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Abstract— A novel technique is presented which employs Pole
Analysis via Congruence Transformations (PACT) to reduce
RC networks in a well-conditioned manner. Pole analysis is
shown to be more efficient than Padé approximations when the
number of network ports is large, and congruence transforma-
tions preserve the passivity (and thus absolute stability) of the
networks. Networks are represented by admittance matrices
throughout the analysis, and this representation simplifies
interfacing the reduced networks with circuit simulators as
well as facilitates realization of the reduced networks using RC
elements. A prototype SPICE-in, SPICE-out, network reduc-
tion CAD tool called RCFIT is detailed, and examples are pre-
sented which demonstrate the accuracy and efficiency of the
PACT algorithm.

1. INTRODUCTION

The trends in industry are to design CMOS VLSI circuits with
smaller devices, higher clock speeds, lower power consumption,
and more integration of analog and digital circuits; and these
increase the importance of modeling layout-dependant parasitics.
Resistance and capacitance of interconnect lines can delay trans-
mitted signals. Supply line resistance and capacitance, in combina-
tion with package inductance, can lead to large variations of the
supply voltage during digital switching and degrade circuit perfor-
mance. In mixed-signal designs, the current injected into the sub-
strate beneath digital devices may create significant noise in
analog components through fluctuations of the local substrate volt-
age.

In order for designers to accurately assess on-chip layout-
dependent parasiticsbefore fabrication, macromodels are
extracted from a layout and included in the netlist used for circuit
simulation. Very often, these effects are modeled solely with
lumped resistors and capacitors which form linear, multiport net-
works [1][2][3]. However, the networks are typically so large that
simulation becomes impractical or impossible given time and
memory constraints. Fortunately, most contain a relatively small
number of nodes, referred to asport nodes, which connect the net-
work to the rest of the circuit, and a larger number ofinternal
nodes. It is possible to replace a linear network with one contain-
ing a smaller number of internal nodes while retaining the impor-
tant port characteristics so that accurate simulation can be
performed efficiently. The process of finding such a network is
referred to asnetwork reduction. It is important to ensure the abso-
lute stability of the reduced networks so that artificial oscillations
are not introduced during circuit simulations.

The most well known method used to approximate the multi-
port characteristics of general linear networks is Asymptotic
Waveform Evaluation (AWE) [4]. In this approach, the Laplace

domain moments of the port characteristics are iteratively calcu-
lated, and these are subsequently used to find poles and residues
via the Padé approximation. There are several issues which make
AWE a less than ideal choice for synthesizing reduced RC net-
works. First, the calculation of higher moments becomes ill-con-
ditioned, so that increasing the number of moments used in the
approximation does not guarantee a better fit. Heuristics have
been developed which overcome this problem by repeating the
moment expansion at several frequencies, but these are more
computationally expensive (see [5] and references therein). Sec-
ond, asymptotic stability of the reduced network can be main-
tained by dropping positive poles, butabsolute stability is not
easily ensured.

A new multiport reduction technique has been developed
called “Matrix Padé via a Lanczos-type process” (MPVL) [6].
This approach avoids the ill-conditioning of AWE by using a non-
symmetric, blocked version of the Lanczos algorithm to build a
reduced order matrix which approximates the behavior of the
original network. The basic Lanczos algorithm is discussed in
detail in Section 3. Although the moments of the network are
never directly calculated, the method is a Padé approximation as
the reduced order matrix is formulated in such a way that
moments are implicitly matched and the individual terms of the
matrix are representable as poles and residues. One disadvantage
of the application of MPVL to RC networks with a large number
of ports is that MPVL must store two dense matrices in working
memory whose dimensions are equal to the product of the number
of port nodes and the number of internal nodes. It will be shown in
Section 4 that storage requirements and vector computations
increase as the square of the number of ports. Finally, published
work on MPVL does not address the absolute stability of reduced
networks.

In [7], which presents an algorithm to reduce large RC macro-
models of the substrate in CMOS layouts, a derivation of multi-
port admittance based on partitions of the original network
matrices was introduced. It was shown that passivity could be
ensured by formulating the reduction as congruence transforma-
tions applied to the partitions. Here, the symmetric Lanczos pro-
cess was used to form a Padé approximation of the multiport
admittance characteristics in a manner as well-conditioned as
MPVL, and the method has the same memory property as MPVL
when a large number of ports is used.

In this paper, we present a new formulation, referred to as Pole
Analysis via Congruence Transformations (PACT), which is fun-
damentally different from the previous methods because it is
based on a pole analysis of the network and is not a Padé approxi-
mation. In addition to being as well-conditioned as MPVL and
preserving passivity, our strategy addresses the prevention of error
due to loss of orthogonality in the Lanczos process, while improv-
ing memory efficiency and reducing the number of vector prod-
ucts required when the number of ports is large. The number of
internal nodes is assumed to be more important than the number
of branches, as the process is designed for the reduction of large
multiport 3-D RC mesh networks with strongly connected internal
nodes. Internal nodes are eliminated by transforming admittance
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matrices representing the full network into smaller equivalent
matrices which can be directly incorporated into a circuit simulator
or can be used to generate SPICE-compatible RC netlists. The
transformations are formulated to preserve the poles of the net-
work between DC and a user-specified maximum frequency.

This paper details the PACT algorithm and presents a prototype
CAD tool utilizing the technique. Standard mathematical notation
and a review of the formulation of the multiport admittance of a
general RC network are presented in Section 2. In Section 3, con-
gruence transforms are introduced which reduce the size of an RC
network using pole analysis. Section 4 provides a discussion of the
memory requirement and computational complexity of the algo-
rithm. The use of PACT in a SPICE-in, SPICE-out, RC network
reduction CAD tool called RCFIT is outlined in Section 5, and
several examples of reduction using RCFIT are furnished in Sec-
tion 6. No proofs are provided with this manuscript, but these are
presented in the journal article [8].

2. FORMULATION

This section reviews the multiport admittance formulation
given in [7] which is required for Section 3. The math conventions
used in this paper are adopted from Golub and Van Loan [9]. All
variables are real with the exception ofi…n which are integers,
ands which is complex frequency. Under this convention,x is a
scalar,x is a vector,X is a matrix,XT is the transpose ofX, X–T is
the inverse of the transpose ofX, and xij  is the element in theith
row andjth column ofX. All vectors are column vectors except
where noted, and the identity and zero matrices are represented as
I  and0 respectively.

The admittance of an RC network withm+1 port nodes andn
internal nodes can be represented by the symmetric conductance
and susceptance matrices,G and C. The network hasm ports
because one of the port nodes is a common node. These matrices
have m+n rows and columns and relate nodal voltage,x, and
injected current,b, in the Laplace frequency domain as

. (1)
If the values of the resistors and capacitors are positive, then each
diagonal entry ofG andC is positive and greater than or equal to
the sum of the absolute value of the off-diagonal elements in the
corresponding row. These conditions are sufficient, but not neces-
sary, to ensure that the matrices are non-negative definite. Non-
negative definite symmetric matrices are ones for which all of the
eigenvalues are greater than or equal to zero. As will be shown
later, this property is related to the passivity of the network.

To formulate the multiport admittance,Y (s), of the network, a
partitioning of (1) is formed by ordering the entries so that the
common node is node 0, and so that the firstm rows correspond to
the other port nodes and the finaln rows to internal nodes. Eq. (1)
is rewritten as

, (2)

andx´ andx˝ represent them port node voltages and then internal
node voltages respectively. The internal node partition ofb is zero
because current cannot be injected into these nodes. Them×m
matricesA and B are referred to asport matrices since they
describe the branch interconnects between the port nodes. In the
same way, then×n matricesD andE are internal matrices. The
n×m matricesQ and R are calledconnection matrices as they
describe the branches that connect internal nodes to port nodes.
The matricesA, B, andE are symmetric and non-negative definite,
and it can be show thatD is symmetric and positive definite (non-
singular) if all resistances in the network are greater than zero and
if, for each internal node, there exists a DC path to a port node.
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The definiteness ofD is key to the subsequent derivation of the
algorithm, and is assumed to be true. Eq. (2) provides two equa-
tions with the two unknowns,x´ and x˝. Using the definition
Y (s)x´ = b´, and eliminatingx˝ gives

. (3)
The poles ofY (s) occur where (D+sE) is singular, and are equal
to –λ–1 whereλ is the solution to the general eigenvalue problem

. (4)
SinceE is symmetric non-negative definite, andD is symmetric
positive definite, the poles ofY (s) are real and less than zero.

3. CONGRUENCE TRANSFORMS

A congruence transformation of a square matrixW is defined
as the transformationX = VT WV. Here,V is referred to as the
congruence transform, and the matricesW andX are said to be
congruent. A fundamental property of square, non-singular con-
gruence transforms is that they preserve the eigenvalues of the
generalized symmetric eigenvalue problem. For example, the
eigenvalues given by

(5)

(and therefore the poles ofY(s)) are identical to those given by (4)
if V is square and non-singular. Thesize of a network represented
by G andC can be reduced through the application of a congru-
ence transform with fewer columns than rows since the dimension
of the resulting matrices is equal to the number of columns in the
transform matrix. Although non-square transforms do not neces-
sarily preserve the poles ofY (s), some can be formulated which
preserve a selected set of poles. Another important property of all
congruence transforms, including those which are non-square or
singular, is that the definiteness and symmetry of the original
matrix is preserved, and it was shown in [7] that a necessary and
sufficient condition for RC networks to be passive is that the con-
ductance and susceptance matrices representing the networks be
non-negative definite. As a result,any passive RC network which
is reduced by congruence transformations remains passive.

The reduction of a network is accomplished using two separate
congruence transforms which are formulated to preserve admit-
tance poles without matching any, but the first two, moments, and
each is presented in a separate subsection. First, a square trans-
form converts the internal conductance matrix,D, to the identity
matrix and the connection conductance matrix,Q, to zero.
Unwanted poles are then isolated and eliminated with a second,
non-square transform.

3.1 TRANSFORMATION BASED ON CHOLESKY FAC-

TORIZATION

The first congruence transform is used to convert the internal
conductance matrix,D, into the identity matrix and to eliminate
the connection conductance matrix,Q. The transform based on
the Cholesky factorizationLL T = D (L  is a lower triangular
matrix) is

. (6)

The corresponding transformation of the network is

(7)

and
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, (8)

whereX = D–1Q, W = EX, andP = R–W are intermediate vari-
ables. Eq. (3) is rewritten using the partitions ofG´ andC´ as

, (9)
and a straightforward, but tedious, substitution of variables shows
thatY (s) in (9) is identical to that in (3).

3.2 TRANSFORMATION BASED ON POLE ANALYSIS

Since the poles of the network occur where (I +sE´) is singular,
they can be isolated by diagonalizingE´, and this is done using the
symmetric eigendecomposition,E´ = UΛUT. The diagonal matrix,
Λ, contains the eigenvalues ofE´, and U is the square matrix
whose columns are the corresponding eigenvectors.U is orthonor-
mal meaningUT U = I . The eigenvectors diagonalizeE´ in the
transformations

(10)

and

, (11)

so thatE˝ = UT E´U = Λ is the diagonal matrix containing the
eigenvalues ofE´. Y (s) is preserved ifU is square and non-singu-
lar, and this is true ifU contains the complete set of eigenvectors.
Now that both internal matrices are diagonal, (9) can be written as

, (12)

wherer i is theith row ofR˝ and eii  is theith diagonal ofE˝. Each
of then terms associated with a pole in (12) represents the transfer
function of a first order high pass filter, and the size of the network
is reduced without significantly affecting the low frequency behav-
ior by dropping those terms with pole frequencies larger than a
specified cutoff frequency, 2πfc = λc

–1. Terms are dropped by
eliminating the rows and columns ofG˝ andC˝ for which the cor-
responding diagonal ofE˝ is less thanλc.

The Lanczos algorithm, which efficiently finds the extreme
eigenvalues and eigenvectors of a large symmetric matrix [10], is
ideal for this application because rows and columns containing
unwanted poles can be dropped by eliminating the corresponding
eigenvectors (columns) inU before the transformation given by
(10) and (11) is performed. Only a small subset of the eigenvalues
and eigenvectors ofE´ need to be calculated, namely those with
eigenvalues greater thanλc. The most important property of the
algorithm is that no modification ofE´ is required so that sparsity
can be maintained by avoiding a direct calculation — the solution
to E´x is found by the product of sparse matricesL–1EL–T x.

The basic Lanczos algorithm is expressed by the recursion

, (13)

where

(14)

 (Euclidean norm) (15)

and

. (16)
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To initiate the recursion,w1 is set to a random vector with a norm
of 1, andβ0 is set to 0. The symmetric matrix to be evaluated isA,
and the vectorsw1…wk are called theLanczos vectors. These vec-
tors are orthonormal, meaning thatwi

T wj = 0 for i ≠ j, and
wi

T wj = 1 for i = j. Only two vectors need to be in working mem-
ory at a single time, therefore the memory and the number of vec-
tor products required to calculate the next vector does not increase
with the number of iterations,k. The terms from (14) and (15) are
used to form the symmetric, tridiagonal matrix

, (17)

and the eigenvalues ofT, known as theRitz values, approximate
the eigenvalues ofA. The Ritz values generally converge first to
the extreme eigenvalues ofA, and additional vectors are calcu-
lated until all of the Ritz values in a specified range have con-
verged. The associated approximate eigenvectors ofA, known as
theRitz vectors, can then be found by

U = WZ (18)
whereZ is thek×k matrix of eigenvectors ofT, thek columns of
W are the Lanczos vectors, and the columns ofU are the Ritz vec-
tors corresponding to thek Ritz values. Two shortcomings of the
basic algorithm are that only one eigenvalue of a group of
repeated eigenvalues is found and that the rate of convergence is
reduced when two or more eigenvalues are close together.

In practice, orthogonality of the Lanczos vectors is lost (i.e.
wi

T wj ≠ 0 for i ≠ j) after a sufficient number of iterations so that
incorrect eigenvalues may be found. Variations of the algorithm
deal with the loss of orthogonality in different ways. The simplest
orthogonalizes each Lanczos vector with all previous vectors [11].
Although it is accurate, this method tends to be inefficient because
the memory required increases linearly withk and the number of
vector products required increases quadratically. At the other
extreme, no extra reorthogonalization is performed, andspurious
eigenvalues resulting from the loss of orthogonality are identified
and eliminated as a post processing step [12]. A compromise algo-
rithm, called Lanczos Algorithm with Selective Orthogonalization
(LASO) [13], maintains orthogonality withselective orthogonal-
ization whereby new Lanczos vectors are orthogonalized against
the small set of converged Ritz vectors when a potential loss of
orthogonality is detected; that is, the step

(19)

is added after (13) whenever the right-most term of (19) is signifi-
cantly non-zero. The columns ofUj contain the Ritz vectors which
have converged by iterationj. This method is best suited when a
small subset of eigenvalues and eigenvectors is required, and, in
addition, it automatically finds multiple eigenvalues. Because of
these features, LASO is used by RCFIT which is discussed in Sec-
tion 5.

4. COMPUTATIONAL COMPLEXITY OF THE PACT
ALGORITHM

Here, the numerical operation and memory requirements of the
methods outlined in the previous sections are compared to similar
methods based on the Padé approximation, namely the algorithms
given in [6] and [7]. The assumption is made that the number of
internal nodes in the original network,n, is larger than, but pro-
portional to, the number of ports,m, and the number of branches
connected to each node is independent ofm. Requirements are
analyzed for the case in which the lowest frequency pole of the
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network is greater than the cutoff frequency so that no poles are
retained. This analysis provides a good estimate of the memory
and computational complexity when the number of low frequency
poles is small.

Referring to Section 3.1, factorization of the internal conduc-
tance matrix requires O(m1.0…1.5) operations and O(m…mlogm)
storage [14], and these are identical to those of the Padé-based
methods. The left-most and right-most ranges in the operation and
storage expressions of this section correspond to tree-like and
mesh-like networks respectively. Calculation ofA´ andB´ requires
O(m2) memory to store the lower triangle of each matrix, and
O(m2…m2logm) operations. The requirements forA´ andB´ are
dominant whenm is very large, and, because these matrices are
equal to the first two moments ofY (s) expanded ats = 0, the Padé-
based methods have identical requirements for these moments.

Referring to Section 3.2, the memory required for LASO (2
Lanczos vectors of lengthn) is O(m), and the operations required
are O(m2…m2logm) assuming the number of iterations required
to find the first pole is linearly dependant onm. The Padé-based
methods use the block Lanczos process with a block size ofm+1,
and the first pole is identified after the calculation of at least two
blocks. In this method,m+1 Lanczos vectors are stored and used
to orthogonalize each new vector; therefore, this method requires
O(m2) memory and O(m3) operations to find the first pole. The
memory requirement (m×n elements) is greater than that for the
port matrices (m2 elements) becausen is typically much larger
thanm. As a result, the Padé-based methods are significantly less
efficient whenm is large and the number of low frequency poles is
small.

5. RCFIT
RCFIT is a SPICE-in, SPICE-out RC network reduction CAD

tool, and a flowchart is shown in Figure 1. The two columns on the
right side of the figure show a graphical depiction of the conduc-
tance and susceptance matrices after each step. First, an input
parser reads a SPICE netlist, and extracts all RC elements. Any
node in the netlist which is connected to a resistor or capacitor as

Figure 1.  Flowchart of RCFIT. The two columns on the
right depict the conductance and susceptance matrices after
each step.
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well as to a device other than a resistor or capacitor is made a port
node.

The RC netlist is loaded into sparse matrices containing the
partitions ofG andC in a process called stamping. The transforms
given in Section 3 are then used to reduce the matrices. The trans-
form based on Cholesky factorization, causesA and B to be
dense,Q to be zeroed, andD to be diagonalized. It was shown in
[7] that this sparse factorization is an order of magnitude faster
than sparse LU factorization. Memory is conserved by calculating
one column at a time of the intermediate matrices associated with
(6…8) so that onlyn elements need to be stored. For the same rea-
son, calculation ofR´ is delayed until it is needed for the trans-
form given by (11). The second transform uses LASO to find
eigenvectors for eigenvalues below a cutoff frequency which is
set so that the error at the user-specified maximum frequency is
bounded by the user-specified error tolerance (e.g., a 5% tolerance
requires the cutoff frequency to be 3.04 times larger than the max-
imum frequency). The eigenvectors are used to diagonalize the
internal susceptance matrix,E, and to reduce the number of inter-
nal nodes. Before the matrices are unstamped, sparsity is
enhanced using a heuristic which drops very small off-diagonal
elements while maintaining passivity. The unstamped netlists are
sent to a parser that outputs a SPICE netlist which is identical to
the original except the RC networks have been replaced by their
reduced equivalents.

6. EXAMPLES

All examples are accomplished on a Sun SPARC-20 worksta-
tion using RCFIT and HSPICE [15]. An illustrative example is
first presented which is simple enough that the original netlist and
the reduced admittance matrices can be easily depicted. Figure 2
shows a large CMOS inverter which drives a second inverter over
a long line with a distributed resistance and capacitance of 250Ω
and 1.35 pF respectively. The line is modeled using a 100 segment
RC ladder, and the corresponding SPICE netlist is reduced by
RCFIT with a specified error tolerance of 5% and maximum fre-
quency of 5 GHz. A single pole is found at 4.7 GHz — thus, the
reduced network has one internal node. The admittance is speci-
fied as

, and , (20)

where the first two rows of the matrices correspond to the port
nodes 1 and 2. In Figure 3, which shows the results of a transient
simulation, the effect of the transmission line can be seen by com-
paring results with the line removed and with the 100 segment
line in place. A two segment line, whose total resistance and
capacitance are identical to those of the original line, is also
included to show that (20) gives a better fit while using the same
number of internal nodes.

Figure 2.  CMOS inverter pair separated by an RC trans-
mission line with a distributed resistance and capacitance of
250Ω and 1.35 pF. The line is modeled with 100 lumped seg-
ments.
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The next example shows the reduction of the RC network
model for interconnect parasitics in a CMOS 8 bit digital multi-
plier containing 7264 transistors. Simulations were performed for
the circuit without parasitics, with the original RC network model,
and with the network reduced using a tolerance of 5% and fre-
quency of 500 MHz. The output of one of the critical paths from
an HSPICE simulation is shown in Figure 4, and statistics on the
individual simulations are given in Table 1. It is clear that the criti-
cal path is significantly affected by layout parasitics, and the
reduced network accurately models these effects while reducing
simulation time by 12%. The time and memory savings are not
large in this example because the time required to analyze the
(non-linear) transistors is large compared to that required to ana-
lyze the RC interconnect network.

The next example shows the reduction of a 3-D RC mesh used
to simulate voltage fluctuations in the substrate which result from
current injected due to switching activity in a nearby CMOS one-
bit full adder. The adder contains 22 MOSFETs, and each body ter-
minal node is a port into the substrate macromodel. Two port
nodes are also used for the Vdd and Vss well and substrate con-

Figure 3.  Effect of transmission line models on output volt-
age for the circuit in Figure 2.
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Table 1. Reduction and simulation statistics for the CMOS
8 bit multiplier containing 7264 transistors.

Simulation
Total
Nodes

R’s C’s

RCFIT
Reduction

HSPICE
Simulation

Time
(sec)

Mem.
(Mb)

Time
(sec)

Mem.
(Mb)

no RC 3650 0 23 — — 5855.9 31.1

with RC 13770 10120 10143 — — 7563.8 37.2

reduced RC 5674 2031 4914 4.1 0.6 6621.5 31.1
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Figure 4.  Effect of RC interconnect parasitics on a critical
path of the 8 bit digital multiplier.

tacts, and an additional one is included to monitor the substrate
voltage at a point near the adder. Therefore, the total number of
port nodes is 25. The total number transistors in the circuit is 28 as
the three inputs to the adder are driven by separate CMOS invert-
ers.

The statistics on the reduction of the mesh using several fre-
quencies and a 5% tolerance are shown in Table 2. The last col-
umns of the table show the time and memory required to perform
the frequency domain analysis presented in Figure 5 which
depicts the magnitude of the small-signal transimpedance
between the monitor port and one of the NMOS ports of the net-
work. The error bars, which indicate 5% error relative to the tran-
simpedance of the original network at the three frequencies, show
that each reduced network is accurate to within 5% for frequen-
cies below the   specified maximum.

Figure 6 shows the results of an HSPICE transient simulation

Table 2. Reduction and simulation of the substrate mesh
with 25 port nodes for the one-bit full adder. The AC sweep
was performed for 81 sampled frequencies.

Maximum
Frequency

Total
Nodes

R’s C’s

RCFIT Reduction HSPICE AC

Poles
Time
(sec)

Mem.
(Mb)

Time
(sec)

Mem.
(Mb)

(original) 1525 4970 253 — — — 1841.5 47.6

3 GHz 31 125 408 6 6.2 1.4 1.5 0.4

1 GHz 26 120 278 1 6.2 1.4 1.2 0.4

300 MHz 25 119 227 0 5.9 1.4 1.1 0.3

Figure 5.  Comparison of small-signal transimpedance
between two port nodes for the reduced meshes given in Table
2. The error bars indicate 5% error at the specified maximum
frequencies.
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Figure 6.  Simulation of voltage fluctuations in the sub-
strate which result from activity in the one-bit full adder.
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of the one-bit full adder circuit. Substrate voltage fluctuations are
compared for simulations with the original substrate mesh and
with the reduced mesh using the 1 GHz frequency. As can be seen,
the reduced network gives a very good approximation to the
behavior of original network. Table 3 provides statistics on the
reduction and simulation of the network, and shows that use of the
reduced network speeds the simulation over 300 times while
reducing the memory required by two orders of magnitude.

Comparison of the memory requirements for the examples
given in Tables 1 and 3 illustrates an important difference. The
HSPICE simulation of the circuit using the full RC network in the
former example, which has 7264 MOSFETs and 20263 RC ele-
ments, requires 37.2 Mbytes memory, while that for the later
example, which has only 28 MOSFETs and 5223 RC elements,
requires 44.9 Mbytes! The discrepancy in the relative memory
requirements results from differences in the circuit topologies. In
the prior example, both transistors and RC elements form a nearly
tree-like structure so that the matrix used by HSPICE to represent
the circuit, is very sparse, and the factorization of that matrix is
nearly as sparse. In the subsequent example, the transistors are
tree-like, but the RC elements form a strongly connected 3-D
mesh. As a result, the factorization of the circuit matrix is much
less sparse and more memory is required to contain it. This exam-
ple elucidates the importance of minimizing the number ofinter-
nal nodes, and not branches, during the reduction of mesh
networks.

The final example shows the reduction of a very large 3-D RC
mesh network which models the substrate beneath a circuit con-
taining 467 CMOS transistors. As with the previous example, the
body terminal of each transistor forms a port of the substrate net-
work, and two additional ports are included for the substrate and
well contacts. Table 4 shows statistics on the reduction of the net-
work using a 500 MHz frequency and 10% tolerance. Of the 25.8
Mbytes total memory required, 19.5 Mbytes is used to contain the
Cholesky factorization ofD. In contrast to the remaining 6.3
Mbytes used by RCFIT, the Padé-based methods require
469×19877×8 = 71.1 Mbytes for the Lanczos vectors alone, and
MPVL requires two of these blocks. The original network is too
large to simulate with HSPICE, so no comparisons can be made
regarding the behaviors of the reduced and full networks.

Conclusions
A new algorithm, called Pole Analysis via Congruence Trans-

formations (PACT), has been presented which is designed to
reduce large multiport RC networks. Because it is based on pole
analysis, and not on the Padé approximation, it is fundamentally
different from AWE and MPVL. The strategy employs congruence
transforms which reduce the size of the network admittance matri-

Table 3. Reduction and transient simulation statistics of the
one-bit full adder circuit.

Substrate
Network

Total
Nodes

Total
RC’s

RCFIT
Reduction

HSPICE
Simulation

Time
(sec)

Mem.
(Mb)

Time
(sec)

Mem.
(Mb)

original 1540 5256 — — 12511.6 44.9

reduced, 1GHz 41 431 6.2 1.4 40.0 0.4

Table 4. Reduction of the large 3-D mesh RC network.

network
Port

Nodes
Internal
Nodes

R’s C’s
Time
(sec)

Mem.
(Mb)

original 469 19877 65809 3683 – –

reduced, 500 Mhz 469 10 14221 46427 1792.6 25.8

ces in a well-conditioned manner while preserving passivity by
eliminating unwanted poles, and it was shown to be more time
and memory efficient than the Padé-based methods when the
number of ports is large. Additionally, a prototype network reduc-
tion CAD tool, named RCFIT, was introduced, and its perfor-
mance was demonstrated in several examples which show that
reduction of RC networks can significantly decrease the time and
memory required for circuit simulations without introducing sig-
nificant error.
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