Hardware Emulation for Functional Verification of K5

Gopi Ganapathy, Ram Narayan, Glenn Jorden, Denzil Femandez
Advanced Micro Devices
5900 E. Ben White Blvd.
Mail Stop 615
Austin, TX 78741

Ming Wang, Jim Nishimura
Quickturn Design Systems
440 Clyde Avenue
Mountain View, CA 94043-2232

The K5™ microprocessor is a 4 Million
transistor, superscalar, X86 microprocessor. The K5™
microprocessor is an AMD original design, verifying
compatibility with the existing X86 architecture and -
software is crucial to its success in the market place.
The X86 architecture has been constantly evolving over
several years without any published specification. The
primary mechanism for functional design verification of
an X86 processor is simulation. The ability to execute a
good sample set of the X86 software base on a model of
the processor architecture before tapeout, is key to
achieving very high confidence first silicon. The
Quickturn Hardware Emulation system allows us to
map a model of the design onto hardware resources and
execute it at high speeds. In this paper we present the
emulation methodology that was jointly developed for
K5 and applied successfully to meet our functional
verification goals.

1. INTRODUCTION

The fastest hardware accelerators commercially
available today, can simulate a full gate level model of
the K5™ microprocessor in the low 100Hz range. At
this simulation speed, booting an operating system like
Microsoft® Windows®, and then starting up an
application like Word or Excel is practically impossible.
{1] and [2] have described the benefits and the value of a
hardware emulation-based verification methodology.

Hardware Emulators, map a gate level model of
the design onto Field Programmable Gate Arrays
(FPGA) on the emulation system. This model can be
executed in the high 100KHz range, giving us three to
six orders of magnitude improvement in model execution
performance. This speed combined with the very high
instructions execution rate per clock cycle (IPC) of the
four issue, superscalar KS™ core, allows us to interface
the emulator directly onto real hardware like a simple PC
and execute X86 applications in minutes, instead of days
and months on a simulator.

1I. EMULATION HARDWARE

The K5™ emulation system used two
331rd Design Automation Conference®

Permission to make digital/hard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 96 - 0696 Las Vegas, NV, USA
©1996 ACM 0-89791-779-0/96/0006..$3.50

generations of emulation hardware from Quickturn
Design Systems. The initial system was the MARS™
IP2500 (Fig. 1). This system was comprised of five
IP500 chassis interconnected together with
approximately 400 cables. Each IP500 chassis has 5
logic boards (LBM) with a rated capacity of 100K gates
each, and a total system capacity of upto 2.5 million
gates. However, the actual gate densities vary depending
on the topology and regularity of the logic structures
being mapped onto a board. ~LBM-LBM
interconnections are all unidirectional, three
unidirectional pins are required to model every bi-
directional bit. A Configurable Memory Module (CMM)
is used for modeling array structures. The target system
is a generic the X86 PC system running in the MHz
range with a custom interface board to buffer
transactions to the slower emulator side (Fig. 2).

SATURN™, the current generation emulation
system from Quickturn, utilizes higher capacity FPGAs
and better interconnect technology. The entire K5 design
now in a single Saturn™ chassis with 11 logic boards.

II1. DESIGN PARTITIONING

The K5™ microprocessor has a four issue
superscalar processor core, with two ALUs, one Branch
Unit, one Load Store Unit, a Floating Point Adder,
Floating Point Multiplier and Floating Point Shifter.
There are 18 shared, 42 bit bi-directional buses that
connect between all of the above functional units. All
these buses feed into the multi-port register file and
reorder buffer. Additionally, there are wide buses from
the Instruction and Data Caches feeding the instruction
decode block and the load store sections. Partitioning the
K5 into 25 LBMs in such a way as not to overflow LBM
and FPGA pin limits, proved to be a major challenge.

Special modeling and identification of all
tristate signals is also necessary. The multiport register-
file and reorder buffer had to be modeled along write
port boundaries with duplication of storage bits.
Tristateable wired-OR structures had to be converted to
n-input static OR gates with tristate buffers on the OR
gate output to reduce the number of signals traversing
LBMs. The initial bringup time of the K5 hardware
emulation system was dominated by this partitioning and
mapping iterations to meet emulator constraints. The
SATURN™ emulation system with its higher logic and
pin capacity reduced the partitioning problem to a large
extent.

IV. DESIGN MAPPING

Both generations of Quickturn Emulation
systems use the Xilinx™ FPGA as basic building blocks
for mapping logic. The entire microprocessor has to be
mapped into a set of basic primitives like flip-flops,
muxes and four input combinational functions that are
implemented in a Xilinx FPGA. For example, there is no
direct support for the thousands of complex, switch level
circuits implemented in a full custom processor like the
K5™ microprocessor. So a gate level emulation model
that is functionally equivalent to the real transistor level
implementation of the design has to be generated.

Quickturn software uses memory compilers that
map memory arrays to FPGAs directly. This requires
that internal memory arrays be represented as black
boxes with read and write enables, address and data
buses. Simplified versions of the IOPADS, Clock
Generators, Bus drivers and receivers are built at a gate
level for emulation. All delay dependent logic, like self
timed structures, are removed from the emulation model
3] and replaced with functional equivalents. External
timing signals are used.

Maintaining consistency between this additional
emulation view and the “real” representation of the
design was expensive and required dedicated emulation
model build resources. The initial K5™ emulation
model was verified by simulating the K5™ test base on a
hardware accelerator. Gate-Switch equivalence checkers
were later used to maintain this model.

Thousands of FPGAs are involved in mapping a
K5™ class design on the emulator. The partitioning and
placement of a cone of combinational logic, onto FPGAs
that are physically far apart, and routing signals between
these FPGAs using long cables makes it necessary to
handle very large delays and signal skews on the
emulation system.

KS5 is a latch based design using 2 Phase, non-
overlapping clocks. There is a significant emphasis
during the development phase to make the timing
analysis of the K5 emulation model as simple as
possible. A complete list of all gated clock locations is
provided in advance to make sure that that setup
violations on the conditional signal to a gated clock can
be handled. By varying the non-overlap between the
phases and the duty cycle of the phases, hold time and
critical path issues were identified and resolved.

Mapping the emulation view of K5 onto the
Quickturn hardware involves four major steps. The first
step is Model Build, where an emulation view of the
design is generation. The second step is Partitioning,
where the design is partitioned into LBMs in such a way
as to meet the logic and pin constraints of each LBM.
This is followed by Compilation, where the logic
partition assigned to each LBM is flattened, checked for
connectivity and timing consistency and further
partitioned into smaller logic clusters, each of which can
fit into a single Xilinx FPGA. This involves steps like
placement and routing within and between FPGAs. The
final step is Linking, where all of the LBMs are linked
and the final interconnections are completed. At this

point the design is ready to be downloaded onto the
emulator and tested.

The process of starting from a netlist and
generating the emulator program files is very compute
and disk intensive. The large number of LBMs and the
thousands of FPGAs involved allows us to parallalize
this task. We used several workstations to compile
LBMs in parallel. The FPGA place and route step used
hundreds of networked workstations to generate the
required program files for the FPGAs in the emulation
system..

V. EMULATOR OPERATION MODES

The K5™ simulation environment models a
simple X8 PC system with external
memory(EXTMEM), memory controller(EXTCTL), and
event generators and monitors that mimic the bus master
and other devices on a PC. Test suites are developed in
X86 assembly language and assembled, linked and
loaded in EXTMEM. EXTMEM is mapped onto the
CMM, and can be read and written without disturbing
the rest of the design. This mode is referred to as the
Simulation (SIM) mode. \

The SIM mode of operation on the emulation
hardware allows us to use the emulator as a very fast
simulator. An external monitor board is used to drive the
clocks, reset the system and display the pass or fail status
of a test on a custom built monitor board. This mode is
very useful during the initial validation phase to verify
the functionality of the emulation model through full
regression of the K5™ test suite. The DebugWare, a
combination tester and logic analyzer, that is part of the
emulation system is used to probe key signals and
“readback” most internal nets for debugging failures.
The readback operation utilizes a scan architecture [4] to
retrieve the internal state of the desired net at specified
times.

In the In-Circuit Emulation (ICE) mode the
pins of the KS™ microprocessor are brought out to the
X86 PC target system. This is the in-circuit mode used to
execute key X86 applications. An in-circuit buffering
mechanism (Fig. 3.) is implemented to facilitate
switching between ICE and SIM modes without
disturbing the design loaded onto the emulator. This
reduces the need to maintain 2 different emulation views
of the design, one for each mode of operation.

Incremental changes to the design can be made
at differently levels. For small changes localized to a
single LBM, the partitioned database for that specific
LBM is carefully edited, and the affected FPGAs are re
partitioned and compiled. This is accomplished in a few
minutes. For more complex changes affecting multiple
LBMs, the LBM database needs to be edited and re-
partitioned. This level of incremental changes takes from
a few hours to a day, depending on the number of LBMs
affected.

VI. KS HARDWARE EMULATION CYCLE

During the course of the K5 project the
hardware emulation has been called upon to perform a

variety of tasks. The K5 hardware emulation project
cycle could be broken down to key phases:

Methodology Phase: This phase involves the
lan, design and initial experiments that results in the
ardware emulation methodology. Compilation and

partitioning of the entire K5 design was achieved by
working with smaller blocks, and getting a better
estimate for the optimal partition of the design. The
close interaction of the Quickturn R&D team and AMD
engineers was critical to the success of this phase. Once
the first K5 database was successfully compiled, the
methodology and the design is initially verified with very
small test cases, running for a few hundred clock cycles.
A number of hardware and software issues were resolved
before these small test cases were successfully executed

[51.

Validation Phase: The goal of this phase is to
verify the K5™ processor in emulation with the
validation suites. This phase is a confidence builder in
the emulation methodology and system. Experiments are
performed to arrive at the optimal parameters for
operating the emulator. The hardware is operated in
primarily the SIM mode. In parallel, the emulation
interface board and target system is manufactured and
tested at the emulation frequencies.

Systems Verification Phase: This is the most
critical phase of the project cycle where we execute X86
applications. Initially simple diagnostic tests that verify
the hardware interface are run to test the ICE mode
operation. These diagnostics are run from the ROM on
the motherboard. The next step is to run’ billions of
cycles of real X86 application software to verify key
compatibility and functionality issues. This level of
verification and testing can be achieved before first
silicon solely due to the execution speed of hardware
emulation. In this phase the hardware emulator is the
primary failure detection mechanism, ably supported by
extensive random test generation in simulation.

Silicon Test Support Phase: In this phase the
primary function of the hardware emulator is to
reproduce and isolate the failures found using silicon
validation boards. The emulator is more of a failure
isolation and fix verification platform. Incremental
changes made in the design are verified on emulation
before committing these fixes to the design database.

Systems Regression Phase: The primary task of
hardware emulation in this phase is systems regression
for verifying every revision of the design prior to
tapeout. The regression/debug process starts with
executing a number of 16 bit and 32 bit X86
applications. A harsh environment is created with other
bus masters and event generators plugged into the target
system for stressing the design.

VII. DISCUSSION

The design and development costs of successful
emulation are significant. Large emulators are
expensive, and thus limited resources. There is a high
startup cost in full custom designs, due to the modeling
and partitioning constraints enforced. A dedicated team
of engineers is often necessary to effectively compile

and debug a design on the emulator. When compared to
simulators, the time-to-debug, measured as the time it
takes to be productively debugging on the emulator from
an initial netlist is measured in hours, instead of minutes.
Debug productivity is also affected due to the cost of
adding probes to observe additional signals and iterating
in this process to isolate failures.

However, compared to debugging silicon the
emulator provides a friendlier and more productive
environment for isolating failures and verifying bug
fixes. It is possible to try out different options for tuning
architectural performance or bug fixes before deciding
on an optimal fix. The emulation compilation time is
insignificant compared to silicon fabrication and system
development time is very attractive.

Speed and the ability to directly interface with
real hardware are the two major differentiating factors
between emulators and traditional simulators. The very
high emulation speeds give us the ability to debug X86
applications on a model of the design well before first
silicon with a simulator like debugging environment.
Successfully executing key operating systems and
applications before tapeout is a huge confidence builder
and positions the design for silicon validation on
hundreds of PC systems as soon as first silicon is
available. This gives us the ability to quickly go after
those bugs that are difficult to find. If we relied solely on
directed tests and random test generators, it is possible to
miss that one bug which prevents us from running key
applications on first silicon, thus delaying silicon
validation and hence final production.

The K5™ emulation system was used to debug
and verify several key 16 bit and 32 bit X86
applications. Several bugs were identified and fixed in
this process. Emulation was instrumental in achieving
very functional first silicon on the K5™ microprocessor.

VII. CONCLUSIONS

Hardware emulation of a design the size and
complexity of K5™ microprocessor has proved
challenging. A large number of operating systems
including Windows® 3.1, Windows® NT, Windows®
95, 0S/2®, Linux® and their application have been
demonstrated on the emulator. Despite a rigorous
directed test generation flow and an extensive random
test generator flow a few key bugs have been found and
fixed using the emulator. The K5™ hardware emulation
system has been extremely valuable in getting the first
versions of K5™ microprocessor into production.

In the future with higher emulation speeds, we
expect the emulator to be a very useful tool for tuning
architectural performance against a wide range of
applications and benchmarks.

IX. ACKNOWLEDGMENTS

The success of the K5 hardware emulation is
attributed to the contributions of Elango Rajagopal, Tom
Maciukenas, Rama Gopal, David Sone, Ravi
Subramanian, Murali Chinnakonda, Jong-Won Yuk and
the authors. The authors acknowledge the support

extended by the Quickturn R&D and Expert Users
groups.

REFERENCES

[1] James Gateley et. al., “Ultra Sparc-I Emulation.”
32nd Design Automation Conference Proceedings, 1995.
[2] Jainendra Kumar et. al., “Emulation Verification of
the Motorola 68060”. Proceedings of the 1995
International Conference on Computer Design, 1995.

[3] Gopi Ganapathy, “Hardware emulation methodology
on Krypton.” AMD Internal Report, 1993.

[4] E. B. Eichelberger & T. W. Williams, “A Logic
Design Structure for LSI Testability”, Journal of Design
Automation and Fault-Tolerant Computing., Vol. 2, pp.
165-178, May 1978.

[5] Ram Narayan, “Performance monitoring and
verification methodology in RTL simulation and
hardware emulation”, AMD Internal Report, September
19,1995.

LBM1 1

LEBMT

BW
EBM.D

LEM1
:]

_L'gm -»D

1

NI ..

il

w3

P 111
an
m)
=
n

768 Signals to Target

[L] Led----

[1070----

100K Gates
1472 Signals (16x92)
144 Tristates

Xilinx 4005

LBM

1000 Gates
96 Signals

Fig. 1. MARSIII Emulator Building Blocks

QUICKTURN
MARS It

SATURN

EMULATOR CUSTOM BOARD
[FOR VALIDATION
SUITE REGRESSION

QUICKTURN

EMULATION

INTERFACE [>

BOARD K5 SYSTEM
EMULATION FRIENDLY
TARGET SYSTEM -

DAS/ EMULATION

GENERATOR

TARGET SYSTEM
XSIMICE

Ks ™ r\L]:_—mmx

INOUT » |

EXT

SYS

Fig. 2 K5 Emulation Hardware

Fig. 3. Buffering Scheme for In-Circuit Emulation

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

