I'm Done Simulating; Now What?
Verification Coverage Analysis and Correctness Checking of the DECchip 21164 Alpha microprocessor

Michael Kantrowitz Lisa M. Noack

Digital Equipment Corporation
77 Reed Rd
Hudson MA 01749

ABSTRACT determining whether the test passed or failed, andweyg of
determining exactly what portion tiie design the tesictually

Digital's Alpha-based DECchip 21164 processor was verified exercised. This paper discusses the correctiessking and

extensively prior to fabrication of silicon. This simulation-based coverage analysis mechanisrased by theDECchip 21164

verification effort used implementation-directed, pseudorandom verification team to ensure adequate functicc@lerage using

exercisers which were supplemented with implementation- pseudorandom test generators.

specific, hand-generatddsts. Special emphasis was placed on

the tasks ofchecking for correct operatiomnd functional VERIFICATION PROCESS

coverage analysis. Coverage analysis shatsre testing is

incomplete, under the assumption that untedtegic often All verification was done using the procefisw depicted in

contains bugs. Correctness checkers are vanoeshanisms Figure 1. The simulation environment consisted of a register

(both during and after simulation) thahonitor a test to transfer level (RTL) representation of th&Cchip 21164 itself,

determine if it was successful. This paper detailsctiverage plus a behavioralsystem model which provided memory

analysis and correctness checking techniques that were used. Waterface and could also mimibe behavior of otheprocessors

show how our methodology and itsimplementation was or 1/0 devices. This allowed the verification tests to be actual

successful, and we discuss the reasehg this methodology Alpha executable code, instead of needingapply ones and

allowed several minor bugs to escape detectiotil the first zeros tothe pins of the chip. Th&/stem model conformed to
prototype systems were available. These bugs were correctedhe constraints of the Alpha architecture, and eatigurable
before any chips were shipped to customers. to allow everypossible system configuration ande setting of

the DECchip 21164 to be exercised.
OVERVIEW

The majority of stimulus applied test theDECchip 21164 was
The DECchip 21164 CPU chip is a quad-issue, super-scalarcreated through pseudorandom methods. Pseudorandom testing
implementation of the Alpha architecture which required a offers several advantages the verification ofncreasingly
rigorous verification effort to ensutbat there were ntogical complex chips. These include producing test casesvthat be
bugs. World-class performance dictatdte use ofnany time-consuming to generate by hand, and provitliegability to
advanced micro-architectural features, such as a virtualgenerate multiple simultaneous events thatild be extremely
instruction cache with seven-bit Address Space Numbers, adifficult to think of explicitly. Six different pseudorandom
dual-read-ported data caclayt-of-order instruction completion, exercisers were used on tB&Cchip 21164 project. One was a
on-chip three-way set-associative write-back second-level cachegeneral-purpose exerciser thgirovided coverage at an
module-level cache control, branch prediction, demand-pagedarchitectural level. Each dhe otheffive targeted a specific
memory managementnit, write buffer unit, miss-address file section of the chip in a pseudorandom way.
unit, and a complicated Bus Interface Unit with support for
various CPU-system clockratios, system configurations, and Test stimulus (eitherandom or focused) was applied to both the

module-level cache parameters. [1] Design Under Test and to a reference modelany different
types of mechanisms were used to determine whekteertest
Increasingly, functional verification effortare relying on stimulus executed correctly. These includesmparing test

pseudorandomtest generation to improvethe quality of results between the Design Under Test and the referandel

functional coverage. These techniques have beens@n at and enhancing thRTL modelwith a wide variety of assertion

Digital for morethan seven years amage also used elsewhere in checkers that continuously monitored the model whiksawas

the industry and imcademia.[2-5] Howevethe heavyuse of simulating. Usingcoverage analysis testimatehow much of

pseudorandom testing increases the need for new ways of the design had been verified was also an important part of the
verification flow. Several different techniques fooverage
analysis were used. Whanalyzingthe coverage of garticular
section of the design, any or all of these techniques were used, as
appropriate fothat section. Théollowing sections describe the
correctness checkingnd coverage analysis pieces of the
verification flow.

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room useis granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copyingis
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or afee.
DAC 96 - 06/96 Las Vegas, NV, USA 01996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

PsendoRandom

Self-checking
Test Stimulus

|7 Focused Test
1

3
Reference Design Under | Assertion | 2ure
Model Test Checkers
Simulation (RTL)
Simulation tachis Failure
Coherency (-»
Checkers
l Collect Signal
Traces
Reference
Failure | Model ' _
" Comparisons Coverage Analysis
) State Sequence | case | Toggle
Failure [Einal Ghecks | | Transition | Checking | analysis| Coverage
Analysis Analysis
Success
Figure 1: Verification Flow

CORRECTNESS CHECKING

The success or failure of traditional hand-generated fodests!
is typically determined bthe test itself. The teshecksits own
answer against a set of pre-determined expected results.

However, with pseudorandotest generation, thiself-checking
approach did nowork; it is very difficult to create a self-
checking pseudorandontest. Instead, several alternate
mechanisms were uséalr checking whethethe model behaved
correctly. The effectiveness ay specific checking mechanism
depended on thiype oftestbeing run and théype of bugthat
might occur. Using amanydifferent checking mechanisms as
possible, we were able to detect a broad range of bugs. On
specific goal was to detect a bug as close as possible to th
place where the faulictually occurred, in order to simplify the
debugging process.

Reference Model Comparisons

When pseudorandortests are used, the state of timachine
upon test completion is not knowthus it is hard to determine if
the test executed successfully. For these caselied heavily
on comparisons against a reference model. Bwthreference
model and the design-under-test supported a $ylitem
environment, including noonly the CPU chip,but amemory

interface and/O space awell. This allowed us to execute the
same test stimulus on both models, and expect the same results.

Ideally, a reference model needs to be fast, correct, and represent
all the details of the design. Theeference we chose
emphasized speed and correctrmsar detail. It represented a
high-level abstraction of the Alpha architecture, written in the C
language. The model represented all features visible to software,
including the full Alpha instructiorset and suppofor both
memory and I/O space. It did not represent internal design
details. In particular, it did not represent pipeline stages,
parallel functional units, or caches. Representing a higher
abstraction level allowed us to produce a reference ntbdeél
containedvery fewbugs and was able to execateer 100 times

the speed of the detailed RTL model.

The reference model enabled several types of correctness checks.
The simplest of these was an end-of-test state comparison. When
a pseudorandontest completed, the contents @il memory
locationsthat were accessed during ttest, as well as the final
state of the integer and floating-point register files, were dumped
to a file. These dump files were compared ang differences
were flagged for further investigation.

This end-state comparison was lohited usefulnesdor long
tests. Intermediate results may be overwritten and problems with
them may never be known. Even if an error is detected, the
source ofthe erromay befar away fromthe detection point at

the end of the test. Comparing results between the two models at
intermediate points in a test execution, amat waiting until the

test completes, can solve both of these problems. However, since
our reference model did naxactly matchthe timing of the
design-under-test, these intermediate comparisons were not
easily implemented.

Both models accurately representad Alpha architecture, and
only valid architectural comparisons could be made. The
additional comparisons we made were checliregPCflow and
writes to the integer anflbating-point registers. The PC flow
immediately signaled any problem withntrol-flow instructions,
while the register writecomparison caught problems with the
data manipulation instructions. In additiondoeckinginternal
state, thememory image was also compared at intermediate
points during the test execution. This wasnplicated by the
high level of buffering ithe memorysubsystem and than-chip
write-back cache ofthe DECchip 21164. Comparing
intermediate memoryrequired monitoringhe state of all the
internal queues and constructing a consistegrhoryimage that
g:ould be compared with the reference model.

The Alpha architecture allows for the generation of unpredictable
values under certain circumstances. Since the referaadel
was hot an exact copy of the design-under-test, it could produce a
different unpredictable value. To complicdtés, unpredictable
values could propagate to other registers, makmgparison
against the reference machine difficult. For example, when an
arithmetic trapoccurs,the destination register of the instruction
which caused the tramay have an unpredictable value. To
complicatethis further, arithmetic traps are impreciseganing
they might not be reportesiith the exact PC that caused them.
Normally, certain software conventions would be followed to

control these aspects tfie architecture. To achieve the full
benefit from pseudorandontesting, however, no restrictions

assertion checkers without having to explicitly provide history
queues and other complicated data structures itisemodel.

were placed on which registers or instruction sequences could bé&ne example involved representiige behavior of a large

used. Instead, an elaborate method was devifad tracking
which registers were unpredictable aty given time. This
information was then used to filter allowable mismatches
between the two models.

Assertion Checkers
Assertion checkers are segmentscofle added to a model to

checkthat various properties or rules of deslgrhaviorare not
violated. Examples of simple assertion checkers include

section of the design as a singtemplicatedstate machine. The
behavior ofthis state machineould be compared witthe 1/O
behavior of the actual design sectioAnother example was the
representation of the branch-prediction algorithm immare
abstractform than the actuaRTL model.The behavior of the
abstract algorithm was compared witle behavior of thenodel
itself.

A specialized form ofbuilt-in assertion checker is aache
coherency checker. The DECchip 21164 system supporesel

watching for a transition to an illegal state in a state machine, orlevels of caching; a first-level data cache, a second-level, on-chip,
watching for the select lines of a multiplexer to choose an unusedcombined instruction/data secondary cache, and a third dgfvel,
input. More complex assertion checkersrequire explicit chip combined backup cache. Each cache was defined to be a

knowledge about illegal sequences. For example sythiem bus
had a complicatedet ofcheckers attached to it thetiecked for
violations of the bugrotocol. Inall cases, the asserticheckers
can only detect a problem after theest has stimulated a
particular condition. Their primary purpose is to increase
visibility into what a test isdoing. The DECchip 21164

subset of the nextcache inthe hierarchycomplicated by the
second-level and third-level cachdsllowing a write-back
protocol. At regular intervals during a simulatighe cache
coherency checkers would kativated, to ensure that the
coherencyrules were not being violated. This checker alone
caught a significant percentage of all bugs.

verification effort used two categories of assertion checkers. The

first was built-in checkers, that were part of tREL model
itself. Thesecond was post-processing checlteed evaluated
trace files representing various signal transitions.

The RTL model ofthe DECchip 21164 was augmented with a
wide variety of built-in checkers. The team continually added
new checkers to the model, since this waey effectivebug-
finding mechanism. The advantage of built-in checkers is that
they are alays active and monitoring behavifmr everycycle

that is simulated. Ibne person othe team adds an assertion
checker to the modegveryoneelsewho uses thatnodelwill be
using that assertiochecker as well. Thufpr a largeteam, the

Self-Checking Tests

The DECchip 21164 verification effodid usesome focused,
hand-crafted testawhich checkedheir own result against a pre-
stored expected result. This was usdfulthe areas imvhich

the referencemodel did notaccurately matckhe design-under-
test. In particularperformance-enhancing featutid® bypasses
and multiple-issudogic were verified via self-checkintests.

As mentioned above, these performance-related features were not
included in the referencemodel in order to keep it simple.
Using thecycle counterbuilt into the DECchip 21164, exact
timings could be checked and verified agaitts¢ expected

built-in assertion checkers provided a huge amount of addedtimings. Self-checkingests were also useftdr running in an

leverage. Manyimes, an assertion checker caught a bug while
the model was being run bgomeone focusing on a totally
different areafrom which the original writer of the assertion
checker wasfocusing on. Anadditional benefit of built-in
assertion checkers was their ability to detebtig very quickly
and halt the simulation immediately. This simplified the
debugging effort immensely.

The disadvantage of built-in assertion checkers isttteat slow
down the simulation speed. For thejority of checkersthis
slow down is negligibleand theirbug-finding payback isvell
worth the impact.However, in cases of particularly complex
checkers, thegerformance impact was unacceptable. In these
cases, the checkers were implemented sepiaoatehe model,

environment where the referencedel was not available. For
example, when testing prototype hardwates self-checking
focused tests were re-used as diagnostic tests.

When run on the simulation model, though, even a self-checking
test used the referencenodel and assertiocheck mechanisms.
These allowedmany morebugs to be detected than thelf-
check itself could detect.

Figure 2 showshe various detection mechanisms used by the
DECchip 21164 verification effort. As can be seen, the assertion
checkers were the most effective techniques.

as a post-processing step. While the model is simulating, the onlyCOVERAGE ANALYSIS

impact is the additiondfO due to tracing the state of internal
signals and writing them out to disk. The specific signals to
trace were selected based on the partiqudatprocessing to be

The use of pseudorandom testing \aghly effectiveand more
productive than creating hand-generatesbts. With the

done. After simulation, an optional, per-test post-processing stepcorrectness checking problem solvéds next major issue was

would readthe signal trace data and determine whegngr of

the various assertions were violated. In addition to not
impacting simulation performance, it was easier to crewmte
complicated assertion checkers usitige post-processing
technique. The signal trace file provided information about the
future and past state of desired signals. This simplified creating

determining what the tests weaetually doing. We were using
targeted-random testing, so we knew the general areas that the
tests were exercising, but we needeodre detail on what was
being covered. To help witthis, extensivecoverage analysis
was done, mostly as a post-processing step.

During the simulation of thRTL model, arace of thebehavior
of various signals was written to disk, in the saway we
obtained trace filedor assertion checkers. inany cases,
coverage analysiand post-processing assertwrecking were
combined into one step.

Assertion Checkers 34%
Cache Coherency Checkers 9%
Reference Model Comparison
Register File Trace Compare 8%
Memory State Compare 7%
End-of-Run State Compare 6%
PC Trace Compare 4%
Self-Checking Test 11%
Manual Inspection of 7%
Simulation Output
Simulation hang 6%
Other 8%
Figure 2: Effectiveness of Bug Detection Mechanisms

Several different coverage analyséshniques were used. For
standard types oftoverage checking, a library of analysis
routines automated the process significantly. One examp
where this was possiblavolved analyzinghe coverage obtate
machines.

State Transition Analysis

Some state machines in the DECchip 21164 were represented
PLA structures. Fothis case, th&®LA representation was used
to determine the validombinations of eventdhat could occur,
referred to as a minterm. A minterm consisted of a current sta
and all active input signals. The following shows an excerpt of
what PLA definition might look like:

cs_idle, bus_req_h/ ns_bus_req;
cs_bus_req, bus_ack_h/ ns_bus_ack;
cs_bus_req, “bus_ack_h/ns_bus_req, bus_req_h;

The tool used to convethe PLA representation to aoverage
analysis test was limited in that iwvould only checkthe number

State transition analysis was also used in areas whetedgibe
was not explicitly implemented as a state machine, but its
functionality could be represented by an abstract modettfta
machine. This abstract model could be checked state
transition coverage. Ormrea where thigoncept was applied
was in thesystem and cache interface logic. Various pieces of
logic interacted together when processhits and misses on the
Victim Address File (VAF). Rather thaperforming coverage
analysis on each section of logic individualtile choice was
made to treat thidogic as a single entitand model it as an
abstract representation.

Coverage analysis was performed thre abstractmodel to
determine the events that quseudorandontests werecovering
and areas where coverage was inadequate. Sinsgdfeen and
cache interface ahe DECchip 21164 is highly programmable,
this section ofogic was particularly difficult tacover fully. By
performing this extensivecoverage analysis, we understood the
areas that were not well tested, armuld targetthe most
important of these for additional testing.

A smaller example of this was an analysis of the state of internal
cache blocks vs. commandsthe cache. This analysis resulted
in the table shown in figure 3:

Cache Block State

~V V V/S V/ID V/S/D

Commands |

Nop | .

Flti Pt. Load

Invalidate

Set Shared
€ Read

Rd Dirty

Rd Dirty Inv

V =valid S =shared D = Dirty
. = event cannot occur
8S« = more than 100 events of this type were seen

;eFigure 3: Example of a Coverage Analysis Matrix

When this table was generated, an error message al&s

generated because a Set Shared should not have been issued to a

block with V/Sstatus and #éccurrences othis type wereseen.
This triggered us to investigatehy this illegalcombination was
happening and a design bug was found.

of times a minterm occurred. This limitation was augmented by
other checking mechanisms such as assertion checkers in th# the caseabove, cross-products were based on 2 events

model that assured thainly a single minterm was asserted at
one time.

occurringwith respect to time.However, inthe analysefr the
DECchip 21164.there were often cases whethecking was
needed formany events at the same time. For example, the
internal trappinglogic of the chip washecked by creating a

coverage checkingest to seavhich combinations ofraps were
being generated at the same time. I&®king atthe number of
times certain trapsoccurred withinthe sameavindow (time
proximity) of othertraps it could be determined whether the
testing of the trap logic was sufficient.

When checking coverage on eveititat canall occur inthe same
time window, the question raised is "what &nough?"
Obviously, forthe traplogic casethe first level othaving each
trap asserted individually was needed. Newuld be having
each trap asserted witbvery other trapfor the second-level
cross-product. But what abouhe third level where all
combinations of anythree trapsoccur? Isthis complexity
needed? Depending on the number of traps, this nuoalodat
be small owverylarge. For théDECchip 21164, our goal was to
attaingood 1st and 2nd levedoverage. Additional levels may

Fromthis output, it was immediately seen ti@GACK at 1 CLK

was an event that was not occurring. Further analysis of why this
was not happening triggered the team clwoose parameter
settingsfor the pseudorandom methotisat would stimulatethis
event.

Case Analysis

While a model was executing, information was stored about the
occurrence of simple events. For example, a recordeftson

the number of times thé&bur instructionsssued simultaneously,

the number of times the translation buffers filled up, or the
number of times stall®ccurred. Sincehe configuration in
which the chip operated was randomized, a record was also kept
about theconfiguration information such ake Bcache size and
speed selected, thaystem interface options and timing, etc. At

have been analyzed to determine what combinations were beinghe end ofevery modelrun, thisinformation was stored to a

generated but complete multi-level coverage was not a goal.
Sequence Checking

Another way that signal traces were utilized was ltok for
sequences of events in a particular windowtiofe. Post
processingestscould be created to look fany combination of
events be thegtate transitions or single signal assertions. Bus
interfaces, interrupt assertions, traps aegmingly unrelated
events are particularly interesting to look at using this method.

On theDECchip 21164, event sequence checking wsed to

database which allowed collecting statistics across multiple runs.

Case analysis was used on BDIEECchip 21164 in a similar way

to sequence checking. The occurrence of an event could be
determined by looking ahe entries in the database. Matrices
could be created to show which combinations of events had or
had not occurreaver the course ofall the simulations. For
example, on thé&ECchip 21164he CPUSYS clockratio and

the secondary cache block size were programmable. Figure 5 is
an example showing whether or radt combinations of these
events occurred.

ensure that the transactor, stimulating sigstembus, wasfully

randomizing events. For example, usihg DECchip 21164,
systems can acknowledge command transactiotis variable
timing. Events were described to cheblat the CACK signal
was being asserted at various times. Figure was prodrarad
the post processing traces:

CACK Intervals

Total
[—

CACK at1 CLK | 0
CACK at2 CLK | 2
CACK at3CLK | 189
CACK at4 CLK | 271
CACK at5CLK | 234
CACK at 6 CLK | 199
CACK at 7 CLK | 199
CACK at 8 CLK | 122
CACK at9 CLK | 90
CACK at >9 CLK | 266
Total | *

Secondary Cache Size
(in bytes)
32 64
[——
CPU/Sys 3 |0 13784
Clock 4 |0 98341
Ratio 5 | O 14387
6 | 650 28374
7 | 787 71843
8 | 324 32847
9 [92992 17834
10 | 2834 39843
11 | 12833 18745
12 | 18324 18763
13 | 1433 81736
14 | 2 13498
15 |0 18327
Figure 5: Example of Coverage Case Analysis

Figure 4. Example of Sequence Checking Analysis

A table like theabove, would have indicatdtiat there was a
nice distribution ofCPU/Sys clockatios vs. block size when the
block size wa$4. However, forthe 32byte block size, systems
with a CPU/Sys clockratio or 3, 4, 5, and 15 were not being
chosen. A tabldike this would have triggeredhe verification
engineer to look at the scripts tlthiosethese parameters to find

out why these ratios were not being chosmrectly. Usually, CONCLUSIONS
when scripts would be changed to exercipesviously

unexercised events, additional bugs would be uncovered. Pseudorandomtest generation for design verification has
significant advantages over hand-generated foctsstd. To
Toggle Coverage realize its full potential, though, the issues of correctness

checking and coverage analysisnust be addressed. The
The simulator used in tHBECchip 21164 effort was capable of DECchip 21164 verification effort developedany different
giving alist of signals that were or wermt toggling for a given techniques for addressitigese issues. Selecting the appropriate

simulation. A toggled signal was one in which a transitiom technique to uséor specificareas of the design requirgdod

a O-logic level to a 1-logic level or a 1-logic level t®-#ogic engineering judgment. The verification effort wésghly
level was detectedToggle coverage coulindicate whether successful, andnany bugs were discovered prior to first-pass
signals were being wiggled, but it did rgve a goodndication silicon. Nevertheless, theressll room for improvement in the

of whether thelogic in that section was actually being verification methodology.
functionally used.

We utilized toggle coveragmly at a grostevel on theDECchip REFERENCES
21164. Toggle coveragaas checked for various sectiomghin
the chip to determine whether or not major areas of the chip werel. J. Edmondson e&ll., "Internal Organization of thélpha
being stimulated. Lists of signals that did rtoggle were 21164, a 300-MHz 64-bit Quad-issue CMORISC
checked tesee whetheany patterns emerged or major areas of Microprocessor," Digital Technical Journal, vol. 7, no. 1 (1995):
functionality were not being covered. This sometimes pointed 119-135.
out areas that needed to be stimulated further.
2. W. Anderson, "Logical Verification ¢fie NVAX CPU Chip
Fault Simulation for Functional Coverage Design," Digital Technical Journal, vol. 4, no. 3 (Summer 1992):
38-46.
Fault simulation was not usddr functional verification of the
DECchip 21164. Fault simulation igery computeintensive, 3. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M.
and it targets faults introduced during thmeanufacturing Leibowitz, and V. Schwartzburd, "Verification tife IBM RISC
process, not bugs introduced during the design process. Th&ystem/6000 by a DynamidBiased Pseudo-random Test
typical stuck-at fault model is not a useful model of design bugs. Program Generator,1BM SystemsJournal, vol. 30, no. 4
For these reasons, we did not use fault simulation during the(1991): 527-538.
verification phase of the project.
4. A. Ahi, G. Burroughs, A. Gore, S. LaMar, C-Y. Lin, and A.
ESCAPES Wiemann, "Design Verification of the HP 9000 Series 700 PA-
RISC Workstations," Hewlett-Packard Journal (August 1992):
Using the above techniquesthe DECchip 21164 verification 34-42.
effort was highly successful. First-pass silicon booted the
operating system and ran extensive diagnostics and user 5. D. Wood, G. Gibsonand R. Katz;Verifying a
applications. Even so, we discovered several thafsescaped Multiprocessor Cache Controller Using Random Test
our efforts to find them. Examining some tbése shows areas Generation," IEEE Design and Test of Computers (August 1990):
where improvements are necessary. 13-25.

Three bugs were related toypass mechanisms, where the
normal dataflow was skipped undesery specific timing
conditions. Althoughhe three bypasses were unrelatedach
other, and in different sections of the chip, it does indicate that
our coverage dhese bypass conditions was not sufficient. Had
we specifically looked for bypass-related coverage, we would
have noticedthis. To complicate matters, one of thebags
existed only in 32-byte cache modend B-cache speed
configurations of 4, 5, and 6. This indicatimst multi-level
event coverage is necessary for finding these verification holes.

One bug causethe Bcacheread/write timing to beoff by one
cycle. This was thaype of thing we targeted assertion checkers
at, and infact an assertion checker existed look for this.
Howeverthe assertion checker itself was natrking properly,
thus allowing the bug to evade detection.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

