conditional and loop-intensive specifications,”
in Proc. Design Automation Conf., pp. 491–496, June 1994.

[13] VARCHSYN Version 2.0 Users Manual. Advanced CAD Development
Laboratory, NEC Corporation, Nov. 1993.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

